Asymptotics for subcritical fully nonlinear equations with isolated singularities

Download statistics - Document (COUNTER):

Zhang, Wei: Asymptotics for subcritical fully nonlinear equations with isolated singularities. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2017, VII, 75 S. DOI: https://doi.org/10.15488/3427

Selected time period:

year: 
month: 

Sum total of downloads: 291




Thumbnail
Abstract: 
In dieser Dissertation betrachten wir die Gleichung $$\sigma_k(A^u) = u^{\left(p-\frac{n+2}{n-2}\right)k}, wobei $n\ge 3$ und $ p \in \left(\frac n{n-2} , \frac{n+2}{n-2}\right). Dabei ist $\sigma_k$ das $k$-te elementarsymmetrische Polynom in den Eigenwerten von $A^u$ und $$A^u = -\frac2{n-2} u^{-\frac{n+2}{n-2}}D^2u + \frac{2n}{(n-2)^2} u^{-\frac{2n} n-2}} \nabla u \otimes \nabla u - \frac2{(n-2)^2}u^{-\frac{2n}{n-2}}|\nabla u|^2 I,$$ wobei $\nabla u$ den Gradienten von $u$ und $D^2u$ die Hessesche Matrix bezeichnen. Diese Gleichung ergibt sich in natürlicher Weise aus dem $\sigma_k$-Yamabe-Problem. Für $k=1$ erhalten wir $$-\Delta u =u^p;$$ dies ist einfach eine klassische subkritische semilinear-elliptische Gleichung. Für $1\le k<\frac n2$ zeigen wir, dass eine zulässige Lösung dieser Gleichung mit nicht-hebbarer isolierter Singularität asymptotisch gleich einer radialen Lösung ist. Mit Hilfe einer genauen Analyse der linearisierten Gleichung sind wir dann in der Lage, asymptotische Entwicklungen höherer Ordnung für die Lösungen zu zeigen. Diese Resultate verallgemeinern die früheren bahnbrechenden Arbeiten von Caffarelli, Gidas und Spruck. Als Beiprodukt erhalten wir Schoens Harnack-Ungleichung in Euklidischen Kugeln, das asymptotische Verhalten ganzer Lösungen. Basierend auf dem asymptotischen Verhalten erhalten wir einen weiteren Beweis des Liouville-Satz von Li und Li.
License of this version: CC BY 3.0 DE
Document Type: doctoralThesis
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Fakultät für Mathematik und Physik
Dissertationen

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 222 76.29%
2 image of flag of United States United States 32 11.00%
3 image of flag of China China 16 5.50%
4 image of flag of Hong Kong Hong Kong 3 1.03%
5 image of flag of Brazil Brazil 3 1.03%
6 image of flag of Russian Federation Russian Federation 2 0.69%
7 image of flag of Italy Italy 2 0.69%
8 image of flag of Algeria Algeria 2 0.69%
9 image of flag of Canada Canada 2 0.69%
10 image of flag of Netherlands Netherlands 1 0.34%
    other countries 6 2.06%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse