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Asymptotik für subkritische voll nichtlineare Gleichungen
mit isolierten Singularitäten

ZUSAMMENFASSUNG

In dieser Dissertation betrachten wir die Gleichung

σk(Au) = u(p− n+2
n−2 )k,

wobei n ≥ 3 und p ∈
(

n
n−2 ,

n+2
n−2

)
. Dabei ist σk das k-te elementarsymmetrische Polynom in den

Eigenwerten von Au und

Au = −
2

n − 2
u−

n+2
n−2 D2u +

2n
(n − 2)2 u−

2n
n−2∇u ⊗ ∇u −

2
(n − 2)2 u−

2n
n−2 |∇u|2I,

wobei ∇u den Gradienten von u und D2u die Hessesche Matrix bezeichnen. Diese Gleichung ergibt
sich in natürlicher Weise aus dem σk-Yamabe-Problem. Für k = 1 erhalten wir

−∆u = up;

dies ist einfach eine klassische subkritische semilinear-elliptische Gleichung.
Für 1 ≤ k < n

2 zeigen wir, dass eine zulässige Lösung dieser Gleichung mit nicht-hebbarer
isolierter Singularität asymptotisch gleich einer radialen Lösung ist. Mit Hilfe einer genauen Anal-
yse der linearisierten Gleichung sind wir dann in der Lage, asymptotische Entwicklungen höherer
Ordnung für die Lösungen zu zeigen. Diese Resultate verallgemeinern die früheren bahnbrechen-
den Arbeiten von Caffarelli, Gidas und Spruck.

Als Beiprodukt erhalten wir Schoens Harnack-Ungleichung in Euklidischen Kugeln, das
asymptotische Verhalten ganzer Lösungen. Basierend auf dem asymptotischen Verhalten erhal-
ten wir einen weiteren Beweis des Liouville-Satz von Li und Li.

Schlüsselwörter: asymptotisches Verhalten, vollständig nichtlineare Gleichun-
gen, isolierte Singularitäten
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Asymptotics for Subcritical Fully Nonlinear Equations
with Isolated Singularities

ABSTRACT

In this thesis, we consider this equation

σk(Au) = u(p− n+2
n−2 )k,

where n ≥ 3 and p ∈ ( n
n−2 ,

n+2
n−2 ). Here σk denotes the kth elementary symmetric function of the

eigenvalues of Au, and

Au = −
2

n − 2
u−

n+2
n−2 D2u +

2n
(n − 2)2 u−

2n
n−2∇u ⊗ ∇u −

2
(n − 2)2 u−

2n
n−2 |∇u|2I,

where∇u denotes the gradient of u and D2u denotes the Hessian of u. This equation arises naturally

from the σk Yamabe equation. When k = 1, it amounts to

−∆u = up,

which is simply a classical subcritical semilinear elliptic equation.

We study the asymptotic behavior of solutions in a punctured ball. For 1 ≤ k < n
2 , we

prove that an admissible solution to this equation with a non-removable isolated singular point is

asymptotic to a radial solution. Then we are able to obtain higher order expansion of solutions

using analysis of the linearized operators. These results generalize earlier pioneering work of

Caffarelli, Gidas and Spruck.

As a side effect, we also obtain Schoen’s Harnack type inequality in Euclidean balls, asymp-

totic behavior of an entire solution. Based on the asymptotic behavior, we are able to give another

proof of the Liouville type theorem obtained by Li and Li.

Key words: asymptotic behavior, fully nonlinear equations, isolated singularities
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Chapter 1

Introduction

1.1 Yamabe problem

Let (Mn, g0) be an n-dimensional, compact, smooth Riemannian manifold without boundary.
For n = 2, we see from the uniformization theorem of Poincaré that there exist metrics that are
pointwise conformal to g and have constant Gauß curvature. For n ≥ 3, the well-known Yamabe
problem is to determine whether there exist metrics with constant scalar curvature that are point-
wise conformal to g0. The answer to the Yamabe problem is proved to be affirmative through
Yamabe [87], Trudinger [82], Aubin [6] and Schoen [74]. See Lee and Parker [47] for a survey.
See also Bahri [9] and Brezis and Bahri [10] for works on the Yamabe problem and related ones.
Let n ≥ 3 and g = u

4
n−2 g0 for some positive function u. The scalar curvature Rg of g can be

calculated as
Rg = u−

n+2
n−2 (Rg0u −

4(n − 1)
n − 2

∆g0u),

where Rg0 denotes the scalar curvature of g0 and ∆g0 is the Laplace-Beltrami operator. Therefore
the Yamabe problem is equivalent to the existence of a solution to

− ∆g0u +
n − 2

4(n − 1)
Rg0u =

n − 2
4(n − 1)

Rgu
n+2
n−2 , (1.1.1)

where Rg ≡ c for some constant c.

The first two terms of the operator on the left in (1.1.1), that is,

Lg0 := ∆g0 −
n − 2

4(n − 1)
Rg0

give a second order linear elliptic differential operator known as the conformal Laplacian of the
metric g0.

Consider

Q(ϕ) =

∫
Mn(|∇g0ϕ|

2 + n−2
4(n−1) Rg0ϕ

2)

(
∫

Mn |ϕ|
2n

n−2 )
n−2

n

,

for ϕ ∈ H1(Mn)\{0}. It is easy to see that a positive critical point of the functional Q is a solution
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to (1.1.1). The Sobolev quotient is given by

Q(Mn, g0) = inf{Q(ϕ)|ϕ ∈ H1(Mn)\{0}}.

Yamabe [87] attempted to prove that Q(Mn, g0) is always achieved. However, Trudinger [82]
pointed out that Yamabe’s proof is wrong and also corrected Yamabe’s proof in the case
Q(Mn, g0) ≤ 0.

It was proved by Aubin [6] that Q(Mn, g0) is attained if

Q(Mn, g0) < Q(Sn, gc), (1.1.2)

where (Sn, gc) denotes the standard n sphere. Aubin also verified the above inequality for n ≥ 6
and Mn not locally conformally flat. The remaining cases are much more difficult since the local
geometry does not contain sufficient information to conclude (1.1.2). In [74], Schoen established
(1.1.2) by construcing global test functions in the remaining cases based on the positive mass
theorem of Schoen and Yau [78].

In [77], Schoen obtained compactness results for the Yamabe problem. He proved that if
(Mn, g0) is locally conformally flat but not conformally diffeomorphic to the standard sphere, then
all solutions to (1.1.1) stay in a compact set of C2(Mn). When (Mn, g0) is not locally conformally
flat, the same conclusion was proved by Li and Zhang [57] and Marques [62] independently for
n ≤ 7. For 8 ≤ n ≤ 24, it was proved that this compactness result is still true under the assumption
that the positive mass theorem holds in these dimensions, see Li and Zhang for 8 ≤ n ≤ 11 [57, 58],
and Khuri, Marques and Schoen [45] for 12 ≤ n ≤ 24. However, there are counterexamples in
dimensions n ≥ 25, see Brendle [14] for n ≥ 52, and Brendle and Marques [15] for 25 ≤ n ≤ 51.

1.2 σk Yamabe problem

Recently, there is a lot of attention focusing on the Yamabe problem for the σk curvature,
briefly the σk Yamabe problem. First we recall the Schouten tensor

Ag =
1

n − 2
(Ricg −

Rg

2(n − 1)
g),

where Ricg is the Ricci tensor of g. Then we can decompose the Riemannian curvature tensor, Rm,
into two parts

Rm = Wg + Ag T g,

where Wg is the Weyl tensor and T denotes the Kulkari-Nomizu product, see for instance [12]. The
main property of the Weyl tensor is its conformal invariance. Therefore the behavior of Rieman-
nian curvature tensor under a conformal transformation of the metric is totally determined by the
Schouten tensor.

Let λ = (λ1, λ2, . . . , λn) be the set of eigenvalues of a symmetric n × n matrix A and for
1 ≤ k ≤ n, σk denote the kth elementary symmetric function of the eigenvalues

σk(λ) =
∑

i1<···<ik

λi1 · · · λik . (1.2.1)
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So theσk curvature of (Mn, g) is defined asσk(g−1Ag). Theσk Yamabe problem on (Mn, g) consists
in finding metrics with constant σk curvature in the same conformal class of g, namely,

σk(g−1Ag) = constant. (1.2.2)

When k = 1, it is the well known Yamabe problem. When k ≥ 2, the equation becomes fully non-
linear PDE, and we need to recall the following notion: a metric g on M is said to be k admissible
or in the Γ+

k class if it belongs to the kth positive cone Γ+
k , where

g ∈ Γ+
k ⇐⇒ σ j(g−1Ag) > 0, ∀ 1 ≤ j ≤ k.

If g is in Γ+
k class, then the fully nonlinear equation is elliptic. In [39], Guan, Viaclovsky and Wang

assert that if g ∈ Γ+
k , then

Ricg ≥
2k − n

2n(k − 1)
Rgg.

Thus it is easy to see that Ricg > 0 when 2k > n.

When k , n
2 and (Mn, g) is locally conformally flat, (1.2.2) is the Euler-Lagrange equation of

the functional

Fk(g) =
1

(volg(Mn))
n−2k

n

∫
Mn
σk(g−1Ag)dvolg,

see Viaclovsky [83]. In the case k = n
2 , Brendle and Viaclovsky [16] present a variational char-

acterization for (1.2.2). Under the assumption that g is in the Γ+
k class, the σk Yamabe problem

for locally conformally flat manifolds has been solved by Li and Li [48] and Guan and Wang [37]
independently. This result is also extended to much more general symmetric functions of λ(g−1Ag)
by Li and Li [49]. In addition, Guan and Wang [38] applied the gradient flow method to derive
the conformally invariant Sobolev inequality for locally conformally flat manifolds. In the case of
general manifolds, the solution to the σk Yamabe problem has been obtained by Chang, Gursky
and Yang [21] first for k = 2 and n = 4, by Ge and Wang [29] for k = 2 and n > 8, by Li and
Nguyen [53] for k = n

2 , by Gursky and Viaclovsky [40, 41] for 2k > n. For 2 ≤ 2k ≤ n this problem
has been solved by Sheng, Trudinger and Wang [81] under the extra hypothesis that the operator
is variational. We should point out that this hypothesis always holds for k = 1, 2, while it is shown
in [13] that this extra assumption is equivalent to the locally conformally flatness. Hence, the σk

Yamabe problem is still open for 3 ≤ k < n/2 with (Mn, g) not locally conformally flat.

1.3 Singular σk Yamabe problem

Given (Sn, gc), the singular σk Yamabe problem is to construct a new metric g with constant
σk curvature conformal to gc and complete on Ω ⊂ Sn, where Ω is a domain in Sn. This problem
can be transformed to a problem in Ω̃ ⊂ Rn with a conformally flat metric. In this setting, if we
consider the metric on Ω̃ as g̃ = u

4
n−2 |dx|2, where |dx|2 is the usual Euclidean metric, then we will

solve the equation
σk(Au) = R in Ω̃ (1.3.1)

3



with singular boundary behavior. Here and throughout the thesis we use this notation:

Au = −
2

n − 2
u−

n+2
n−2 D2u +

2n
(n − 2)2 u−

2n
n−2∇u ⊗ ∇u −

2
(n − 2)2 u−

2n
n−2 |∇u|2I,

where ∇u denotes the gradient of u and D2u denotes the Hessian of u. Taking k = 1, we see that
(1.3.1) becomes

−∆u = Ru
n+2
n−2 .

The singular σk Yamabe problem has been extensively studied in recent years, also in the
case when the ambient manifold is more general than the sphere. When k = 1 and Rg > 0,
Schoen and Yau [79] proved that if a complete conformal metric g exists on a domain Ω ⊂ Sn with
σ1(g−1Ag) bounded away from blew by a positive constant, then the Hausdorff dimension of Sn\Ω,
dimH (Sn\Ω) ≤ n−2

2 . If in addition, |Rg|+ |∇gRg| are bounded and there exists a constant c0 such that
Ricg ≥ −c0g, then dimH (Sn\Ω) < n−2

2 . In [75] Schoen constructed complete conformal metrics
on Sn\Λ when Λ is either a finite discrete set on Sn containing at least two points or a set arising
essentially as the limit set of a Kleinian group. Later Mazzeo and Pacard gave another proof of the
result in [64]. They also proved in [63] that if Ω ⊂ Sn is domain such that Sn\Ω consists of a finite
number of disjoint smooth submanifolds of dimension 1 ≤ k ≤ n−2

2 , then there exists a complete
metric on Sn\Ω with its scalar curvature identical to n(n − 1). See [69] for the earlier results in
this direction. For the negative scalar curvature case, the results of Loewner and Nirenberg [59],
Aviles [7], and Veron [85] imply that if Ω ⊂ Sn admits a complete conformal metric with negative
constant scalar curvature, then dimH (Sn\Ω) > n−2

2 . Loewer and Nirenberg [59] also proved that
if Ω ⊂ Sn is a domain with smooth boundary, then there exists a complete conformal metric on Ω

with its scalar curvature identical to −1. Later this result was generalized by Finn [28] to the case
of ∂Ω consisting of smooth submanifolds of dimension greater than n−2

2 and with boundary. For
other development related to the negative scalar curvature case, see [46, 61, 67] and the references
therein.

When 2 ≤ k < n
2 , the singular σk Yamabe problem has been solved by Mazzieri and Ndiaye

[65]. They proved that for a given finite set Λ of more than one point in Sn, satisfying some addi-
tional assumptions involving their positions in the case card(Λ) ≥ 5, there are complete metrics on
Sn\Λ, conformal to the standard metric gc and having positive constant σk curvature. See [19, 66]
for connected sum construction for σk curvature. In [24] Chang, Hang and Yang proved that if
Ω ⊂ Sn (n ≥ 5) admits a complete, conformal metric g with

σ1(g−1Ag) ≥ c0 > 0, σ2(g−1Ag) ≥ 0, and |Rg| + |∇gRg| ≤ c1,

then dimH (Sn\Ω) < n−4
2 . This result was generalized by González [32] and Guan, Lin and Wang

[35] to the case of 2 < k < n
2 : if Ω ⊂ Sn admits a complete, conformal metric g with

σ1(g−1Ag) ≥ c0 > 0, σ2(g−1Ag), · · · , σk(g−1Ag) ≥ 0, and |Rg| + |∇gRg| ≤ c1,

then dimH (Sn\Ω) < n−2k
2 . González [33] also showed that isolated singularities of C3 solutions to

(1.3.1) with finite volume are bounded.
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1.4 The object of study and main results

We restrict our attention in this thesis to study the asymptotic behavior of singular solutions
to the equation

σ1/k
k (Au) = cup− n+2

n−2 (1.4.1)

on the punctured ball, B2(0) \ {0}, where n ≥ 3, n
n−2 < p < n+2

n−2 and c is normalized to be
(
n
k

)
/2k.

There are some relevant study on the singular solutions to (1.3.1), namely, the above equation
with p = n+2

n−2 . When k = 1 and the right hand side of (1.3.1) R = 0, (1.3.1) is the Laplace equation.
A classical theorem of Bôcher asserts that any positive harmonic function in the punctured ball
B1(0)\{0} can be expressed as the sum of a multiple of the fundamental solution to the Laplace
equation and a harmonic function in the unit ball B1(0). When 2 ≤ k ≤ n

2 and R = 0, Li and
Nguyen [54] obtained the classification of the positive solutions to (1.3.1). Li also [52] proved
that a locally Lipschitz viscosity solution in Rn\{0} must be radially symmetric about 0. In the
case k = 1 and R > 0, Caffarelli, Gidas and Spruck [17] proved the asymptotic radial symmetry
of positive singular solutions to (1.3.1) on a punctured ball, and further proved that such solutions
are asymptotic to radial singular solutions to (1.3.1) on Rn\{0}. More precisely, for any singular
solution u(x) to (1.3.1) in B1(0)\{0}, there exists a radial singular solution u∗(|x|) to (1.3.1) on
Rn\{0} such that

u(x) = u∗(|x|)(1 + o(1)), as |x| → 0.

A key ingredient in the proof of the above asymptotic behavior near 0 is a “measure theoretic”
variation of the moving plane technique, which had been developed by Alexandrov [1, 2, 3, 4,
5], Serrin [73], Gidas, Ni and Nirenberg [30] to prove symmetries of solutions to certain elliptic
PDEs. Later, Korevaar, Mazzeo, Pacard and Schoen [44] improved the o(1) remainder term to
O(|x|α) for some α. They also provided an expansion of u after the order |x|α using rescaling
analysis, classification of global singular solutions and analysis of linearized operators at these
global singular solutions. When 2 ≤ k ≤ n and R > 0, Chang, Han and Yang [23] classified
all possible radial solutions to (1.3.1) in Γ+

k class on an annular domain including punctured ball
and punctured Euclidean space. In [51], Li proved that an admissible solution with an isolated
singularity at 0 ∈ Rn to (1.3.1) is asymptotically symmetric. Later, Han, Li and Teixeira [42]
studied the singular solution to (1.3.1) on a punctured ball when 2 ≤ k ≤ n. Using the polar
coordinate x = (r, θ) with r = |x| and θ ∈ Sn−1, we introduce cylindrical variable t = − ln r, so that

g = u
4

n−2 (x)|dx|2 = e−2w(t,θ)(dt2 + dθ2).

They proved that
|w(t, θ) − w∗(t)| ≤ Ce−αt as t → ∞,

where w∗(t) is a radial solution to (1.3.1). They also had the higher order expansion of w when
2 ≤ k ≤ n

2 . In 2013, A similar result was obtained by Wang [86] for conformal quotient equation.

When 1 ≤ k < n
2 , for some technical reasons, we replace u in (1.4.1) with u

k(n−2)
n−2k , then obtain

σ1/k
k (Bu) = cup− n+2k

n−2k in B2(0) \ {0}, (1.4.2)

5



with n
n−2k < p < n+2k

n−2k , where

Bu = −
2k

n − 2k
u−

n+2k
n−2k D2u +

2kn
(n − 2k)2 u−

2n
n−2k∇u ⊗ ∇u −

2k2

(n − 2k)2 u−
2n

n−2k |∇u|2I.

Taking k = 1, (1.4.1) or (1.4.2) amounts to, modulo a harmless positive constant,

−∆u = up.

σ1(Au) = up− n+2
n−2 is simply a classical subcritical semilinear elliptic equation.

This subcritical equation arises naturally from the σk Yamabe equation, at least for the case
1 ≤ k < n

2 . Let us take k = 1 as an example. Suppose that u > 0 is a solution to

−∆mu = u
m+2
m−2 in Rm\Λ

with Λ = Rm−n ⊂ Rm, m > n, where ∆m is the Laplace operator in m dimensions. Let u depend
only on the first n variables. Then u is also a solution to

−∆nu = up in Rn\{0},

where ∆n is the Laplace operator in n dimensions, and p = m+2
m−2 . If the dimension of Λ is less

than m−2
2 , then we have that p ∈ ( n

n−2 ,
n+2
n−2 ). When the dimension of Λ is equal to m−2

2 , we see that
p = n

n−2 . Each of these cases near isolated singular point has been well studied. For n
n−2 < p < n+2

n−2 ,
Gidas and Spruck [31] proved that if the singularity at 0 is non-removable, then

u(x) =
c0

|x|
2

p−1

(1 + o(1)), as |x| → 0,

where c0 = [ 2(n−2)
(p−1)2 (p − n

n−2 )]
1

p−1 . For p = n
n−2 , Aviles [8] obtained that if the singularity at 0 is

non-removable, then

u(x) = [
(n − 2)2

2|x|2 ln(1/|x|)
]

n−2
2 (1 + o(1)), as |x| → 0.

Our first theorem is a complete characterization for the solutions near isolated singularities.

Theorem 1.4.1. Assume that u ∈ C2(B2(0) \ {0}) is a positive solution to (1.4.1) in B2(0)\{0} in the
Γ+

k class. Then either there exist two constants C1 and C2 such that

C1

|x|
2

p−1

≤ u(x) ≤
C2

|x|
2

p−1

, (1.4.3)

or u can be extended as a Hölder continuous function on B2(0); when k = 1, u can actually be
extended as a smooth solution to all of B2(0).

This theorem was obtained by González in [34] for 1 ≤ k < n
2 − 1. The main ingredient in

her proof is the divergence structure of σk together with an Obata type argument. When k = 1
and n

n−2 < p ≤ n+2
n−2 , Caffarelli, Gidas and Spruck [17] proved this theorem. For k = 1 and

6



n
n−2 < p ≤ n+2

n−2 , this result was established by Gidas and Spruck [31]. When 1 ≤ k ≤ n and
p = n+2

n−2 , it was obtained by Han, Li and Teixeira [42]. We should note that this theorem is also
valid for equation (1.4.2). To get the statement of the theorem for (1.4.2), we can replace (1.4.1)
in Theorem 1.4.1 with (1.4.2).

In order to get the asymptotic behavior of a positive solution to (1.4.2) in B2(0)\{0}, we set
v(t, θ) = |x|

2
p−1 u(x) with t = − ln |x| and θ = x

|x| . Since u(x) is a solution to (1.4.2) in B2(0)\{0}, we
see that v(t, θ) is a solution to

σk(Bv) = cv(p+1)k in {t > − ln 2} × Sn−1, (1.4.4)

with n
n−2k < p < n+2k

n−2k . Here

Bv :=

Bv
11 Bv

1 j

Bv
i1 Bv

i j


is a block matrix, where

Bv
11 = (a +

a2

2
)v2

t −
a2

2
v2
θ − avttv + a(ab − 1)vtv −

ab
2

(2 − ab)v2,

Bv
1 j = −avvtθ j + a(1 + a)vtvθ j + a(ab − 1)vvθ j ,

Bv
i1 = −avvθit + a(1 + a)vtvθi + a(ab − 1)vvθi ,

and

Bv
i j = a(1 + a)vθivθ j − avvθiθ j + [

ab
2

(2 − ab)v2 − a(ab − 1)vvt −
a2

2
v2

t −
a2

2
v2
θ]δi j

with a = 2k
n−2k and b = 2

p−1 . Thanks to the asymptotically radially symmetric properties (Theorem
2.1.4) and some a priori estimates by Guan and Wang [36], we can find that any admissible solution
u to (1.4.2) with a non-removable singularity at 0 is asymptotic to any radial solution to (1.4.2)
satisfying (1.4.3). In terms of v(t, θ), we have

Theorem 1.4.2. Let v(t, θ) be a smooth solution to (1.4.4) in {t > − ln 2} × Sn−1 in the Γ+
k class,

where n ≥ 3, 1 ≤ k < n
2 . Then for any radial solution ξ(t) to (1.4.2) in R × Sn−1 in the Γ+

k
class satisfying C1 ≤ ξ(t) ≤ C2, there exist constants α > 0, C > 0 and t0 such that in the case
k(ab − 1)2 , 2a(2 − ab),

|v(t, θ) − ξ(t)| ≤ C max{e−t, e−Re(α1)t} f or t > t0; (1.4.5)

in the case k(ab − 1)2 = 2a(2 − ab),

|v(t, θ) − ξ(t)| ≤ C max{e−t, te−α0t} f or t > t0, (1.4.6)

where α1 = k
a (ab − 1) −

√
k2

a2 (ab − 1)2 − 2k
a (2 − ab) and α0 = k

a (ab − 1). In particular, v(t, θ) − c∗

also satisfies (1.4.5) or (1.4.6), where c∗ = ( (n−2k)1/kab(2−ab)
n1/k )

1
p−1 is a solution to (1.4.4).

A linearization procedure and some integral estimates show that the radial average of v(t, θ),
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β(t), solves some perturbation form of (1.4.4). By exploiting the perturbed ODE satisfied by β(t),
we prove that the average β(t) is approximated by any radial solution ξ(t) to (1.4.4) satisfying
C1 ≤ ξ(t) ≤ C2. Combining Theorem 2.1.4, we arrive at the above theorem.

For the sake of simplicity, we set w(t, θ) = −a ln v(t, θ) with a = 2k
n−2k . Since v(t, θ) is a solution

to (1.4.4), we have that w(t, θ) is a solution to

σk(Bw) = ce−
(p−1)k

a w in {t > − ln 2} × Sn−1. (1.4.7)

Here

Bw =

Bw
11 Bw

1 j

Bw
i1 Bw

i j


is a block matrix, where

Bw
11 = wtt +

1
2

(w2
t − 2(ab − 1)wt − ab(2 − ab)) −

1
2

w2
θ ,

Bw
1 j = wtθ j + wtwθ j − (ab − 1)wθ j ,

Bw
i1 = wθit + wtwθi − (ab − 1)wθi ,

and
Bw

i j = wθiθ j + wθiwθ j +
1
2

(−w2
t + 2(ab − 1)wt + ab(2 − ab) − w2

θ)δi j

with a = 2k
n−2k and b = 2

p−1 .
Inspired by the work of Korevaar, Mazzeo, Pacard and Schoen [44] and Han, Li, Teixeira

[42], we obtain higher order expansions for solutions to (1.4.7):

Theorem 1.4.3. Let w(t, θ) be a solution to (1.4.7) in {t > − ln 2} × Sn−1 in the Γ+
k class, and let

ϕ(t) be the radial solution to (1.4.7) in R × Sn−1 in the Γ+
k class. Then in the case ϕt ≡ 0, for any

Re(aN2), N ≥ 1, there is a constant mN that satisfies mNRe(a01) ≤ Re(aN2) < (mN + 1)Re(a01),
some functions ϕi(t, θ), 1 ≤ i ≤ mN − 1,

f0(t) = c01e−a01t + c02e−a02t, f j(t, θ) = c j2e−a j2tY j(θ), 1 ≤ j ≤ N,

which are solutions to the linearized equation of (1.4.7) at ϕ(t), such that for large t and small
ε0 > 0,

|w(t, θ) − ϕ(t) − f0(t) −
mN−1∑

i=1

ϕi(t, θ) −
N∑

j=1

f j(t, θ)| ≤ Ce−(mN+1)Re(a01)t+ε0t, (1.4.8)

where c01, c j2 are constants, a j2 =
(ab−1)(n−2k)+

√
(ab−1)2(n−2k)2−4((2−ab)(n−2k)−λ j)

2 , Re(a01) =

Re
(

(ab−1)(n−2k)−
√

(ab−1)2(n−2k)2−4(2−ab)(n−2k)
2

)
> 0 and (λ j,Y j(θ)) is the eigendata of −∆Sn−1; in the

case ϕt . 0, under the assumption Re(a02) ≤ 2Re(a01) − ε0, there is a function

f0(t) = c0(t),

8



which is a solution to the linearized equation of (1.4.7) at ϕ(t), such that for large t and small
ε0 > 0,

|w(t, θ) − ϕ(t) − f0(t)| ≤ Ce−2Re(a01)t+ε0t, (1.4.9)

where |c0(t)| ≤ Ce−Re(a01)t+ ε0
2 t.

This theorem requires some knowledge on the spectrum of the linearized operator of (1.4.7).
We first obtain this linearized operator. Then after a long computation we proved that the indicial
root of the linearized operator ρ j >

√
13−1
2 for λ j ≥ 2n in Lemma 4.2.2. Next for a nonhomogeneous

linearized equation, we apply a decomposition of the solutions with Wronskian function and the
maximum principle to get the higher order estimates, then an iteration argument leads to the above
theorem.

The analysis of linearized operator should be useful in constructing solutions to (1.3.1) on
Sn\Λ, and in analyzing the moduli space of solutions to (1.3.1) on Sn\Λ, when Λ is a submanifold.
Actually Mazzeo and Pacard [63] proved that when k = 1, there is a family of positive solutions
to (1.4.1). Moreover, the solution space is locally a real analytic variety. Therefore along the line
of the approach in [63] or following the way in the work of Roidos and Schrohe [70, 71, 72], we
expect to obtain the same result for 2 ≤ k < n

2 in our future work.
As a side effect, we apply the moving spheres method to obtain the Harnack type inequality

in Euclidean balls, asymptotic behavior of an entire solution. Based on the asymptotic behavior,
we are able to give another proof of the remarkable Liouville type theorem obtained by Li and
Li [49]. Recently, using the method of moving spheres and other approaches, Li and Nguyen
[55] established blow-up profiles for any blowing-up sequence of solutions to general conformally
invariant fully nonlinear elliptic equations on Euclidean domains.

Our next result concerns Schoen’s Harnack type inequality without using the Liouville type
theorem.

Theorem 1.4.4. Suppose that u ∈ C2(B3R(0)) is a positive solution to

σ1/k
k (Au) = up− n+2

n−2 in B3R(0) (1.4.10)

for some R > 0. Then max
BR(0)

u
  min

B2R(0)
u
α ≤ CR(2−n)α,

where C depends only on n, and α = 2
(n−2)(p−1)−2 > 0.

When k = 1 and p = n+2
n−2 , the above theorem was proved by Schoen [76] based on the

Liouville type theorem of Caffarelli, Gidas and Spruck [17]. In the case 1 ≤ k ≤ n and p = n+2
n−2 , Li

and Li [48] obtained the result by the method of moving spheres, a variant of the method of moving
planes. When k = 1, α = 1 and p ∈ ( n

n−2 ,
n+2
n−2 ), this theorem was proved by Li and Zhang [56]

under an additional hypothesis that maxB̄R
u ≥ 1. We note that our conclusion is invariant under

the scaling u(x) → R
2

p−1 u(Rx). The Harnack type inequality yields the following consequence as
established by Schoen in [76] for k = 1, p = n+2

n−2 , by Li and Li in [48] for 1 ≤ k ≤ n and p = n+2
n−2 .
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Corollary 1.4.5. Let u be as in Theorem 1.4.4. Then∫
BR

u
n(p−1)

2 ≤ C(n). (1.4.11)

Owing to the Harnack type inequality, we are able to get the asymptotic behavior of an entire
solution.

Theorem 1.4.6. Let u ∈ C2(Rn) be a positive solution to

σ1/k
k (Au) = up− n+2

n−2 in Rn

in the Γ+
k class, where n

n−2 < p < n+2
n−2 . Then

0 < lim inf
|x|→∞

(
|x|n−2u(x)

)
≤ lim sup
|x|→∞

(
|x|n−2u(x)

)
< ∞, (1.4.12)

and
lim sup
|x|→∞

(
|x|n−1|∇u(x)| + |x|n|∇2u(x)|

)
< ∞. (1.4.13)

In the case p = n+2
n−2 , the above theorem was proved by Li and Li [48]. Next we recall the

remarkable Liouville type theorem obtained by Li and Li [49].

Theorem 1.4.7. For n ≥ 3, assume that u ∈ C2(Rn) is a positive solution to σ1/k
k (Au) = up− n+2

n−2

in Rn in the Γ+
k class for some p, −∞ < p ≤ n+2

n−2 . Then either u ≡ constant or p = n+2
n−2 and,

for some x̄ ∈ Rn and some positive constants a1 and b1 satisfying 2b2
1a−2

1 I in the Γ+
k class and

σk(2b2
1a−2

1 I) = 1,

u(x) ≡
 a1

1 + b2
1|x − x̄|2

(n−2)/2

, x ∈ Rn.

When k = 1 and p = n+2
n−2 , this theorem was established by Caffarelli, Gidas and Spruck [17],

while under some additional hypothesis, it was proved by Obata [68] and Gidas, Ni and Nirenberg
[30]. Somewhat different proofs of the result of Caffarelli, Gidas and Spruck were given in [26],
[56]. For 1 ≤ k ≤ n and p = n+2

n−2 , under some hypothesis on u near infinity, the result was proved
by Viaclovsky [83], [84]. For k = 2, n = 4 and p = n+2

n−2 , the result is due to Chang, Gursky and
Yang [21]. For 1 ≤ k ≤ n, the result was established Li and Li [48]. For k = 2 and p = n+2

n−2 in
dimension n = 5, as well as for the same case in dimension n ≥ 6 under the additional hypothesis∫
Rn u2n/(n−2) < ∞, the result was established by Chang, Gursky and Yang [22]. When k = 1 and

1 < p < n+2
n−2 , this result was obtained by Gidas and Spruck [31]. The proof of this theorem bases

on an observation on the behavior of isolated singularities, which avoids using global information
of the entire solution. Based on the asymptotic behavior of u near infinity (Theorem 1.4.6), we are
able to give an another proof of the above theorem, Liouville type theorem, with n

n−2 < p < n+2
n−2 .

Corollary 1.4.8. For n ≥ 3, let u ∈ C2(Rn) be a positive solution to

σ1/k
k (Au) = up− n+2

n−2 in Rn

in the Γ+
k class, where n

n−2 < p < n+2
n−2 . Then u ≡ constant.
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It is not hard to see that this result is also available for p = n+2
n−2 . But it can not cover the

case −∞ < p ≤ n
n−2 , because it heavily depends on the positivity of α (Theorem 1.4.4), where

α = 2
(n−2)(p−1)−2 .

By the way, it is sometimes more convenient to use different forms of (1.4.1). Let u
4

n−2 =

e−2w0 = v−2
0 . From the definition of Au, it is easy to see that (1.4.1) with n

n−2 < p < n+2
n−2 is

equivalent to
σ1/k

k (Aw0) = e−β0w0 , (1.4.14)

where 1 < β0 < 2 and

Aw0 = D2w0 + ∇w0 ⊗ ∇w0 −
|∇w0|

2

2
I,

or
σ1/k

k (Av0) = vβ1
0 ,

where 0 < β1 < 1 and

Av0 = v0D2v0 −
|∇v0|

2

2
I.

This thesis is organized as follows. In Chapter 2, we establish the classification of singulari-
ties, Theorem 1.4.1. In Chapter 3, we prove the asymptotic behavior, Theorem 1.4.2, by exploiting
the ODE satisfied by the radial average. In Chapter 4, we give a proof of Theorem 1.4.3 by an anal-
ysis of the linearized operator. Theorems 1.4.4-1.4.6 are carried out in the last chapter, Chapter
5.
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Chapter 2

Classification of singularities

In this chapter, we will establish the classification of solutions to (1.4.1) near an isolated
singularity.

2.1 Preliminary

In this section, we list some preliminary facts which we will use later.
The following fact follows from a classical result of G. C. Evans [27]: Let E be a closed

subset of B2(0) of capacity 0-the standard capacity with respect to the Dirichlet integral, and let
u ∈ C2(B2(0) \ E) and v ∈ C2(B2(0)) satisfy

u > v and ∆u ≤ 0 ≤ ∆v in B2(0) \ E. (2.1.1)

Then
lim inf

dist(x,E)→0
[u(x) − v(x)] > 0. (2.1.2)

Let S ∈ C1(Rn × Sn×n) satisfy

−
∂S
∂Mi j

(p,M) > 0, ∀(p,M) ∈ Rn × Sn×n,

and let, for β ∈ R\{0},

T (t, p,M) := S (t−
1+β
β p, t−

2+β
β M), (t, p,M) ∈ R+ × R

n × Sn×n,

where Sn×n denotes the set of n × n real symmetric matrices, Sn×n
+ denotes the subset of Sn×n

consisting of positive definite matrices. (O(n) denotes the set of n × n real orthogonal matrices.)

Theorem 2.1.1. (Corollary 1.5 in [51]) For n ≥ 2, let S , β and T be as above. If −1 < β < 0, we
further require that

S (p, 0) ≥ 0 ∀p ∈ Rn.

Assume that u ∈ C2(B2(0)\{0}) and v ∈ C2(B2(0)) satisfy

v > 0 in B2(0)
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u > v in B2(0)\{0}

∆u ≤ 0 in B2(0)\{0}

T (u,∇u,D2u) ≥ 0 ≥ T (v,∇v,D2v) in B2(0)\{0}.

Then
lim inf
|x|→0

[u(x) − v(x)] > 0.

Next we will list some theorems that are useful in our proofs. The main ingredient in the
proof of these theorems is a blow up argument together with the moving sphere technique. The
first theorem is a global result for solutions in Rn.

Theorem 2.1.2. Assume that u ∈ C2(Rn \ {0}) is a positive solution to (1.4.1) in Rn \ {0} in the Γ+
k

class with −∞ < p < n+2
n−2 . Then u is radially symmetric about the origin and u′(r) < 0.

Based on the observation in [49] and Theorem 2.1.1, the proof of the above theorem is along
the proof of Theorem 1.2 in [51]. When k = 1 and n

n−2 ≤ p ≤ n+2
n−2 , the above theorem is obtained

by Caffarelli, Gidas and Spruck [17]. When p = n+2
n−2 , Li [51] proved this theorem.

The second result is the fastest blow up rate of solutions near a singular point.

Theorem 2.1.3. Assume that u ∈ C2(B2(0) \ {0}) is a positive solution to (1.4.1) in B2(0)\{0} in the
Γ+

k class with 1 < p < n+2
n−2 . Then

lim sup
|x|→0

|x|
2

p−1 u(x) < ∞. (2.1.3)

The exponent 2
p−1 in (2.1.3) with n

n−2 < p < n+2
n−2 is sharp for 1 ≤ k < n

2 , see Section 2.3 for
details. There are two ways to prove this theorem. The first one is from the Liouville type theorem
obtained by Li and Li [49], which Prof. Dr. YanYan Li told me. The second is following the
proof of Theorem 1.1’ in [51] together with Theorem 2.1.1. When k = 1 and n

n−2 < p ≤ n+2
n−2 , this

theorem is proved by Caffarelli, Gidas and Spruck [17]. When p = n+2
n−2 , Li [51] showed it.

The third theorem states that the solutions are asymptotically radially symmetric.

Theorem 2.1.4. Assume that u ∈ C2(B2 \ {0}) is a positive solution to (1.4.1) in the Γ+
k class. Then

u(x) = ū(|x|)(1 + O(|x|)) as x→ 0, (2.1.4)

where ū(|x|) = |Sn−1|−1
∫
Sn−1 u(|x|, θ)dθ is the spherical average of u.

The arguments of Theorem 1.3 in [51] and Theorem 2.1.1 yield the above theorem. When
k = 1, these results were proved by Caffarelli, Gidas and Spruck in [17]. When 1 ≤ k ≤ n and
p = n+2

n−2 , Li [51] obtained the similar results.
For x ∈ Rn and λ > 0, consider the Kelvin transformation of u:

ux,λ =
λn−2

|y − x|n−2 u(x +
λ2(y − x)
|y − x|2

), y ∈ Rn\{x}.

For the reader’s convenience, some calculus lemmas are taken from [56].
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Lemma 2.1.5. (Lemma 11.2 in [56]) Let f ∈ C1(Rn), n ≥ 1, ν > 0. Assume that

(
λ

|y − x|
)ν f (x +

λ2(y − x)
|y − x|2

) ≤ f (y), ∀λ > 0, x ∈ Rn, |y − x| ≥ λ.

Then f ≡ constant.

Lemma 2.1.6. (Lemma 11.1 in [56]) Let f ∈ C1(Rn), n ≥ 1, ν > 0. Suppose that for every x ∈ Rn,
there exists λ(x) > 0 such that

(
λ

|y − x|
)ν f (x +

λ2(y − x)
|y − x|2

) = f (y), y ∈ Rn\{x}.

Then for some a ≥ 0, d > 0, x̄ ∈ Rn,

f (x) = ±

(
a

d + |x − x̄|2

) ν
2

.

2.2 Classification of singularities

In this section, we will prove Theorem 1.4.1.

Lemma 2.2.1. Suppose u is a positive solution to (1.4.1) in the Γ+
k class. Then for all 0 < r < 1

4 ,
we have

sup
B2r(0)\B̄r/2(0)

u ≤ C inf
B2r(0)\B̄r/2(0)

u, (2.2.1)

where C is a positive constant independent of r.

Proof. Let
v(x) = r

2
p−1 u(rx).

It follows from Theorem 2.1.3 that

0 < v(x) ≤ C, ∀ |x| ∈ [
1
4
, 4],

where C is a positive constant independent of r. Moreover, v satisfies (1.4.2) as well. By Harnack
inequality in [36], we get

sup
1
2≤|x|≤2

v(x) ≤ C inf
1
2≤|x|≤2

v(x),

where C is independent of r. Then (2.2.1) follows. �

By Harnack inequality, we claim

lim inf
|x|→0

u(x) = ∞, (2.2.2)

if 0 is a non-removable singularity of u. In fact, there exists a sequence x j such that

r j = |x j| → 0 and u(x j)→ ∞ as j→ ∞. (2.2.3)
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It follows from (2.2.1) that

inf
|x|=r j

u ≥
1
C

u(x j).

By the maximum principle,

inf
r j+1≤|x|≤r j

u(x) = inf
|x|=r j,r j+1

u(x) ≥
1
C

min{u(x j), u(x j+1)} → ∞,

as j→ ∞. The claim is proved.

Proposition 2.2.2. Let u be a positive solution to (1.4.1) in the Γ+
k class. If

lim inf
|x|→0

|x|
2

p−1 u(x) = 0,

then u can be extended as a Hölder continuous function near the origin 0. When k = 1, u can
actually be extend as a smooth solution to all of B2(0).

Proof. By Theorem 2.1.3,
sup

0<|x|≤1
|x|

2
p−1 u(x) < ∞. (2.2.4)

Since ∆u ≤ 0 in B2(0)\{0}, we have

u(x) ≥ min
∂B1(0)

u > 0, ∀ 0 < |x| ≤ 1. (2.2.5)

In fact, let v be the solution to ∆v = 0 in B1(0) with v = u on ∂B1(0). From the maximum principle,
we have min∂B1(0) u ≤ v(x) ≤ max∂B1(0) u for all x ∈ B̄1(0). Since v(x)−u(x) ≤ max∂Br(0)(v−u) rn−2

|x|n−2

for x ∈ ∂Br(0), v(x) − u(x) = 0 for x ∈ ∂B1(0) and ∆(v − u) ≥ 0, by the maximum principle again,
we see

v(x) − u(x) ≤ max
∂Br(0)

(v − u)
rn−2

|x|n−2 ≤
(max∂Br(0) v + max∂Br(0) u)rn−2

|x|n−2 ,

for x ∈ B1(0)\Br(0). Sending r → 0, we obtain v(x) ≤ u(x) for x ∈ B̄1(0)\{0}. Thus u(x) ≥ v(x) ≥
min∂B1(0) u for x ∈ B̄1(0)\{0}.

Since lim inf |x|→0 |x|
2

p−1 u(x) = 0, by (2.2.1), we obtain

lim
|x|→0
|x|

2
p−1 u(x) = 0.

Then we have that u(x) ≤ |x|
2

1−p +c0 for some constant c0 > 0. It follows that∫
Bε(0)

u
n(p−1)

2 dx ≤ ε.

Because the above inequality is invariant under the scaling u(x)→ ε
2

p−1 u(εx), we get∫
B1(0)

u
n(p−1)

2 dx ≤ ε,
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for small ε > 0, that is, the volume smallness condition. Following the argument similar to that in
[33], we have u is bounded, then u is a Hölder continuous function.

When k = 1, we will obtain much stronger conclusion, that is, u ∈ C∞(B2(0)). This part is
inspired by the work [44]. First, we claim that u ∈ Lq(B2(0)) for some q >

n(p−1)
2 . Let v(t, θ) =

|x|
2

p−1 u(x), where t = − ln |x|, θ = x/|x|. Since u is a solution to −4u = up, we see that v is a solution
to

vtt + ∆Sn−1v +
2
a

(ab − 1)vt −
b
a

(2 − ab)v + vp = 0 in [− ln 2,∞) × Sn−1,

where a = 2
n−2 and b = 2

p−1 . The hypothesis limx→0 |x|
2

p−1 u(x) = 0 implies that

v(t, θ)→ 0 uniformally as t → ∞.

Therefore we see that
∆v ≥ −

2
a

(ab − 1)vt + C0v

for some C0 > 0 and t ≥ t0 for sufficiently large t0. Now we consider the function v̂ = C1e−α1t +

εeα2t where α1 > 0, α2 > 0 and C1 is chosen large enough such that C1e−α1t0 > v(t0, θ) for all
θ ∈ Sn−1. Note that v̂ is a solution to ∆v̂ = − 2

a (ab−1)v̂t +C0v̂. By the maximum principle, we have

v(t, θ) ≤ C1e−α1t + εeα2t

for all θ. Since C1 is independent of ε, we may let ε go to zero. Then we get eα1tv(t, θ) ≤ C1 for
t ≥ t0. Writing this in terms of u, we have

u(x) ≤ C1|x|q1 for q1 =
2

1 − p
+ α1.

This implies that u ∈ Lq(B2(0)) for some q >
n(p−1)

2 . Next from Lemma 2.1 in [17], we see that
u ∈ Lp(B2(0)) and u is a distribution solution to −∆u = up in B2(0). Then by the estimates in [88],
we obtained

‖u‖W2,q/p(Ω) ≤ C‖up‖Lq/p(B2(0)) ≤ C‖u‖pLq(B2(0)) ≤ C,

where Ω ⊂⊂ B2(0). Using the Sobolev embedding theorem, we have that u ∈ L
nq

np−2q (Ω) ⊂ Lp(Ω).
After finite steps, we get u ∈ Cα(B2(0)). Then by the Schauder theory, u ∈ C2,α(B2(0)). Finally we
have u ∈ C∞(B2(0)).

Now we have established this proposition. �

Proof of Theorem 1.4.1. By the above proposition and Theorem 2.1.3, we have that either there
exist two constants C1 and C2 such that

C1

|x|
2

p−1

≤ u(x) ≤
C2

|x|
2

p−1

,

or u can be extended as a Hölder continuous function on B2(0), when k = 1, u can actually be
extended as a smooth solution to all of B2(0). �
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2.3 Sharpness of Theorem 2.1.3

The two lemmas in this section give the sharpness of Theorem 2.1.3.

Lemma 2.3.1. For n ≥ 3, let u(x) = |x|
2

1−p , x ∈ Rn\{0}, where n
n−2 < p < n+2

n−2 . Then

λ(Au) = {−1, 1, . . . , 1}
4

(n − 2)(p − 1)2 (p −
n

n − 2
)up− n+2

n−2 in Rn\{0}. (2.3.1)

Proof. We write u(x) as u(r) with r = |x|, and only need to verify (2.3.1) at x = (r, 0, . . . , 0), r > 0.
At this point,

∇u = (u′(r), 0, . . . , 0), D2u = diag(u′′,
u′(r)

r
, . . . ,

u′(r)
r

),

and
Au(x) = diag(λu

1(r), λu
2(r), . . . , λu

n(r)),

where
λu

1(r) = −
2

n − 2
u−

n+2
n−2 u′′ +

2(n − 1)
(n − 2)2 u−

2n
n−2 (u′)2,

and

λu
2(r) = · · · = λu

n(r) = −
2

n − 2
u−

n+2
n−2

u′

r
−

2
(n − 2)2 u−

2n
n−2 (u′)2.

With this we compute

u′ =
2

1 − p
r

p+1
1−p =

2
1 − p

u
p+1

2 , u′′ =
2

1 − p
p + 1

2
u

p−1
2 u′ =

2(p + 1)
(p − 1)2 up,

λu
1(r) =−

2
n − 2

u−
n+2
n−2

2(p + 1)
(p − 1)2 up +

2(n − 1)
(n − 2)2 u−

2n
n−2

4
(p − 1)2 up+1

=−
4(p + 1)

(n − 2)(p − 1)2 up− n+2
n−2 +

8(n − 1)
(n − 2)2(p − 1)2 up− n+2

n−2

=−
4

(n − 2)(p − 1)2 (p −
n

n − 2
)up− n+2

n−2 ,

and

λu
2(r) = · · · = λu

n(r) =−
2

n − 2
u−

n+2
n−2

2
1 − p

r
2p

1−p −
2

(n − 2)2 u−
2n

n−2
4

(p − 1)2 up+1

=
4

(n − 2)(p − 1)
up− n+2

n−2 −
8

(n − 2)2(p − 1)2 up− n+2
n−2

=
4

(n − 2)(p − 1)2 (p −
n

n − 2
)up− n+2

n−2 .

This lemma is established. �
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Lemma 2.3.2. For λ0 = (−1, 1, . . . , 1) ∈ Rn, n ≥ 2,

σk(λ0)> 0, for 1 ≤ k <
n
2
,

σk(λ0) = 0, for k =
n
2
,

σk(λ0)< 0, for
n
2
< k ≤ n.

It follows that 4
(n−2)(p−1)2 (p − n

n−2 )up− n+2
n−2 (−1, 1, . . . , 1) belongs to Γ+

k , ∀ 1 ≤ k < n
2 , and this vector

does not belongs to Γ+
k , ∀ k ≥ n

2 .

Proof. It follows from Lemma 8.2 in [51]. �
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Chapter 3

Asymptotic behaviors of singular solu-
tions

A remarkable result of Caffarelli, Gidas and Spruck [17] says that if u is a positive solution to

−∆u = up in B2(0)\{0}

with a non-removable isolated singularity, then for n
n−2 < p < n+2

n−2 ,

u(x) =
c0

|x|2/(p−1) (1 + o(1)), as x→ 0,

where c0 = [ 2(n−2)
(p−1)2 (p − n

n−2 )]1/(p−1).

Our objective in this chapter is to study similar problems for singular solutions to (1.4.2) with
1 ≤ k < n

2 . In order to get the asymptotic behavior of a positive solution to (1.4.2) in B2(0)\{0}, we

set v(t, θ) = |x|
2

p−1 u(x) with t = − ln |x| and θ = x
|x| . Since u(x) is a solution to (1.4.2) in B2(0)\{0},

we see that v(t, θ) is a solution to

σk(Bv) = cv(p+1)k in {t > − ln 2} × Sn−1, (3.0.1)

with n
n−2k < p < n+2k

n−2k . Here

Bv :=

Bv
11 Bv

1 j

Bv
i1 Bv

i j


is a block matrix, where

Bv
11 = (a +

a2

2
)v2

t −
a2

2
v2
θ − avttv + a(ab − 1)vtv −

ab
2

(2 − ab)v2,

Bv
1 j = −avvtθ j + a(1 + a)vtvθ j + a(ab − 1)vvθ j ,

Bv
i1 = −avvθit + a(1 + a)vtvθi + a(ab − 1)vvθi ,
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and

Bv
i j = a(1 + a)vθivθ j − avvθiθ j + [

ab
2

(2 − ab)v2 − a(ab − 1)vvt −
a2

2
v2

t −
a2

2
v2
θ]δi j

with a = 2k
n−2k and b = 2

p−1 . From n
n−2k < p < n+2k

n−2k , it is easy to see that 1 < ab < 2.

3.1 Classification of radial solutions

In this section, we will show the asymptotic behaviors of positive radial solutions to (3.0.1)
on R × Sn−1.

When v(t, θ) := ξ(t) is a function of t, Bv becomes a block diagonal matrix

Bξ =

A − B
2 0

0 B
2 δi j

 ,
where

A = aξ2 − aξξtt,

and
B = a[−aξ2

t − 2(ab − 1)ξtξ + b(2 − ab)ξ2].

Therefore we have

σk(Bξ) =

(
n − 1
k − 1

)
(A −

B
2

)(
B
2

)k−1 +

(
n − 1

k

)
(
B
2

)k =

(
n
k

)
(
B
2

)k−1[
k
n

(A −
B
2

) +
n − k

2n
B].

Meanwhile from definition of A and B, we get

k
n

(A −
B
2

) +
n − k

2n
B =

k
n

A +
n − 2k

2n
B

=
k
n

aξ2
t −

k
n

aξξtt +
k
n

[−aξ2
t − 2(ab − 1)ξtξ + b(2 − ab)ξ2]

=
n − 2k

2n
a[−aξttξ − 2(ab − 1)ξtξ + b(2 − ab)ξ2].

It follows from σk(Bξ) = cξ(p+1)k with c =
(
n
k

)
/2k that

[−aξ2
t − 2(ab − 1)ξtξ + b(2 − ab)ξ2]k−1[−aξttξ − 2(ab − 1)ξtξ + b(2 − ab)ξ2] = c1ξ

(p+1)k, (3.1.1)

where c1 = n
ak(n−2k) . Now we denote above equation as σk(Bξ) = c1ξ

(p+1)k.

Since σk has a fixed sign on Rn ×Sn−1, then either B > 0 or B < 0 for all t ∈ R. And we claim
B > 0, i.e.,

−aξ2
t − 2(ab − 1)ξtξ + b(2 − ab)ξ2 > 0

by a contradiction argument. Indeed ξ(t) ∈ Γ+
k and k ≥ 2 imply σ1, σ2 > 0. If B < 0, then

σ1 > 0⇒
1
n

A +
n − 2

2n
B > 0⇒ A > (1 −

n
2

)B,
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and
σ2 > 0⇒

2
n

A +
n − 4

2n
B > 0⇒ A < (1 −

n
4

)B.

Combining these two inequalities, we have

(1 −
n
4

)B > A > (1 −
n
2

)B⇔ 1 −
n
4
< 1 −

n
2
⇔

1
2
> 1.

This is a contradiction.

Next we claim that if B > 0 and σk > 0, then it is also satisfies σl > 0 for any 1 ≤ l < k. In
fact, σk > 0 and B > 0 imply that

k
n

A +
n − 2k

2n
B > 0.

Then it follows, for 1 ≤ l < k, that

σl =

(
n
l

)
(
B
2

)l−1[
l
n

(A −
B
2

) +
n − l
2n

B] =
l
k

(
n
l

)
(
B
2

)l−1[
k
n

A + (
k
l
−

2k
n

)
B
2

]

=
l
k

(
n
l

)
[
k
n

A + (1 −
2k
n

)
B
2

+ (
k
l
− 1)

B
2

] > 0.

We now get an upper bound on the function ξ(t). It is easy to see that the trajectory (ξ(t), ξt(t))
is contained within the homoclinic orbit of the Hamiltonian system

[−aη2
t + b(2 − ab)η2]k−1[−aηttη + b(2 − ab)η2] = c1η

(p+1)k (3.1.2)

which tends to (0, 0) as t tends both to +∞ and −∞. Let (η̂(t), η̂t(t)) parameterize this orbit. Then
we conclude that

sup ξ ≤ sup η̂.

The conservation of Hamiltonian energy for (3.1.2) now shows that

[−aη̂2
t + b(2 − ab)η̂2]k =

2c1

p + 1
η̂(p+1)k.

η̂ attains its supremum then η̂t = 0, so we get the upper bound

ξp−1(t) < (sup η̂)p−1 = b(2 − ab)(
p + 1
2c1

)1/k.

Let y1 = ξ and y2 = ξt. Then (3.1.1) is equivalent to the dynamical system
dy1
dt = y2,

dy2
dt = −

c1y(p+1)k−1
1

aBk−1 − 2
a (ab − 1)y2 + b

a (2 − ab)y1.
(3.1.3)

Now we find the equilibrium points of (3.1.3) by solving the system:y2 = 0,

−
c1y(p+1)k−1

1
aBk−1 + b

a (2 − ab)y1 = 0.
(3.1.4)
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Since y2 = 0, the second equation has the solution y1,1 = 0 for all values of the parameters and, in
addition, the solution

y1,2 = (
b(2 − ab)

c1/k
1

)
1

p−1 > 0 (3.1.5)

Thus the system (3.1.3) has one equilibrium point Y1 = (0, 0), and an additional one, Y2 = (y1,2, 0)
with y1,2 is given by (3.1.5).

To study the behavior of (3.1.3) near (0, 0), we analyze its linear approximation:dy1
dt = y2,

dy2
dt = b

a (2 − ab)y1 −
2
a (ab − 1)y2.

Thus, we have the characteristic equation

λ2 +
2
a

(ab − 1)λ −
b
a

(2 − ab) = 0,

with the roots
λ1 =

1
a

(2 − ab) > 0 and λ2 = −b = −
2

p − 1
< 0.

The corresponding eigenvectors −→v 1(2) are given by

−→v 1(2) =

 1

λ1(2)

 ,
such that A(0,0)

−→v 1(2) = λ1(2)
−→v 1(2), where

A(0,0) =

 0 1

b
a (2 − ab)− 2

a (ab − 1)

 .
Therefore we see that the point (0, 0) is a saddle point.

Now we study the second equilibrium point Y2:

Y2 = (y1,2, 0) with y1,2 = (
b(2 − ab)

c1/k
1

)
1

p−1 > 0

Here we have the following linear approximation of (3.1.3) near the point Y2:

AY2 =

 0 1

−2k
a (2 − ab)− 2k

a (ab − 1)

 ,
with the characteristic equation

r2 +
2k
a

(ab − 1)r +
2k
a

(2 − ab) = 0
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We have the following eigenvalues

r1 = (−
2
a

(ab − 1)k +

√
(
2
a

(ab − 1)k)2 −
8k
a

(2 − ab))/2,

and

r2 = (−
2
a

(ab − 1)k −

√
(
2
a

(ab − 1)k)2 −
8k
a

(2 − ab))/2,

and the eigenvectors −→z 1(2) := (1, r1(2))T such that AY2
−→z 1(2) = r1(2)

−→z 1(2). Thus, we have the follow-
ing alternatives for the equilibrium point Y2:

1.If ( 2
a (ab − 1)k)2 − 8k

a (2 − ab) ≥ 0, then Y2 is a stable node.

2.If ( 2
a (ab − 1)k)2 − 8k

a (2 − ab) < 0, then Y2 is a stable focus.

Now we study the critical points of the system (3.1.3). We determine asymptotic behavior of
solutions to system (3.1.3) by comparing them with the corresponding solutions of the linearized
system at the points Y1 and Y2. there are solutions Y(t) that tend to Y1 or Y2 as t → ∞. Locally, the
nonlinear system may be thought of as a perturbation of the linear one. The results from Hartman
(Chapter X, Theorem 13.1, Corollary 16.3 in [43]) guarantee that the principal term of asymptotic
behavior is the same for a solution tending to the origin for the system (3.1.3) and its linearization.

Next we will investigate the first integral of ϕ, where ξ(t) = e−
1
aϕ(t). From (3.1.1), we see that

ϕ satisfies
B(ϕ)k−1(aϕtt + B(ϕ)) = c2e−

(p−1)k
a ϕ, (3.1.6)

where c2 = n
n−2k and

B(ϕ) = −ϕ2
t + 2(ab − 1)ϕt + ab(2 − ab).

Proposition 3.1.1. If ϕ is a bounded solution to (3.1.6) in the Γ+
k class, then

B(ϕ)k =
2c2

p + 1
e−

(p−1)k
a ϕ + e

2k
a ϕh(t, ϕ).

where h(t, ϕ) > 0 for large t

Proof. Since

(e−
2k
a ϕB(ϕ)k)t =−

2k
a

e−
2k
a ϕϕtB(ϕ)k + e−

2k
a ϕkB(ϕ)k−1[−2ϕtϕtt + 2(ab − 1)ϕtt]

=−
2k
a

e−
2k
a ϕϕtB(ϕ)k − 2ke−

2k
a ϕB(ϕ)k−1ϕtt(ϕt − ab + 1)

=−
2k
a

e−
2k
a ϕ(ϕt − ab + 1)B(ϕ)k−1(aϕtt + B(ϕ)) −

2k
a

(ab − 1)e−
2k
a ϕB(ϕ)k

=−
2kc2

a
e−

k(p+1)ϕ
a ϕt +

2kc2

a
(ab − 1)e−

(p+1)k
a ϕ −

2k
a

(ab − 1)e−
2k
a ϕB(ϕ)k

=
2c2

p + 1
(e−

(p+1)k
a ϕ)t +

2kc2

a
(ab − 1)e−

(p+1)k
a ϕ −

2k
a

(ab − 1)e−
2k
a ϕB(ϕ)k,
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we have

(e−
2k
a ϕB(ϕ)k −

2c2

p + 1
e−

(p+1)k
a ϕ)t =−

2k
a

(ab − 1)[e−
2k
a ϕB(ϕ)k −

2c2

p + 1
e−

(p+1)k
a ϕ]

+
2kc2

a
(ab − 1)(1 −

2
p + 1

)e−
(p+1)k

a ϕ.

Using variation of constant, we obtain

e−
2k
a ϕB(ϕ)k −

2c2

p + 1
e−

(p+1)k
a ϕ =

2kc2

a
(ab − 1)(1 −

2
p + 1

)e−
2k
a (ab−1)t

∫ t

0
e−

k(p+1)
a ϕ+ 2k

a (ab−1)sds

+Ce−
2k
a (ab−1)t =: h(t, ϕ).

where C is a constant.

It follows that
B(ϕ)k =

2c2

p + 1
e−

(p−1)k
a ϕ + e

2k
a ϕh(t, ϕ).

Now we show that h(t, ϕ) > 0 for large t. In fact, by the boundedness of ϕ, we have

e−
2k
a (ab−1)t

∫ t

0
e−

k(p+1)
a ϕ+ 2k

a (ab−1)sds≥C1e−
2k
a (ab−1)t

∫ t

0
e

2k
a (ab−1)sds

=
aC1

2k(ab − 1)
e−

2k
a (ab−1)t(e

2k
a (ab−1)t − 1)

=
aC1

2k(ab − 1)
(1 − e−

2k
a (ab−1)t)

≥
aC1

4k(ab − 1)
,

for large t. Then it is easy to see that h(t, ϕ) > 0 for large t. So this proposition is established. �

3.2 Perturbed ODE satisfied by the radial average

As in the previous section, in terms of t = − ln r = − ln |x|,

v(t, θ) = r
2

p−1 u(r, θ) = e−
1
a w(t,θ),

the spherical average of v(t, θ)

β(t) :=
1
|Sn−1|

∫
Sn−1

v(t, θ)dθ,

and the spherical average of w(t, θ)

γ(t) :=
1
|Sn−1|

∫
Sn−1

w(t, θ)dθ,
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(2.1.3) is reformulated as
v(t, θ) ≤ C and e−

1
a w(t,θ) ≤ C (3.2.1)

We also derive from (2.1.4) that

|v(t, θ) − β(t)| ≤ Cβ(t)e−t, (3.2.2)

and
|w(t, θ) − γ(θ)| ≤ Ce−t (3.2.3)

Equation (3.2.2) is simply a reformulation of (2.1.4) in terms of v(t, θ) and β(t). In terms of w(t, θ),
(3.2.2) is

|e−
1
a w(t,θ)−ln β(t) − 1| ≤ Ce−t,

from which it follows that, for some Ĉ > 0,

|w(t, θ) + a ln β(t)| ≤ Ĉe−t. (3.2.4)

Integrating over Sn−1, we obtain
|γ(t) + a ln β(t)| ≤ Ĉe−t. (3.2.5)

Equations (3.2.4) and (3.2.5) imply (3.2.3).
We have the gradient estimates for positive singular solutions u(x) in the Γ+

k class to (1.4.2) in
B2(0)\{0}.

Proposition 3.2.1. Let u(x) be a positive singular solution to (1.4.2) in B2(0)\{0} in the Γ+
k class,

v(t, θ), β(t), w(t, θ) and γ(t) be defined above. Then for any δ > 0 small, there exists a constant
C > 0 depending on δ such that

|∇
j
t,θ(v(t, θ) − β(t))| ≤ Cβ(t)e−(1−δ)t, (3.2.6)

and
|∇

j
t,θ(w(t, θ) − γ(t))| ≤ Ce−(1−δ)t (3.2.7)

for all t ≥ 0 and j = 1, 2.

Now we provide an argument for (3.2.7). First, (3.2.1) and the gradient estimates for solutions
to (1.4.2), see [36], give a bound B̂ > 0 depending on j > 0 and C in (3.2.1), such that

|∇
j
t,θw(t, θ)| ≤ B̂. (3.2.8)

This obviously leads to
|∇

j
t,θγ(t)| ≤ B̂, (3.2.9)

which, together with (3.2.8), implies that

|∇
j
t,θ(w(t, θ) − γ(t))| ≤ 2B̂.

This estimate, together with (3.2.3) and interpolation, proves (3.2.7). Similarly, we have (3.2.6).
Let v(t, θ) be a positive solution to (1.4.4) in {t > t0} × Sn−1 in the Γ+

k class, and β(t) is defined
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in the beginning of this section. We first make a proposition,

Proposition 3.2.2. If 2k < n, then β(t) satisfies

[−aβ2
t − 2(ab− 1)βtβ+ b(2− ab)β2]k−1[−aβttβ− 2(ab− 1)βtβ+ b(2− ab)β2] = c1β

(p+1)k(1 + η1(t)),
(3.2.10)

where η1(t) has the decay rate η1(t) = O(e−t) as t → ∞.

Proof. Let σk(Av) be a functional of v(t, θ), then with

v̂(t, θ) = v(t, θ) − β(t),

we have the following expansion

σk(Av) = σk(Aβ) + Lβ(t)[v̂(t, θ)] + η̂1(t, θ),

where Lβ(t) denotes the linearized operator for σk(Av(t,θ)) at β(t), and η̂1(t, θ) satisfies

|η̂1(t, θ)| = O(β2(t)e−2(1−δ)t) as t → ∞,

by (3.2.6) and |∇ j
t β(t)| ≤ C. Next,

v(t, θ)(p+1)k = β(t)(p+1)k(1 +
v̂(t, θ)
β(t)

)(p+1)k = β(t)(p+1)k + (p + 1)kβ(t)(p+1)k−1v̂(t, θ) + β(t)(p+1)kη̂2(t, θ),

where |η̂2(t, θ)| = O(β(t)2e−2t) as t → ∞ from (3.2.2). Integrating over θ ∈ Sn−1, we have

1
|Sn−1|

∫
Sn−1

σk(Aβ(t))dθ = [−aβ2
t −2(ab−1)βtβ+b(2−ab)β2]k−1[−aβttβ−2(ab−1)βtβ+b(2−ab)β2],

1
|Sn−1|

∫
Sn−1

Lβ(t)[v̂(t, θ)]dθ = 0,
1
|Sn−1|

∫
Sn−1

β(t)(p+1)kdθ = β(t)(p+1)k,

1
|Sn−1|

∫
Sn−1

η̂1(t, θ) = O(e−2(1−δ)t) as t → ∞,

1
|Sn−1|

∫
Sn−1

β(t)(p+1)k−1v̂(t, θ)dθ = O(β(p+1)ke−t) as t → ∞,

and
1
|Sn−1|

∫
Sn−1

β(t)(p+1)kη̂2(t, θ) = O(β(p+1)k+2e−2t) as t → ∞.

Thus we obtain (3.2.10). �

Next we make another proposition relating the asymptotic behavior of u with that of β(t).

Lemma 3.2.3. If
lim inf

x→0
|x|

2
p−1 u(x) > 0 (3.2.11)

Then for some ε > 0,

B(β) := −aβ2
t − 2(ab − 1)βtβ + b(2 − ab)β2 ≥ ε (3.2.12)
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for all sufficiently large t.

Proof. Inequality (3.2.12) is proved by noting that (3.2.11) and (3.2.1) imply that

1
C
≤ β(t) ≤ C (3.2.13)

for some C, which, together with (3.2.10), implies that, for large t, B(β) never changes sign, which,
in turn with (3.2.13), |∇ j

t,θv(t, θ)| ≤ C and |∇ j
t,θβ(t)| ≤ C, implies that, for some ε > 0, B(β) ≥ ε for

all sufficiently large t. �

Let w(t, θ) be a bounded solution to (1.4.7) in {t > t0}×Sn−1 in the Γ+
k class, and γ(t) is defined

in the beginning of this section. We make the proposition

Proposition 3.2.4. If 2k < n, then γ(t) satisfies

e
(p−1)k

a γ{[−γ2
t +2(ab−1)γt +ab(2−ab)]k−1[aγtt−γ

2
t +2(ab−1)γt +ab(2−ab)]+η2} = c2(1+η3(t)),

(3.2.14)
where η2(t) = O(e−2(1−δ)t), η3 = O(e−2t) as t → ∞, for arbitrarily small δ > 0 as in (3.2.7), and
c2 = n

n−2k .

Proof. Let σk(Aw) be a functional of w(t, θ), then with ŵ(t, θ) := w(t, θ)− γ(t), we have the follow-
ing expansion

σk(Aw) = σk(Aγ(t)) + Lγ(t)[ŵ(t, θ)] + η̂1(t, θ),

where Lγ(t) denotes the linearized operator for σk(Aw) at γ(t), and η̂1(t, θ) satisfies |η̂1(t, θ)| =

O(e−2(1−δ)t) as t → ∞ by (3.2.7) and (3.2.9). Next,

e
(p−1)k

a w(t,θ) = e
(p−1)k

a γ(t) · e
(p−1)k

a ŵ(t,θ),

and
e−

(p−1)k
a ŵ(t,θ) = 1 −

(p − 1)k
a

ŵ(t, θ) + η̂2(t, θ),

where |η̂2(t, θ)| = O(e−2t) as t → ∞ from (3.2.3). Integrating over θ ∈ Sn−1, we get

1
|Sn−1|

∫
Sn−1

σk(Aγ(t))dθ = [−γ2
t + 2(ab− 1)γt + ab(2− ab)]k−1[aγtt − γ

2
t + 2(ab− 1)γt + ab(2− ab)],

1
|Sn−1|

∫
Sn−1

ŵ(t, θ)dθ = 0

1
|Sn−1|

∫
Sn−1

Lγ(t)[ŵ(t)]dθ = 0

1
|Sn−1|

∫
Sn−1

η̂1(t, θ)dθ = O(e−2(1−δ)t) as t → ∞,

and
1
|Sn−1|

∫
Sn−1

η̂2(t, θ)dθ = O(e−2t) as t → ∞.

Finally, we obtain (3.2.14). �
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Lemma 3.2.5. If (3.2.11) holds, then for some ε > 0,

B(γ) := −γ2
t + 2(ab − 1)γt + ab(2 − ab) ≥ ε,

for all sufficiently large t.

Proof. If (3.2.11) holds, then from (3.2.1), we have

−C ≤ γ(t) ≤ C (3.2.15)

for some C. Together with (3.2.14), we see that, for large t, B(γ) never changes sign. Furthermore,
it follows from (3.2.9) and (3.2.15) that for some ε > 0, B(γ) ≥ ε for all sufficiently large t. �

3.3 Asymptotic to a radial solution

Based on Theorem 2.1.4, we give a proof of Theorem 1.4.2.

Proof of Theorem 1.4.2. Recall that v(t, θ) is a solution to

σk(Av) = c1v(p+1)k in {t > t0} × Sn−1.

From Theorem 2.1.4, we have (3.2.2), that is,

|v(t, θ) − β(t)| ≤ Cβ(t)e−t.

We claim that for any solution ξ(t) to σk(Aξ) = c1ξ
(p+1)k in R × Sn−1 with C1 ≤ ξ ≤ C2,

|β(t) − ξ(t)| ≤ Ce−αt.

Combining above two inequalities, we obtain

|v(t, θ) − ξ(t)| ≤ C max{e−αt, e−t}. (3.3.1)

In particular, we have
|v(t, θ) − y1,2| ≤ C max{e−αt, e−t},

where
y1,2 = (

b(2 − ab)

c1/k
1

)
1

p−1 > 0.

Recall that β(t) is a solution to

βtt +
2
a

(ab − 1)βt −
b
a

(2 − ab)β = −
c1β

(p+1)k−1

aBk−1(β)
(1 + η1(t)). (3.3.2)

Then in the case k(ab − 1)2 , 2a(2 − ab), we have

|β(t) − y1,2| ≤ Ce−Re(α1)t; (3.3.3)
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in the case k(ab − 1)2 = 2a(2 − ab), we have

|β(t) − y1,2| ≤ Cte−α0t, (3.3.4)

where α1 = k
a (ab − 1) −

√
k2

a2 (ab − 1)2 − 2k
a (2 − ab) and α0 = k

a (ab − 1).

For the sake of clarity, we divide the proof into three steps.

Step 1, we will show that β̂(t) := β(t) − y1,2 → 0 and β̂t(t) → 0 as t → ∞. In fact, inspired
by the work of Caffarelli, Gidas and Spruck [17], we multiply (3.3.2) by βt and integrate by parts,
then we have

1
2
β2

t |
t
s +

2
a

(ab − 1)
∫ t

s
β2

t −
b(2 − ab)

2a
β2|ts = O(β(p−1)k+2|ts) + O(e−s).

It follows that
∫ ∞

s β2
t < C and therefore βt → 0 as t → ∞. Multiplying (3.3.2) by βtt and integrating

by parts, we also find
∫ ∞

s β2
tt < C and so βtt → 0 as t → ∞. Passing to the limit as t → ∞ in (3.3.2),

we conclude that
lim
t→∞

β(t) = (
b(2 − ab)

c1/k
1

)
1

p−1 = y1,2.

Step 2, we claim that |β̂(t)| = |β(t)−y1,2| ≤ Ce−Re(α1)t+εt for any ε > 0 and t ≥ t0 for sufficiently
large t0. From (3.3.2), we see that β̂(t) satisfies

β̂tt +
2k
a

(ab − 1)β̂t +
2k
a

(2 − ab)β̂ = η̂(t, β̂, β̂t),

where β̂→ 0, β̂t → 0 and |η̂(t, β̂, β̂t)| = o(
√
|β̂|2 + |β̂t|

2) as t → ∞. It follows that

Y(t) = etAY(t0) +

∫ t

t0
e(t−s)A f (s,Y(s))ds.

where
Y(t) = (β̂(t), β̂t(t))T , f (s,Y(s)) = (0, η̂(s, β̂, β̂s))T

A =

 0 1

−2k
a (2 − ab)− 2k

a (ab − 1)

 ,
Because the real parts of the characteristic roots of A are negative, there exist positive constants C
and Re(α1) > 0 such that

|etA| ≤ Ce−Re(α1)t, for t ≥ 0.

Then we have

|Y(t)| ≤ C|Y(t0)|e−Re(α1)t + C
∫ t

t0
e−(t−s)Re(α1)| f (s,Y(s))|ds.
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For ε < Re(α1), there exists t0 > 0 such that | f (t,Y(t))| ≤ ε|Y(t)|
C for any t ≥ t0. Then it follows

eRe(α1)t|Y(t)| ≤ C|Y(t0)| + ε

∫ t

t0
eRe(α1)s|Y(s)|ds.

The Gronwall inequality yields

eRe(α1)t|Y(t)| ≤ C|Y(t0)|eεt,

that is,
|Y(t)| ≤ C|Y(t0)|e−Re(α1)t+εt.

Now we have |β̂(t)| + |β̂t(t)| ≤ Ce−Re(α1)t+εt for sufficiently large t.

Step 3, we will prove that in the case k(ab − 1)2 , 2a(2 − ab),

|β(t) − y1,2| ≤ Ce−Re(α1)t;

in the case k(ab − 1)2 = 2a(2 − ab),

|β(t) − y1,2| ≤ Cte−α0t.

Now β̂ satisfies this equation

β̂tt +
2k
a

(ab − 1)β̂t +
2k
a

(2 − ab)β̂ = η̂(t, β̂, β̂t),

where |β̂(t)| ≤ Ce−Re(α1)t+εt, |β̂t(t)| ≤ Ce−Re(α1)t+εt and |η̂(t, β̂, β̂t)| = O(|β̂|2 + |β̂t|
2) ≤ Ce−2Re(α1)t+2εt.

For any small ε1 > 0, we can choose ε > 0 small enough such that |η̂| ≤ Ce−Re(α1)t−ε1t.

When k(ab − 1)2 , 2a(2 − ab), by the variation of constant formula, we see that

β̂(t) = c1e−α1t + c2e−α2t + e−α2t
∫ t

t0

e−α1 sη̂

e−
2k
a (ab−1)s

ds + e−α1t
∫ ∞

t

e−α2 sη̂

e−
2k
a (ab−1)s

ds,

where α2 = k
a (ab − 1) +

√
k2

a2 (ab − 1)2 − 2k
a (2 − ab), c1 and c2 are constants. Note that Re(α2) ≥

Re(α1). From the decay rate of η̂, we have

|e−α2t
∫ t

t0

e−α1 sη̂

e−
2k
a (ab−1)s

ds| ≤ Ce−Re(α1)t,

and

|e−α1t
∫ ∞

t

e−α2 sη̂

e−
2k
a (ab−1)s

ds| ≤ Ce−Re(α1)t,

Combining the above inequalities, we obtain

|β̂(t)| ≤ Ce−Re(α1)t.
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When k(ab − 1)2 = 2a(2 − ab), by the variation of constant formula, we have that

β̂(t) = c1te−α0t + c2e−α0t + e−α0t
∫ t

t0

se−α0 sη̂

e−
2k
a (ab−1)s

ds + te−α0t
∫ ∞

t

e−α0 sη̂

e−
2k
a (ab−1)s

ds.

From the decay of η̂, we see that

|e−α0t
∫ t

t0

se−α0 sη̂

e−
2k
a (ab−1)s

ds| ≤ Cte−α0t,

and

|te−α0t
∫ ∞

t

e−α0 sη̂

e−
2k
a (ab−1)s

ds| ≤ Cte−α0t.

By the above inequalities, we obtain

|β̂(t)| ≤ Cte−α0t.

Similarly, ξ is any solution to

ξtt +
2
a

(ab − 1)ξt −
b
a

(2 − ab)ξ = −
c1ξ

(p+1)k−1

aBk−1(ξ)

with C1 ≤ ξ ≤ C2. Then in the case k(ab − 1)2 , 2a(2 − ab), we have

|ξ(t) − y1,2| ≤ Ce−Re(α1)t; (3.3.5)

in the case k(ab − 1)2 = 2a(2 − ab), we have

|ξ(t) − y1,2| ≤ Cte−α0t. (3.3.6)

When k(ab − 1)2 , 2a(2 − ab), from (3.3.3) and (3.3.5), we obtain

|β(t) − ξ(t)| = |(β(t) − y1,2) − (ξ(t) − y1,2)| ≤ |β(t) − y1,2| + |ξ(t) − y1,2| ≤ Ce−Re(α1)t.

When k(ab − 1)2 = 2a(2 − ab), by (3.3.4) and (3.3.6), we see

|β(t) − ξ(t)| = |(β(t) − y1,2) − (ξ(t) − y1,2)| ≤ |β(t) − y1,2| + |ξ(t) − y1,2| ≤ Cte−α0t.

Now we proved the claim. �
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Chapter 4

Higher order asymptotic behaviors of
the singular solutions

In this chapter, we will obtain the higher order asymptotic behaviors of the singular solutions
to (1.4.2) by an analysis of the linearized operator. Let u(x) be a solution to σk(Bu) = cu(p− n+2k

n−2k )k,
n

n−2k < p < n+2k
n−2k , for x over the punctured ball B2(0)\{0}, where c is normalized to be

(
n
k

)
/2k. It is

assumed that Bu is in the Γ+
k class over B2(0)\{0}.

For the sake of simplicity, we set w(t, θ) = −a ln(|x|
2

p−1 u(x)), where t = − ln |x|, θ = x
|x| and

a = 2k
n−2k > 0. Since u(x) is a solution to (1.4.2), we have that w(t, θ) is a solution to

σk(Bw) = ce−
(p−1)k

a w in {t > − ln 2} × Sn−1. (4.0.1)

Here

Bw =

Bw
11 Bw

1 j

Bw
i1 Bw

i j


is a block matrix, where

Bw
11 = wtt +

1
2

(w2
t − 2(ab − 1)wt − ab(2 − ab)) −

1
2

w2
θ ,

Bw
1 j = wtθ j + wtwθ j − (ab − 1)wθ j ,

Bw
i1 = wθit + wtwθi − (ab − 1)wθi ,

and
Bw

i j = wθiθ j + wθiwθ j +
1
2

(−w2
t + 2(ab − 1)wt + ab(2 − ab) − w2

θ)δi j

with a = 2k
n−2k and b = 2

p−1 .

It follows from Theorem 2.1.3 that (3.2.1) holds, i.e., for some constant C2 > 0,

w(t, θ) ≤ C2
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for all (t, θ) ∈ R+ × Sn−1. It follows from our discussion in the beginning of the previous section
that u with isolated singularities implies, for some constant C1 > 0,

w(t, θ) ≥ −C1

for (t, θ) ∈ R+ × Sn−1, namely, w(t, θ) is bounded over (t, θ) ∈ R+ × Sn−1.

We make the following assertions about the behavior of w(t, θ) as t → ∞.

• Let t j → ∞ be any sequence tending to ∞, then {w j(t, θ) := w(t + t j, θ)} has a subsequence
converging to any bounded limiting solution ϕ(t) of (4.0.1) defined for (t, θ) ∈ R × Sn−1. The
convergence is uniform on any compact subset of R+ × Sn−1.

• Any angular derivative of w, ∂θw(t, θ) converges to 0 as t → ∞.

• ∂θw(t, θ) converges to 0 at an exponential rate as t → ∞, and

|w(t, θ) −
1
|Sn−1|

∫
Sn−1

w(t, ω)dω|

converges to 0 at an exponential rate as t → ∞.

• For any bounded solution ϕ(t) of (4.0.1) such that w(t, θ) converges to ϕ(t) at an exponential
rate as t → ∞.

By the result of last section we know that −C1 ≤ w(t, θ) ≤ C2 for all t ≥ 0. By local estimates
for (4.0.1) [36], we also get the uniform boundedness of any derivative |∇ j

t,θw(t, θ)| ≤ C for all
t ≥ 0. Let {τ j} be any sequence of numbers converging to ∞, and define w j(t, θ) = w(t + τ j, θ).
Then w j(t, θ) defined on [−τ j,∞) × Sn−1 and satisfies (4.0.1) there. Using the uniform bounds on
any derivative of w j, we may choose a subsequence of the v j converging in the C2 topology on any
compact subset of R×Sn−1. The limit function, w∞, still satisfies (4.0.1), does not go to∞ because
of the lower bound for w and is defined on the whole cylinder. By Theorem 2.1.2, we deduce that
v∞(t, θ) = v∞(t).

4.1 Linearization of the subcritical σk Yamabe equation

To compute the linearized operator of (4.0.1) at a bounded radial solution ϕ(t), we use

Bw =

Bw
11 Bw

1 j

Bw
i1 Bw

i j

 .
When w(t, θ) = ϕ(t), Bw becomes a block diagonal matrixA − B

2 0

0 B
2 δi j

 ,
where

A := ϕtt
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and
B := −ϕ2

t + 2(ab − 1)ϕt + ab(2 − ab).

When we linearized σk(Bw) at such a block diagonal matrix, the coefficient matrix consisting of
the coefficients of the Newton tensor

Ti j =
1

(k − 1)!
δi1...ik−1i

j1... jk−1 jAi1 j1 · · · Aik−1 jk−1

is also diagonal

T11 =

(
n − 1
k − 1

)
Bk−1

2k−1 ,

while for i ≥ 2,

Tii =

(
n − 1
k − 1

)
n − k
n − 1

Bk−1

2k−1 +
n − 2
k − 2

Bk−2

2k−2 (A −
B
2

)

=

(
n − 1
k − 1

)
Bk−2

2k−2 (
n − k
n − 1

B
2

) +

(
n − 1
k − 1

)
k − 1
n − 1

Bk−2

2k−2 (A −
B
2

)

=

(
n − 1
k − 1

)
Bk−2

2k−2 [
k − 1
n − 1

A +
n − 2k + 1

n − 1
B
2

].

So the linearization of σk(Bw) at ϕ(t) is

Lϕ[ f ] = T11[ ftt + ϕt ft − (ab − 1) ft] +

n∑
i=2

[ fθiθi − ϕt ft + (ab − 1) ft]

= T11 ftt + [T11 − (n − 1)T22](ϕt − (ab − 1)) ft + T22∆θ f

=

(
n − 1
k − 1

)
Bk−1

2k−1 ftt +

(
n − 1
k − 1

)
Bk−2

2k−2 [
k − 1
n − 1

A +
n − 2k + 1

n − 1
B
2

]∆θ f

+{

(
n − 1
k − 1

)
Bk−1

2k−1 −

(
n − 1
k − 1

)
Bk−2

2k−2 [(k − 1)A + (n − 2k + 1)
B
2

]}(ϕt − (ab − 1)) ft

=

(
n − 1
k − 1

)
Bk−2

2k−2 [
B
2

ftt + (
k − 1
n − 1

A +
n − 2k + 1

n − 1
B
2

)∆θ f

−((k − 1)A + (n − 2k)
B
2

)(ϕt − (ab − 1)) ft]

=

(
n − 1
k − 1

)
Bk−2

2k−2 [D(t) ftt + E(t) ft + F(t)∆θ f ],

where
D(t) :=

B
2
,

E(t) := −(ϕt − (ab − 1))((k − 1)A + (n − 2k)
B
2

),

and
F(t) :=

k − 1
n − 1

A +
n − 2k + 1

n − 1
B
2
.
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Since ϕ(t) is a solution to
σk(Bϕ) = ce−

(p−1)k
a ϕ,

where c is normalized to be
(
n
k

)
/2k, the linearization of the nonlinear partial differential equation

σk(Bw) = ce−
(p−1)k

a w at ϕ(t) is then

Lϕ f +
c(p − 1)k

a
e−

(p−1)k
a ϕ f = 0.

If we take the projections of f (t, ·) into spherical harmonics:

f (t, θ) =
∑

j

f j(t)Y j(θ),

where Y j(θ) are the normalized eigenfunctions of ∆θ on L2(Sn−1), then f j satisfies ordinary differ-
ential equation

L j[ f j] := f ′′j (t) +
E(t)
D(t)

f ′j (t) + {−λ j
F(t)
D(t)

+
n(p − 1)e−

(p−1)k
a ϕ

2aBk−1 } f j(t) = 0, (4.1.1)

where λ j are the eigenvalues of −∆θ on L2(Sn−1) associated with Y j(θ), thus

λ0 = 0, λ1 = λ2 = · · · = λn = n − 1, λ j ≥ 2n, ∀ j > n.

Note that Y0(θ) = constant.

4.2 Comparison theorems

Similar to properties of the linearized operator to the scalar curvature operator used in [44],
and the σk curvature operator used in [42], we have the following properties for the L j’s.

Proposition 4.2.1. For all solutions ϕ(t) to (4.0.1) with h > 0, k < n
2 and j ≥ 1, the following

holds:
(a) L j[ f ] = 0 has a pair of linearly independent solution basis in R, one of which grows

unbounded and the other one decays exponentially as t → ∞;
(b) Any solution of L j[ f ] = 0 which is bounded for R+ must decay exponentially;
(c) Any solution of L j[ f ] = 0 which is bounded for all of R must be identically 0;
(d) Any non-zero solution of L j[ f ] = 0 which is bounded for all of R+ must be unbounded in

R−.

Following the proof of Proposition 2 in [42], for 1 ≤ j ≤ n, (a)-(d) of this proposition follow
from an explicit solution basis to (4.1.1); for j ≥ n + 1, the argument relies on the sign of the
coefficient of the term of zero order to be negative.

Since ϕ(t) satisfies (4.0.1), with σk(Bϕ) =
(
n
k

)
e−

(p−1)k
a ϕ/2k, (4.0.1) becomes

Bk−1(aϕtt + B) = c2e−
(p−1)k

a ϕ, (4.2.1)
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where c2 = n
n−2k , a = 2k

n−2k and B = −ϕ2
t + 2(ab − 1)ϕt + ab(2 − ab). Let f0 is a solution to (4.1.1)

for λ0 = 0, namely,

f ′′0 (t) +
E(t)
D(t)

f ′0(t) +
n(p − 1)e−

(p−1)k
a ϕ

2aBk−1 f0(t) = 0.

It follows from Theorem 1.4.2 that
|ϕt| ≤ Ce−αt,

and
|ϕ +

a
(p − 1)k

ln[
n − 2k

n
(ab(2 − ab))k]| ≤ Ce−αt.

Then using the same ODE technique in Theorem 1.4.2, we are able to get

| f0(t)| ≤ Ce−Re(a01)t,

where

a01 =
(ab − 1)(n − 2k) −

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
,

or
| f0(t)| ≤ Cte−

(ab−1)(n−2k)
2 t.

When ϕ ≡ − a
(p−1)k ln[ n−2k

n (ab(2 − ab))k], (4.1.1) for λ0 = 0 is a constant coefficients ODE,
then we see that

f0(t) = c01e−a01t + c02e−a02t,

where

a02 =
(ab − 1)(n − 2k) +

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
,

and c01, c02 are arbitrary constants.

Proof of Proposition 4.2.1. For limt→∞ h(t, ϕ) > 0 and λ j = n−1, which corresponds to Y j(θ) = θ j,
we claim that

f +
1 := (ab − ϕt)et

is a solution to (4.1.1) for λ j = n − 1. This is due the translation invariance of (1.4.2): if u(x) is a
solution to (1.4.2), so is u(x + â) for any â ∈ Rn. In terms of w(t, θ), this means that

wâ(t, θ) := −ab ln |x| − a ln u(x + â)

is a solution to (4.0.1). Thus ∂â j |â=0wâ(t, θ) is a solution to the linearized equation of (4.0.1). But
when w(t, θ) = ϕ(t), we have Since

∂â j |â=0wâ(t, θ) =−a∂x j ln u(x) = ∂x j(ab ln |x| + w(t, θ))

=
ab
|x|
θ j + ϕt(−

1
|x|

)θ j = (ab − ϕt)etθ j.

Therefore (ab − ϕt)et is a solution to (4.1.1) with λ j = n − 1. Another solution to (4.1.1) with
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λ j = n − 1 is

f −1 = (ab − ϕt)et
∫ ∞

t

1
(ab − ϕt)2e2t exp(−

∫ t

0

E(s)
D(s)

ds)dt

When limt→∞ h(t, ϕ) > 0, and 2k < n, the solution ϕ(t) has the bound

1
C
≤ ab − ϕt ≤ C

for some C > 0. So {(ab−ϕt)et, (ab−ϕt)
∫ ∞

t
1

(ab−ϕt)2e2t exp(−
∫ t

0
E(s)
D(s) ds)dt} forms a solution basis for

(4.1.1) with λ j = n − 1, with one exponentially decaying and the other one exponentially growing,
and the conclusion of the proposition in the case λ j = n − 1 follows from the explicit basis.
For λ j ≥ 2n, we will verify that

the coefficient of f j in (4.1.1) has a negative upper bound. (4.2.2)

Assuming (4.2.2), we sketch the proof for properties (a)-(d) of L j for the case λ j ≥ 2n. The key is
to check that for λ > 0 small, e±λt are supersolutions of L j[ f ] = 0. This is because

L j[e±λ] = e±λ(λ2 ± λ
E(t)
D(t)

− λ j
F(t)
D(t)

+
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ)

= e±λ(λ2 ± λ[1 − (n − 1)
F(t)
D(t)

](ϕt − (ab − 1)) − λ j
F(t)
D(t)

+
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ),

and it follows from (4.2.2) that for λ j ≥ 2n,

−λ j
F(t)
D(t)

+
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ

has a negative upper bound. Furthermore, from (4.2.1), we get

F(t) =
k − 1
n − 1

A +
n − 2k + 1

n − 1
B
2

=
k − 1
n − 1

1
a

(
n

n − 2k
e−

(p−1)k
a ϕ

Bk−1 − B) +
n − 2k + 1

k − 1
B
2

=
k − 1
n − 1

n − 2k
2k

n
n − 2k

e−
(p−1)k

a ϕ

Bk−1 −
k − 1
n − 1

n − 2k
2k

B +
n − 2k + 1
2(n − 1)

B

=
n(k − 1)

2k(n − 1)
e−

(p−1)k
a ϕ

Bk−1 +
n − k

2k(n − 1)
B.
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Therefore we have

F(t)
D(t)

=
n(k − 1)
k(n − 1)

e−
(p−1)k

a ϕ

Bk +
n − k

k(n − 1)

=
n(k − 1)
k(n − 1)

e−
(p−1)k

a ϕ

2n
(p+1)(n−2k) e

−
(p−1)k

a ϕ + e
2k
a ϕh(t, ϕ)

+
n − k

k(n − 1)

=
n(k − 1)
k(n − 1)

(p + 1)(n − 2k)
2n

e−
(p−1)k

a ϕ

e−
(p−1)k

a ϕ + ĥ(t, ϕ)
+

n − k
k(n − 1)

,

where ĥ(t, ϕ) =
(p+1)(n−2k)

2n e
2k
a ϕh(t, ϕ). Here we used the fact that

Bk =
2n

(p + 1)(n − 2k)
e−

(p−1)k
a ϕ + e

2k
a ϕh(t, ϕ), lim

t→∞
h(t, ϕ) > 0.

By (3.2.1), we see that

n − k
k(n − 1)

≤
F(t)
D(t)

≤
(p + 1)(k − 1)(n − 2k)

2k(n − 1)
+

n − k
k(n − 1)

.

It is clear that we can choose λ > 0 small to make

L j[e±λt] < 0

for all t ∈ R.

Now fix such a λ > 0. We claim that if f (t) is a bounded solution to L j[ f ] = 0 in R±, then

| f (t)| ≤ | f (0)|e∓λt

for all t ∈ R±, which then implies (b). This is because for any ε > 0, | f (0)|e∓λt + εe±λt is a
supersolution to L j in R±. Therefore if f (t) is a bounded solution to L j[ f ] = 0 in R±, then by the
maximum principle, we have

| f (t)| ≤ | f (0)|e∓λt + εe±λt

for all t ∈ R±. For any fixed t ∈ R±, since the above estimate holds for all ε > 0, we can send ε to 0
to verify our claim. (c) follows from (b) and the maximum principle, and (d) obviously is a direct
corollary of (c).

Next, any L j has a pair of linearly independent basis { f1, f2} in R. If both are bounded in R+,
and ĉ1 and ĉ2 are such that

ĉ1 f1(0) + ĉ2 f2(0) = 0,

then our claim implies that
ĉ1 f1(t) + ĉ2 f2(t) ≡ 0 in R+,

contradicting their choice.

It remains to establish that there is a nontrivial solution to L j[ f ] = 0 bounded in R+. Since
we have verified that L j is uniformly elliptic in R+ and satisfies the maximum principle, we can
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establish the desired existence by a convergence argument for solutions which are constructed on
a sequence of finite intervals that exhaust R+.

Finally we will verify (4.2.2). Since 1 ≥ B > 0, we see that, when λ j ≥ 2n, the coefficient of
f j(t) in (4.1.1) is bounded from above by

−λ j
F(t)
D(t)

+
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ

=−λ j[
n(k − 1)
k(n − 1)

e−
(p−1)k

a ϕ

Bk +
n − k

k(n − 1)
] +

n(p − 1)
2aBk e−

(p−1)k
a ϕB

≤−
2ne−

(p−1)k
a ϕ

(n − 1)Bk (
n(k − 1)

k
−

(p − 1)(n − 1)
4a

B) −
2n(n − k)
k(n − 1)

<−
2ne−

(p−1)k
a ϕ

(n − 1)Bk (n −
n
k
−

4k
n − 2k

n − 2k
2k

n − 1
4

) −
2n(n − k)
k(n − 1)

=−
2ne−

(p−1)k
a ϕ

(n − 1)Bk (n −
n
k
−

n
2

+
1
2

) −
2n(n − k)
k(n − 1)

<−
2n(n − k)
k(n − 1)

< 0,

when n > k ≥ 2. When k = 1, the above estimate gives

−λ j
F(t)
D(t)

+
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ

≤−
2ne−

(p−1)k
a ϕ

(n − 1)Bk (
n(k − 1)

k
−

(p − 1)(n − 1)
4a

B) −
2n(n − k)
k(n − 1)

= n(e−
(p−1)k

a ϕ − 2)

≤−n,

as ϕ(t) ≥ 0, which follows from

2c2

p + 1
e−

(p−1)k
a ϕ + e

2k
a ϕh(t, ϕ) = B ≤ 1,

with limt→∞ h(t, ϕ) > 0. �

This proposition can be considered as comparison theorem for L j[ f ] = 0. However Theorem

1.4.5 requires some more detailed knowledge about the linearized operator to σk(Bw) = ce−
p−1

a kw.
To be more precise, the decay rates of bounded solutions to L j[ f ] = 0 on R+ need to be faster that
e−t when λ j ≥ 2n. In the case 2k < n and h > 0, L j is an ordinary differential operator without
period coefficients, so we can not apply the Floquet theory. Now we can formulate and prove a
version that does not need L j to have the structure to apply the Floquet theory.

Lemma 4.2.2. When 2k < n and h > 0, for any β ≤ β∗ with β∗ ≥ (
√

13− 1)/2, and for all λ j ≥ 2n,
any bounded solution f of L j[ f ] = 0 in R+ satisfies | f (t)| ≤ Ce−βt.

Remark 4.2.1. In the case 2k < n and h > 0, above lemma allows a direct construction of a bounded
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(in fact, decaying) fundamental solution to L j[ f ] = 0 in R+ which is positive. Therefore in such
cases comparison theorems show that the characteristic roots ρ j of L j are monotone increasing as
λ j increases.

Proof. When λ j ≥ 2n, λ ≤ 2, we can find λ ≥
√

13−1
2 . In fact, we have

L j[e−λt] = e−λt(λ2 − λ[1 − (n − 1)
F(t)
D(t)

](ϕt − (ab − 1)) − λ j
F(t)
D(t)

+
n(p − 1)

2aBk e−
(p−1)k

a ϕB)

≤ e−λt(λ2 − λ + λ(n − 1)
F(t)
D(t)

− 2n
F(t)
D(t)

+
n(p − 1)

2a
e−

(p−1)k
a ϕ

Bk )

≤ e−λt(λ2 − λ + (n(λ − 2) − λ)
F(t)
D(t)

+
n(p − 1)

2a
e−

(p−1)k
a ϕ

Bk )

≤ e−λt(λ2 − λ − [(2 − λ)n + λ]
e−

(p−1)k
a ϕ

Bk + +
n(p − a)

2a
e−

(p−1)k
a ϕ

Bk

−[(2 − λ)n + λ]
n − k

k(n − 1)
).

Here we use the fact that

1 − (n − 1)
F(t)
D(t)

≤ 1 −
n − k

k
=

2k − n
k

< 0.

Since
Bk =

2n
(p + 1)(n − 2k)

e−
(p−1)k

a ϕ + ĥ(t, ϕ), h(t, ϕ) > 0,

we get

L j[e−λt]≤ e−λt(λ2 − λ + [
n(p − 1)

2a
− [(2 − λ)n + λ]

n(k − 1)
k(n − 1)

]
e−

(p−1)k
a ϕ

2n
(p+1)(n−2k) e

−
(p−1)k

a ϕ + ĥ(t, ϕ)

−[(2 − λ)n + λ]
n − k

k(n − 1)
)

< e−λt(λ2 − λ +
(P + 1)(n − 2k)

2
[

p − 1
2a
− [(2 − λ)n + λ]

k − 1
k(n − 1)

]

−[(2 − λ)n + λ]
n − k

k(n − 1)
)

≤ e−λt(λ(λ − 1) +
(p + 1)(n − 2k)

2
[1 − [(2 − λ)n + λ]

k − 1
k(n − 1)

]

−[(2 − λ)n + λ]
n − k

k(n − 1)
)

Let λ = 1 + ε. Then we have 2 − λ = 1 − ε, λ − 1 = ε and

L j[e−λt]< e−λt((1 + ε)ε +
(p + 1)(n − 2k)

2
(1 − [(n + 1) − (n − 1)ε]

k − 1
k(n − 1)

)

−[(n + 1) − (n − 1)ε]
n − k

k(n − 1)
)
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Next we obtain

L j[e−λt]< e−λt((1 + ε)ε + n[1 −
(n + 1)(k − 1)

k(n − 1)
+ (n − 1)ε

k − 1
k(n − 1)

]

−
(n + 1)(n − k)

k(n − 1)
+ ε(n − 1)

n − k
k(n − 1)

)

= e−λt((1 + ε)ε +
nk(n − 1) − n(n + 1)(k − 1) − (n + 1)(n − k)

k(n − 1)
)

+εn(1 −
1
k

) + ε(
n
k
− 1))

= e−λt(ε2 + nε − 1).

Now we can choose ε =
√

n2+4−n
2 , that is,

λ =

√
n2 + 4 − n + 2

2
≥

√
13 − 1

2

such that L j[e−λt] ≤ 0. Then by the maximum principle, we have

| f (t)| ≤ Ce−βt.

�

Note that the coefficient of f ′j in L j[ f j] is

E(t)
D(t)

=
−(ϕt − (ab − 1))(2(k − 1)ϕtt + (n − 2k)(−ϕ2

t + 2(ab − 1)ϕt + ab(2 − ab)))
−ϕ2

t + 2(ab − 1)ϕt + ab(2 − ab)
,

which may alter its sign as t → ∞. Therefore it is hard to be controlled in computation. In [42],
they introduced a function V(t) to remove this term involving f ′j . But in our case, it is not easy to
recover the results by their method.

4.3 Existence of a parametrix

In this section, we will give some existence results for the linearized equation in weighted
Sobolev spaces, which inspired by [44, 63, 64]

Let M := R × Sn−1 and M+ := [0,+∞) × Sn−1. For δ ∈ R, we define the weighted L2 space

L2
δ(M) := eδtL2(M)

endowed with the norm
‖u‖L2

δ(M) := ‖e−δtu‖L2(M).

More generally, for k ∈ N, we define the weighted Sobolev space

‖u‖Wk,2
δ (M) := eδtWk,2(M)
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endowed with the norm ‖u‖Wk,2
δ (M) := ‖e−δtu‖Wk,2(M). It is easy to check that (Wk,2

δ (M), ‖ · ‖Wk,2
δ (M))

is a Banach space. We also define the weighted Hölder space Ck,α
δ (M) as

{u : ‖u‖Ck,α
δ (M) := ‖e−δtu‖Ck,α(M) < ∞}.

For the more information on the weighted Sobolev spaces and Hölder spaces, see the references
([11], [18]).

We next define
Lu := (∂tt + d̄∂t + ē∆θ + ḡ)u,

where d̄, ē > 0 and ḡ are constants. We also use Ind to denote the set of the indicial roots of the
operator L.

u ∈ W1,2
δ (M) is said to be a solution to Lu = f for f ∈ L2

δ(M), if u satisfies∫
M

(−∂tu∂tv − ē∂θu∂θv + d̄∂tuv + ḡuv)dtdω =

∫
M

f vdtdω,

for all v ∈ C∞c (M).

Lemma 4.3.1. Assume that f ∈ L2
δ(M), where δ ∈ R and δ < Ind. If u ∈ W1,2

δ (M) is a solution to
Lu = f in M. Then we have

‖u‖W2,2
δ (M) ≤ C‖ f ‖L2

δ(M).

Proof. Let U = e−δtu and F = e−δt f . It follows that U and F satisfy the following equation

e−δtL(eδtU) = F,

that is,
∂ttU + ē∆θU + (2δ + d̄)∂tU + (δ2 + δd̄ + ḡ)U = F in M.

For t0 ∈ Z, applying the interior estimates with Ω′ = [t0−1, t0+1]×Sn−1 and Ω = [t0−2, t0+2]×Sn−1,
we have

‖U‖W2,2(Ω′) ≤ C(‖U‖L2(Ω) + ‖F‖L2(Ω)).

Then we sum the above inequality over t0, and obtain

‖U‖W2,2(M) ≤ C(‖U‖L2(M) + ‖F‖L2(M)). (4.3.1)

Now we claim that
‖U‖L2(M) ≤ C‖F‖L2(M). (4.3.2)

In fact, we employ the Fourier transform of U and F in t, that is,

Û(ξ, θ) =
1
√

2π

∫
R

U(t, θ)e−iξtdt and F̂(ξ, θ) =
1
√

2π

∫
R

F(t, θ)e−iξtdt.

Using the eigenfunction decomposition of the function F as F =
∑

j∈N F j, where, for all t ∈ [0,∞),
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F j(t, ·) ∈ E j the j-th eigenspace of −∆Sn−1 associated to the eigenvalue λ j, we see that

Û =
∑
j∈N

1

(δ + d̄
2 + iξ)2 − d̄2

4 + ḡ − ēλ j
F̂ j. (4.3.3)

By Plancheral formula, we obtain

‖U‖2L2(M) = ‖Û‖2L2(M) ≤ C‖F̂‖2L2(M) = ‖F‖2L2(M),

where C depends on δ.
Combining (4.3.1) and (4.3.2), we have

‖U‖W2,2(M) ≤ C‖F‖L2(M).

This completes the proof of this lemma.
�

Remark 4.3.1. In [11], Bartnik obtained the similar Lp estimates for ∆ operator in Euclidean
spaces, where 1 < p < ∞. The proof relies on a sharp estimate for the flat Laplacian based
on an explicit expression for the integral kernel of ∆−1 on weighted Sobolev spaces.

Corollary 4.3.2. Assume that f ∈ L2
δ(M+), where δ ∈ R and δ < Ind. If u ∈ W1,2

δ (M+) is a solution
to Lu = f in M+ with u = 0 on {0} × Sn−1. Then we have

‖u‖W2,2
δ (M+) ≤ C‖ f ‖L2

δ(M+).

Proof. It can be proved by a standard method. For the reader’s convenience, we include the proof.
We now extend u and f to t < 0 by odd extension, i.e.,

ũ(t, θ) =

u(t, θ), t ≥ 0,
−u(−t, θ), t < 0,

and

f̃ (t, θ) =

 f (t, θ), t ≥ 0,
− f (−t, θ), t < 0,

It is not difficult to verify that ũ ∈ W2,2
δ (M+), f̃ ∈ L2

δ(M+). And ũ and f̃ satisfy the following
equation

Lũ = f̃ in M

almost everywhere. Then by the above lemma, we see that

‖ũ‖W2,2
δ (M) ≤ C‖ f̃ ‖L2

δ(M) ≤ 2C‖ f ‖L2
δ(M+).

It follows that
‖u‖W2,2

δ (M+) ≤ C‖ f ‖L2
δ(M+).

�
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Proposition 4.3.3. Assume that f ∈ L2
δ(M+), where δ ∈ R and δ < Ind. Then there exists a

solution u ∈ W1,2
δ (M+) to Lu = f in M+ with u = 0 on {0} × Sn−1. Moreover, we have

‖u‖W2,2
δ (M+) ≤ C‖ f ‖L2

δ(M+).

Proof. We employ the eigenfunction decomposition of the function f as f (t, θ) =
∑

j∈N f j(t, θ),
where, for all t ∈ [0,+∞), f j(t, ·) ∈ E j the j-th eigenspace of −∆Sn−1 associated to the eigenvalue
λ j. Denote j0 ∈ N be the least index such that

(δ +
d̄
2

)2 −
d̄2

4
+ ḡ < ēλ j0 .

Let f̃ =
∑

j≥ j0 f . It is easy to see that f̃ ∈ L2
δ(M+). For any t0 > 0, there exists a unique solution

ut0 to {Lut0 = f̃ , in (0, t0) × Sn−1,

ut0 = 0, on {0} × Sn−1 and {t0} × Sn−1.

In fact, the existence of ut0 is from the Fredholm alternative theorem, since Lut0 satisfies the max-
imum principle when j ≥ j0, that is, 0 is the unique solution to Lut0 = 0 with vanishing boundary
condition.

Now we claim that
‖ut0‖W2,2

δ ((0,t0)×Sn−1) ≤ C‖ f̃ ‖L2
δ((0,t0)×Sn−1),

where C does not dependent on t0. In particular, we have

‖ut0‖W1,2
δ ((0,t0)×Sn−1) ≤ C‖ f̃ ‖L2

δ((0,t0)×Sn−1). (4.3.4)

In fact, using the similar argument in Lemma 4.3.1, we are able to get the estimates.

By the interior estimates, we obtain

‖um‖W2,2
δ ((0,1)×Sn−1) ≤ C‖ f̃ ‖L2

δ((0,m)×Sn−1) ≤ C, ∀m > 1,

where C does not depend on m. Therefore there is a subsequence {u(1)
m }, such that

u(1)
m → u(1) in W1,2

δ ((0, 1) × Sn−1), as m→ ∞.

Similarly there is a subsequence {u(k)
m }, such that

u(k)
m → u(k) in W1,2

δ ((0, k) × Sn−1), as m→ ∞,

and u(k) = u( j) in (0, j) × Sn−1, j = 1, 2, · · · , k − 1.

Define ũ(t, θ) = u(k)(t, θ), if (t, θ) ∈ (0, k) × Sn−1, then ũ(t, θ) is defined on (0,∞) × Sn−1.
Consider sequence {u(m)

m } in diagram, for any (0, k) × Sn−1,

u(m)
m → ũ in W1,2

δ ((0, k) × Sn−1), as m→ ∞ ( {u(m)
m } ⊂ {u

(k)
m }, if m > k),
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Since
Lu(m)

m = f̃ in (0, k) × Sn−1, ∀ m > k,

we then find ũ ∈ W1,2
δ,loc(M+) is the solution to

Lũ = f̃ .

Let m→ ∞ in (4.3.4), we see that

‖ũ‖W1,2
δ (M+) ≤ C‖ f̃ ‖L2

δ(M+).

It follows that
‖ũ‖W2,2

δ (M+) ≤ C‖ f̃ ‖L2
δ(M+). (4.3.5)

When j ≤ j0 − 1, by the variation of constant formula, we see that

u j(t, θ) = u−j (t)
∫ t

m+

u+
j (s) f j(t, θ)

W0(s)
ds − u+

j (t)
∫ t

m−

u−j (s) f j(s, θ)

W0(s)
ds,

where the Wronskian of {u+
j (s) := exp (−d̄+

√
d̄2−4(ḡ−ēλ j)

2 s), u−j (s) = exp (−d̄−
√

d̄2−4(ḡ−ēλ j)
2 s)} ,

W0(s) = e−d̄s, and m+ = 0 or∞, m− = 0 or∞. It is not difficult to see that

‖e−δtu j‖L2(M+) ≤ C‖e−δt f j‖L2(M+),

where C depends on δ and j. Then we see that

‖u j‖W2,2
δ (M+) ≤ C‖ f j‖L2

δ(M+). (4.3.6)

Therefore

u =

j0−1∑
j=0

u j + ũ

is the solution to Lu = f in M+ with u = 0 on {0} × Sn−1 and limt→∞ e−δtu = 0. Moreover,
combining (4.3.5) and (4.3.6), we have

‖u‖W2,2
δ (M+) ≤ C‖ f ‖L2

δ(M+).

�

Inspired by the work of R. Lockhart and R. McOwen [60], we will get

Proposition 4.3.4. Assume that f ∈ L2
δ(M+), where δ ∈ R and δ < Ind. Then there exists a

solution u ∈ W1,2
δ (M+) to Lϕu = f in M+ with u = 0 on {0} × Sn−1. Moreover, we have

‖u‖W2,2
δ (M+) ≤ C‖ f ‖L2

δ(M+).

Proof. From the above proposition, we have that, for given f ∈ L2
δ(M+), there exists a solution
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u∗ ∈ W2,2
δ (M+) such that

Lu∗ = f in M+.

Then by Theorem 1.4.2, we conclude that

‖Lu∗ − Lϕu∗‖L2
δ(M+) ≤ Ce−αt‖u∗‖W2,2

δ (M+).

It follows that
‖ f − LϕL−1 f ‖L2

δ(M+) ≤ Ce−αt‖ f ‖L2
δ(M+),

where C does not depend on t. Let t large enough such that Ce−αt < 1. Then we see that

‖I − LϕL−1‖ < 1.

By Neumann series, we get LϕL−1 is invertible and bounded. It follows that the inverse of Lϕ is
L−1
ϕ = L(LϕL−1)−1. Then we obtain

‖u‖L2
δ(M+) ≤ C‖ f ‖L2

δ(M+).

Finally, by the estimates in [88], we have

‖u‖W2,2
δ (M+) ≤ C‖ f ‖L2

δ(M+).

�

4.4 Expansion in terms of Wronskian

With the knowledge in the previous sections, following the same line of the proof of Proposi-
tion 3 in [42], we can establish

Proposition 4.4.1. Suppose that f (t, θ)→ 0 as t → ∞, uniformly in θ ∈ Sn−1, and satisfies

Lϕ( f ) +
(p − 1)k

2ka

(
n
k

)
e−

(p−1)k
a ϕ f = r(t, θ), (4.4.1)

for all t > t0 and θ ∈ Sn−1. Suppose that for some 0 < β < min{β∗, (ab − 1)(n − 2k) + 1} and
0 < ε0 � β, |r(t, θ)| ≤ Ce−βt. When ϕt ≡ 0, β , Re(a01) and Re(a02), there exist constants c01 and
c02, such that

| f (t, θ) − (c01e−a01t + c02e−a02t)Y0(θ)| ≤ Ce−βt, (4.4.2)

where

a01 =
(ab − 1)(n − 2k) −

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
,

and

a02 =
(ab − 1)(n − 2k) +

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
.

In fact, if min{β∗, (ab − 1)(n − 2k)} ≤ β < (ab − 1)(n − 2k) + 1, then it continues to hold, and when
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β ≥ (ab − 1)(n − 2k) + 1, we have

| f (t, θ) − (c01e−a01t + c02e−a02t)Y0(θ)| ≤ Ce−((ab−1)(n−2k)+1)t. (4.4.3)

When β = Re(a01) or β = Re(a02), we get

| f (t, θ) − (c01e−a01t + c02e−a02t)Y0(θ)| ≤ Cte−βt. (4.4.4)

When ϕ , 0, Re(a02) ≤ 2Re(a01) − ε0 and 0 < β < min{β∗, (ab − 1)(n − 2k) + 1 + ε0}, there exists
a function c0(t) such that

| f (t, θ) − c0(t)Y0(θ)| ≤ Ce−βt+2ε0t. (4.4.5)

Indeed, if min{β∗, ab − 1)(n − 2k) + 1 + ε0} ≤ β < (ab − 1)(n − 2k) + 1 + ε0, then it continues to
hold, and when β ≥ (ab − 1)(n − 2k) + 1 + ε0, we have

| f (t, θ) − c0(t)Y0(θ)| ≤ Ce−((ab−1)(n−2k)+1)+2ε0t. (4.4.6)

Proof. Define

f̂ (t, θ) = f (t, θ) −
n∑

j=0

π j[ f (t, θ)]Y j(θ),

where f j(t) := π j[ f (t, θ)] is the L2 orthogonal projection of f (t, θ) onto span {Y j(θ)}. Then∫
Sn−1

f̂ (t, θ)Y j(θ)dθ =

∫
Sn−1
∇ f̂ (t, θ) · ∇Y j(θ)dθ =

∫
Sn−1

∆θY j(θ) f̂ (t, θ)dθ = 0. (4.4.7)

for j = 0, . . . , n. As a consequence∫
Sn−1

∆θ f (t, θ) f̂ (t, θ)dθ = −

∫
Sn−1
|∇θ f̂ (t, θ)|2dθ, (4.4.8)

and ∫
Sn−1

ft(t, θ) f̂ (t, θ)dθ =

∫
Sn−1

f̂t(t, θ) f̂ (t, θ)dθ =
1
2

d
dt

∫
Sn−1
| f̂ (t, θ)|2dθ. (4.4.9)

In the following we will prove separately the expected decays for f̂ (t, θ) and f j(t) = π j[ f (t, θ)], for
j = 0, 1, . . . , n. We first estimate f j(t) = π j[ f (t, θ)] for j = 0, 1, . . . , n. Multiplying both sides of
(4.4.1) by

(
Bk−2

2k−2

(
n − 1
k − 1

)
D(t))−1Y j(θ)

and integrating over θ ∈ Sn−1, we have

f ′′j (t) +
E(t)
D(t)

f ′j (t) + [
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ − λ j

F(t)
D(t)

] f j(t) = r j(t), (4.4.10)

where

r j(t) =

∫
Sn−1

R(t, θ)Y j(θ)dθ
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with

R(t, θ) = (
Bk−2

2k−2

(
n − 1
k − 1

)
D(t))−1r(t, θ).

First we treat the case ϕt . 0. We will write out the details for the h(t, ϕ) > 0. For j = 1, 2, . . . , n,
λ j = n − 1, and f +

1 (t) = (ab − ϕt)et and

f −1 = (ab − ϕt)et
∫ ∞

t

1
(ab − ϕt)2e2t exp(−

∫ t

0

E(s)
D(s)

ds)dt

form a solution basis to the homogeneous equation

f ′′(t) +
E(t)
D(t)

f ′(t) + [
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ − (n − 1)

F(t)
D(t)

] f (t) = 0.

Since f j(t) is a solution to (4.4.10) and f j(t) → 0 as t → ∞, by the variation of constant formula,
we have

f j(t) = c f −1 (t) + f −1 (t)
∫ t

0

f +
1 (s)r j(s)
W1(s)

ds + f +
1 (t)

∫ ∞

t

f −1 (s)r j(s)
W1(s)

(4.4.11)

for some constant c, where

W1(s) = f +
1 (s)( f −1 (s))′ − f −1 (s)( f +

1 (s))′

is the Wronskian of { f +
1 , f −1 }, and satisfies

(W1(s))′ = −
E(s)
D(s)

W1(s).

From

E(t)
D(t)

= [1 − (n − 1)
F(t)
D(t)

](ϕt − (ab − 1))

= [1 −
(k − 1)(p + 1)(n − 2k)

2k
e−

(p−1)k
a ϕ

e−
(p−1)k

a ϕ + ĥ(t, ϕ)
−

n − k
k

](ϕt − (ab − 1))

= [
2k − n

k
−

(k − 1)(p + 1)(n − 2k)
2k

e−
(p−1)k

a ϕ

e−
(p−1)k

a ϕ + ĥ(t, ϕ)
](ϕt − (ab − 1))

we get
1
C

e−(n−2k)(ab−1)s−ε0 s ≤ W1(s) ≤ Ce−(n−2k)(ab−1)s+ε0 s

for ε0 � β. According to our assumption on the decay rate of r(t, θ), we have

|r j(s)| ≤ Ce−βs.

Therefore we obtain

|

∫ ∞

t

f −1 (s)r j(s)
W1(s)

ds| ≤ C
∫ ∞

t
e−(1+β−2ε0)sds ≤ Ce−(1+β−2ε0)t,
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from which we deduce that

| f +
1 (t)

∫ ∞

t

f −1 (s)r j(s)
W1(s)

ds| ≤ Ce−(β−2ε0)t.

When β , (n − 2k)(ab − 1) + 1 + ε0, we also have

|

∫ t

0

f +
1 (s)r j(s)
W1(s)

ds| ≤ C
∫ t

0
e((n−2k)(ab−1)+1+ε0−β)sds ≤ Ce((n−2k)(ab−1)+1+ε0−β)t,

from which we conclude that

| f −1 (t)
∫ t

0

f +
1 (s)r j(s)
W1(s)

ds| ≤ Ce−(β−2ε0)t.

Putting these estimates into (4.4.11), we get

| f j − c(ab − ϕt)et
∫ ∞

t

1
(ab − ϕt)2e2t exp(−

∫ t

0

E(s)
D(s)

ds)dt| ≤ Ce−(β−2ε0)t.

When β = (n − 2k)(ab − 1) + 1 + ε0, we see that

|

∫ t

0

f +
1 (s)r j(s)
W1(s)

ds| ≤ C
∫ t

0
ds ≤ Ct,

from which we deduce that

| f −1 (t)
∫ t

0

f +
1 (s)r j(s)
W1(s)

ds| ≤ Cte−(β−2ε0)t.

Therefore from (4.4.11), we see

| f j − c(ab − ϕt)et
∫ ∞

t

1
(ab − ϕt)2e2t exp(−

∫ t

0

E(s)
D(s)

ds)dt| ≤ Cte−(β−2ε0)t.

For j = 0, f0(t) is a solution to

f ′′0 (t) +
E(t)
D(t)

f ′0(t) +
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ f0(t) = r0(t). (4.4.12)

It follows that

Y(t) = cΦ(t) + Φ(t)
∫ t

t0
Φ−1(s)F(s)ds,

where Φ(t) is a fundamental solution matrix of the system

dY(t)
dt

= A(t)Y(t)
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with

A(t) =

 0 0

−
n(p−1)
2aBk−1 e−

(p−1)k
a ϕ −

E(t)
D(t)

 ,
Y(t) = ( f0(t), f ′0(t))T and F(s) = (0, r0(s))T . Employing the same argument in Theorem 1.4.2, we
get that, for any small ε0,

|Φ(t)| ≤ Ce−Re(a01)t+ ε0
2 t,

where

a01 =
(ab − 1)(n − 2k) −

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
.

Then by the definition of the Wronskian, we see

|Φ(t)| ≥ Ce−Re(a02)t− ε0
2 t,

where

a02 =
(ab − 1)(n − 2k) +

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
.

When β < Re(a01), for some t0 ∈ (0,∞), from the decay rate of r0(s), we have

|Y(t) − cΦ(t)| ≤ C
∫ t

t0
e(−Re(a01)+ ε0

2 )(t−s)e−βsds = Ce−βt.

When Re(a02) ≤ 2Re(a01) − ε0 < β, t0 = ∞, from the decay rate of r0(s), we obtain

|Y(t) − cΦ(t)| ≤ C
∫ ∞

t
e(−Re(a02)− ε0

2 )(t−s)e−βsds = Ce−βt.

Combining above estimates, we have

| f0(t) − c0(t)| ≤ Ce−βt,

where |c0(t)| ≤ Ce−Re(a01)t+ ε0
2 t.

Now we estimate the decay rate of f̂ (t, θ). This part is analogous to an approach in [80].
Multiplying both sides of (4.4.10) by

(
Bk−2

2k−2

(
n − 1
k − 1

)
D(t))−1 f̂ (t, θ),
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integrating over θ ∈ Sn−1 and from (4.4.8) and (4.4.9), we get∫
Sn−1

( f̂tt(t, θ) f̂ (t, θ) +
E(t)
D(t)

f̂t(t, θ) f̂ (t, θ) +
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ| f̂ (t, θ)|2)dθ

−
F(t)
D(t)

∫
Sn−1
|∇θ f̂ (t, θ)|2dθ

=

∫
Sn−1

R(t, θ) f̂ (t, θ)dθ,

where
1
C

r(t, θ) ≤ R(t, θ) = (
Bk−2

2k−2

(
n − 1
k − 1

)
D(t))−1r(t, θ) ≤ Cr(t, θ).

Defining

y(t) =

√∫
Sn−1
| f̂ (t, θ)|2dθ,

then

y(t)y′(t) =

∫
Sn−1

f̂t(t, θ) f̂ (t, θ)dθ,

and

y(t)y′′(t) =

∫
Sn−1

( f̂tt(t, θ) f̂ (t, θ) + | f̂t(t, θ)|2)dθ − |y′(t)|2.

By Cauchy-Schwarz inequality

y(t)y′(t) ≤ (
∫
Sn−1
| f̂t(t, θ)|2dθ)

1
2 y(t),

which implies that

|y′(t)|2 ≤
∫
Sn−1
| f̂t(t, θ)|2dθ.

Since λ j = 2n, we have ∫
Sn−1
|∇θ f̂ (t, θ)|2dθ ≥ 2n

∫
Sn−1
| f̂ (t, θ)|2dθ

Combining these inequalities, we obtain

y(t)y′′(t) +
E(t)
D(t)

y(t)y′(t) + [
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ − 2n

F(t)
D(t)

]y2(t) ≥ −‖R(t, ·)‖L2(Sn−1)y(t)

whenever y(t) > 0, from which we deduce that

y′′(t) +
E(t)
D(t)

y′(t) + [
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ − 2n

F(t)
D(t)

]y(t) ≥ −‖R(t, ·)‖L2(Sn−1)

whenever y(t) > 0. According to our assumption on r(t, θ), we have

‖R(t, ·)‖L2(Sn−1) ≤ Ce−βt
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for some constant C > 0. By Lemma 4.2.2,

(∂tt +
E(t)
D(t)

∂t + [
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ − 2n

F(t)
D(t)

])e−βt ≤ −εe−βt

for some ε > 0 when β < β∗. Therefore z(t) := C
ε e−βt satisfies

(∂tt +
E(t)
D(t)

∂t + [
n(p − 1)
2aBk−1 e−

(p−1)k
a ϕ − 2n

F(t)
D(t)

])(z(t) − y(t)) ≤ 0 (4.4.13)

whenever y(t) > 0 We also know that y(t) → 0 as t → ∞. We may choose C > 0 large so that
z(0) ≥ y(0). Then we claim that

y(t) ≤ z(t) ∀ t ≥ 0.

Indeed, if not, min(z(t) − y(t)) < 0 is finite, and is attained at some t∗ and ∂t(z(t) − y(t))t=t∗ = 0, as
well as ∂tt(z(t) − y(t))|t=t∗ ≥ 0. This contradicts (4.4.13). Thus we conclude that

y(t) =

√∫
Sn−1
| f̂ (t, θ)|2dθ ≤

C
ε

e−βt.

We can now bootstrap this integral estimate to obtain a pointwise decay estimate

| f̂ (t, θ)| ≤ Ce−βt.

When β ≥ β∗, we can simply split those components f j of f with λ j = 2n from f̂ (t, θ), and estimate
them as we did for f j, j = 0, 1, . . . , n, and estimate f̂ (t, θ) with an improved exponential decay rate.

When ϕt ≡ 0, that is, ϕ ≡ − a
(p−1)k ln[ n−2k

n (ab(2 − ab))k], along the above steps, we can get
(4.4.2) and (4.4.3) easily. We only write out the detail for j = 0.

For j = 0, f +
0 = e−a01t and f −0 = e−a02t form a solution basis to the homogeneous equation

f ′′0 (t) + (ab − 1)(n − 2k) f ′0(t) + (2 − ab)(n − 2k) f0(t) = 0, (4.4.14)

where

a01 =
(ab − 1)(n − 2k) −

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
,

and

a02 =
(ab − 1)(n − 2k) +

√
(ab − 1)2(n − 2k)2 − 4(n − 2k)(2 − ab)

2
.

Since f0 is a solution to (4.4.10) with λ0 = 0 and f0 → 0 as t → ∞, by the variation of constant
formula, we see

f0(t) = c01 f +
0 (t) + c02 f −0 (t) + f −0 (t)

∫ t

m+

f +
0 (s)r0(s)
W0(s)

ds − f +
0 (t)

∫ t

m−

f −0 (s)r0(s)
W0(s)

ds, (4.4.15)

where the Wronskian of { f +
0 (s), f −0 (s)} , W0(s) = e−(n−2k)(ab−1)s, and m+ = 0 or ∞, m− = 0 or ∞.
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When a01 , β, from the decay rate of r(t, θ), we get

|

∫ t

m−

f −0 (s)r0(s)
W0(s)

ds| ≤ CeRe(a01)t−βt,

from which we deduce that

| f +
0 (t)

∫ t

m−

f −0 (s)r0(s)
W0(s)

ds| ≤ Ce−βt.

Meanwhile we have

|

∫ t

m+

f +
0 (s)r0(s)
W0(s)

ds| ≤ CeRe(a02)t−βt,

from which we conclude that

| f −0 (t)
∫ t

m+

f +
0 (s)r0(s)
W0(s)

ds| ≤ Ce−βt.

Combining above estimates and (4.4.15), we obtain

| f0(t) − c01 f +
0 (t) − c02 f −0 (t)| ≤ Ce−βt.

When a01 = β or a02 = β, we have

| f0(t) − c01 f +
0 (t) − c02 f −0 (t)| ≤ Cte−βt.

�

Remark 4.4.1. In fact, if | f (t, θ)| ≤ Ce−αt, α > Re(aN2) and |r(t, θ)| ≤ Ce−βt, α < β < Re(a(N+1)2),
N ≥ 1, then we still have

| f (t, θ)| ≤ Ce−βt,

where

aN2 =
(ab − 1)(n − 2k) +

√
(ab − 1)2(n − 2k)2 − 4((2 − ab)(n − 2k) − λN)

2
.

Now we provide a proof of Theorem 1.4.3. The proof is similar to the one for singular Yamabe
problem [44] and the other one for singular σk Yamabe problem [42], once we have got the needed
linear analysis.

Proof of Theorem 1.4.3. Our starting point is

Lϕw1 + E(w1) +
(p − 1)k

a
e−

(p−1)k
a ϕw1 = 0,

and we have
|E(w1)| ≤ Ce−2αt, whenever we have |w1, ∂w1, ∂

2w2| ≤ Ce−αt, (4.4.16)

where w1(t, θ) = w(t, θ) − ϕ(t). We only give a proof for ϕt ≡ 0. When ϕt . 0, it is not hard to
obtain (1.4.9) under the assumption Re(a02) ≤ 2Re(a01)−ε0. In Theorem 1.4.2 we have established
the following:

Step 1. For some α0 > 0, |w1, ∂w1, ∂
2w1| ≤ Ce−α0t.
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If α0 ≥ 2Re(a01), we stop and have proved

|w(t, θ) − ϕ(t)| = |w1(t, θ)| ≤ Ce−2Re(a01)t.

If Re(a01) < α0 < 2Re(a01), we jump to Step 3; if α0 ≤ Re(a01), we move to

Step 2. Recall that we now have

|E(w1)| ≤ Ce−2α0t.

If Re(a01) < 2α0 ≤ 2Re(a01), then we still have

|E(w1)| ≤ Ce−2αt

for some Re(a01) < 2α < 2Re(a01) and can apply Proposition 4.4.1 to imply that

|w(t, θ) − ϕ(t) − f0(t)| ≤ Ce−2αt, (4.4.17)

where f0 := c01e−a01t + c02e−a02t for some constants a01 and a02, then jump to Step 3; if 2α0 ≤

Re(a01), we may take α0 to satisfy 2α0 < Re(a01) and apply Proposition 4.4.1 to imply that

|w1(t, θ) − f0(t)| ≤ Ce−2α0t.

This certainly implies that
|w1(t, θ)| ≤ Ce−2α0t. (4.4.18)

Next we use higher derivative estimates for w(t, θ) and ϕ(t) and interpolation with (4.4.18) to obtain

|w1, ∂w1, ∂
2w1| ≤ Ce−2α′t

for any α′ < α0. Now we go back to the beginning of Step 2 and repeat the process with a new
α1 > α0 to replace the α0 there, say, α1 = 1.9α0. After a finite number of steps, we will reach a
stage where 2α > Re(a01) and ready to move onto

Step 3. At this stage, we have

|w1(t, θ)| ≤ Ce−Re(a01)t.

Repeating the last part of Step 2 involving the derivative estimates for w(t, θ) and ϕ(t) to bootstrap
the estimates for E(w1) to

|E(w1)| ≤ Ce−αt

with α can be as close to 2Re(a01) as one needs. Then we can apply Proposition 4.4.1 to obtain
(1.4.8). We should note that |E(w1)| ≤ Ce−2Re(a01) when k = 1.

Step 4. Case 1: k = 1.

From the previous steps, we see that

|w1(t, θ) − f0(t)| ≤ Ce−β1t,
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where β1 = min{2Re(a01),Re(a12)}. We also have that w1 satisfies

Lϕw1 +
(p − 1)

a
e−

(p−1)
a ϕw1 =

(p − 1)2

a2 e−
(p−1)

a ϕw2
1 + E1(w1),

where E1(w1) = O(w3
1).

There exists a constant m1 ≥ 2 such that m1Re(a01) ≤ Re(a12) < (m1 + 1)Re(a01). Let
w2(t, θ) := w1(t, θ) − f0(t). It follows that

|w2(t, θ)| ≤ Ce−2Re(a01)t

and

Lϕw2 +
(p − 1)

a
e−

(p−1)
a ϕw2 =

(p − 1)2

a2 e−
(p−1)

a ϕ(w2
2 + 2w2 f0 + f 2

0 ) + E1(w2 + f0).

By Proposition 4.3.3, there exists a solution ϕ1(t, θ) to Lϕϕ1 +
(p−1)

a e−
(p−1)

a ϕϕ1 =
(p−1)2

a2 e−
(p−1)

a ϕ f 2
0

such that |ϕ1(t, θ)| ≤ Ce−2Re(a01)t. Then we obtain that

Lϕ(w2 − ϕ1) +
(p − 1)

a
e−

(p−1)
a ϕ(w2 − ϕ1) =

(p − 1)2

a2 e−
(p−1)

a ϕ(w2
2 + 2w2 f0) + E1(w2 + f0),

where | (p−1)2

a2 e−
(p−1)

a ϕ(w2
2 + 2w2 f0) + E1(w2 + f0)| ≤ Ce−3Re(a01)t. It follows that

|w3(t, θ) := w2(t, θ) − ϕ1(t, θ)| ≤ Ce−3Re(a01)t,

and
Lϕw3 +

(p − 1)
a

e−
(p−1)

a ϕw3 = E21(w2, f0) + E22(w2, f0),

where |E21(w2, f0)| ≤ Ce−3Re(a01)t and |E22(w2, f0)| ≤ Ce−4Re(a01)t. Let ϕ2(t, θ) be a solution to

Lϕϕ2 +
(p − 1)

a
e−

(p−1)
a ϕϕ2 = E21(w2, f0).

Then we obtain
|ϕ2(t, θ)| ≤ Ce−3Re(a01)t.

It follows that
|w3(t, θ) − ϕ2(t, θ)| ≤ Ce−4Re(a01)t.

Similarly, we have

|w1(t, θ) − f0(t) −
m1−1∑

j=1

ϕ j(t, θ) − c12e−a12tY1(θ)| ≤ Ce−(m1+1)Re(a01)t.

For any Re(aN2), there exists a constant mN such that mNRe(a01) ≤ Re(aN2) < (mN + 1)Re(a01).
Employing the same procedure as above, we get

|w1(t, θ) − f0(t) −
mN−1∑

j=1

ϕ j(t, θ) −
N∑

j=1

c j2e−a j2tY j(θ)| ≤ Ce−(mN+1)Re(a01)t,
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where c j2, j = 1, . . . ,N, are constants and

a j2 =
(ab − 1)(n − 2) +

√
(ab − 1)2(n − 2)2 − 4((2 − ab)(n − 2) − λ j)

2
.

Case 2: k ≥ 2.
We have that w1 satisfies

Lϕw1 +
(p − 1)

a
e−

(p−1)
a ϕw1 = E11(w1, ∂w1, ∂

2w1) + E12(w1, ∂w1, ∂
2w2),

where |E11(w1, ∂w1, ∂
2w2)| ≤ Ce−2(Re(a01)−ε)t, E12(w1, ∂w1, ∂

2w2) ≤ Ce−3(Re(a01)−ε)t for any small
constant ε > 0.

For any Re(aN2), there exists a constant mN such that mN(Re(a01) − ε) ≤ Re(aN2) < (mN +

1)(Re(a01) − ε). Following the same line of the proof of Case 1, we obtain

|w1(t, θ) − f0(t) −
mN−1∑

j=1

ϕ j(t, θ) −
N∑

j=1

c j2e−a j2tY j(θ)| ≤ Ce−(mN+1)(Re(a01)−ε)t,

where c j2, j = 1, . . . ,N, are constants and

a j2 =
(ab − 1)(n − 2k) +

√
(ab − 1)2(n − 2k)2 − 4((2 − ab)(n − 2k) − λ j)

2
.

�

Remark 4.4.2. The much higher order expansion of solutions to σk Yamabe equation is also avail-
able, once we have the same estimate in Lemma 4.3.1 for second order elliptic equations with
periodical coefficients. It is not difficult to get the similar estimate by integration by part and some
Hardy type inequality.
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Chapter 5

Harnack type inequality and Liouville
type theorem

In this chapter, we apply the method of moving spheres to obtain Harnack type inequality
in Euclidean balls, asymptotic behavior of an entire solution. Based on the asymptotic behavior,
we are able to give another proof of the remarkable Liouville type theorem obtained by Li and Li
[49]. For the method of moving spheres, there are, roughly speaking, three steps: one is to get
started with the procedure, second is to prove that the function and the reflected one coincide if the
procedure stops, and the third is to handle the case when the procedure never stops.

5.1 Harnack type inequality for Euclidean balls

In this section, we will establish Harnack type inequality for Euclidean balls. Our proof makes
use of ideas in the proof of Theorem 1.5 in [56].

Proof of Theorem 1.4.4. We argue by contradiction. Suppose the contrary, then there would exist
solutions u j to (1.4.10), j = 1, 2, . . ., such that

u j(x̄ j)

 min
B2R j (0)

u j

α > j

R(n−2)α
j

, (5.1.1)

where u j(x̄ j) = maxBR j (0) u j.

Consider
v j(x) := (R j − |x − x̄ j|)

2
p−1 u j(x), x ∈ BR j(x̄ j).

Let |x j − x̄ j| < R j satisfy
v j(x j) = max

BR j (x̄ j)
v j(x),

and let

σ j =
1
2

(R j − |x j − x̄ j|) ≤
R j

2
Then we have

R j − |x − x̄ j| ≥ σ j, x ∈ Bσ j(x j).
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By the definition of v j, we get

(2σ j)
2

p−1 u j(x j) = v j(x j) ≥ v j(x) ≥ (σ j)
2

p−1 u j(x), x ∈ Bσ j(x j).

It follows that
2

2
p−1 u j(x j) ≥ max

Bσ j (x j)
u j,

We also obtain

(2σ j)
2

p−1 u j(x j) = v j(x j) ≥ v j(x̄ j) = R
2

p−1
j u j(x̄ j),

that is,

(σ j)
2

p−1 u j(x j) ≥
(
R j

2

) 2
p−1

u j(x̄ j).

It follows that
u j(x j) ≥ u j(x̄ j), (5.1.2)

and from (5.1.1),

γ j := u j(x j)
p−1

2 σ j ≥
R j

2
(u j(x̄ j))

p−1
2 ≥

R j

2
[u j(x̄ j)( min

B2R j (0)
u j)α]

1
(n−2)α ≥

j
1

(n−2)α

2
→ ∞. (5.1.3)

Set
w j(y) =

1
u j(x j)

u j(x j +
y

u j(x j)
p−1

2

), |y| < Γ j,

where Γ j = u j(x j)
p−1

2 R j. Then we see that

σ1/k
k (Aw j) = w

p− n+2
n−2

j , w j > 0, in BΓ j(0), (5.1.4)

and
1 = w j(0) ≥ 2

2
1−p max

Bγ j (0)
w j. (5.1.5)

Since w j is superharmonic function, we have, by (5.1.1) and (5.1.2),

min
∂BΓ j (0)

w j = min
BΓ j (0)

w j ≥

minB2R j (0) u j

u j(x j)
=

u j(x̄ j)1/α minB2R j (0) u j

u j(x j)u j(x̄ j)1/α >
j1/α

Γn−2
j

. (5.1.6)

For every x ∈ Rn satisfying |x| < 1
2γ j, we can find, as in [56], 0 < λx, j < 1 such that for all

0 < λ < λx, j and y ∈ BΓ j(0)\Bλ(x), we have

w j,x,λ(y) := (
λ

|y − x|
)n−2w j(x +

λ2(y − x)
|y − x|2

) ≤ w j(y). (5.1.7)
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Because of (5.1.7), we can define

λ̄ j(x) = sup{0 < µ < Γ j − |x|, w j,x,λ(y) ≤ w j(y), y ∈ BΓ j(0)\Bλ(x), 0 < λ < µ}.

Now we claim that for every m > 0,

lim
j→∞

inf
|x|≤m

λ̄ j(x) = ∞.

The proof of this claim is almost the same to the proof of Lemma 5.1 in [48]. For the reader’s
convenience, we include the proof. For simplicity, we only prove that λ̄ j := λ̄ j(0) → ∞, since the
general case is essentially the same. Suppose the contrary, then (along a subsequence),

λ̄ j ≤ C < γ j (5.1.8)

for some constant C independent of j. Here we have used the fact that γ j → ∞. By the definition
of λ̄ j,

w j − w j,λ̄ j
≥ 0 in Σ j := {y : λ̄ j < |y| < Γ j}.

From (5.1.5), (5.1.6) and (5.1.8), we get

max
∂BΓ j (0)

w j,λ̄ j
≤ CΓ2−n

j < j1/αΓ2−n
j < min

∂BΓ j (0)
w j,

that is,
min
∂BΓ j (0)

(w j − w j,λ̄ j
) > 0.

Recall that
w j − w j,λ̄ j

= 0 on ∂Bλ̄ j
(0),

and
σ1/k

k (Aw j,λ̄ j ) − σ1/k
k (Aw j) − w

p− n+2
n−2

j,λ̄ j
+ w

p− n+2
n−2

j < 0 in Σ j.

An application of the Hopf lemma and the strong maximum principle yields

(w j − w j,λ̄ j
)(y) > 0, λ̄ j < |y| ≤ Γ j,

and
∂(w j − w j,λ̄ j

)

∂r
|∂Bλ̄ j

(0) > 0.

Then, for some ε j, we have

w j,λ(y) ≤ w j(y), for λ̄ j ≤ λ ≤ λ̄ j + ε j, λ ≤ |y| ≤ Γ j.

This violates the definition of λ̄ j.

Since γ j → ∞, w j(0) = 1 and {w j} is bounded on any compact subset of Rn, we have that
(along a subsequence),

w j → w in C2
loc(Rn)

63



for some positive solution to

σ1/k
k (Aw) = wp− n+2

n−2 in Rn, w > 0. (5.1.9)

By above claim and the convergence of w j to w, we obtain

wx,λ(y) ≤ w(y), ∀ |y − x| ≥ λ > 0.

It follows that w ≡ constant, which violates (5.1.9). Theorem 1.4.4 is established. �

The Harnack-type inequality yields the following consequence as established by Schoen in
[76] for k = 1 and p = n+2

n−2 . See also an alternative proof of Chen and Lin [25], which we adapt for
our case.

Proof of Corollary 1.4.5. By scaling, we only need prove for the case R = 1. Let u(y) = minB2(0) u
for some y ∈ B2(0), and let G(x, y) be the Green’s function of −∆ in B 5

2
(0). Then, from

− ∆u ≥ up, (5.1.10)

we see

u(y) =

∫
B5/2(0)

G(y, z)(−∆u(z))dz −
∫
∂B5/2(0)

∂G(y, s)
∂ν

u(s)ds

≥

∫
B5/2(0)

G(y, z)u(z)p ≥
1
C

∫
B1(0)

up.

By Theorem 1.4.4 and the above inequality, we have∫
B1(0)

u
n(p−1)

2 =

∫
B1(0)

u
1
α+p ≤ (max

B̄1(0)
u)

1
α

∫
B1(0)

up ≤ C(max
B̄1(0)

u)
1
α (min

B̄2(0)
u) ≤ C.

�

5.2 Asymptotics for entire solutions

A consequence of local estimates in [36] is the following lemma:

Lemma 5.2.1. Let u ∈ C2(B3(0)) be a positive solution to (1.4.10), and∫
B3(0)

u
n(p−1)

2 ≤ δ0.

Then
sup
B2(0)

u ≤
1
δ0
.
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Proof. Our proof is an adaption of the proof of Proposition 2.1 in [50]. Suppose the contrary, there
exists a sequence of solutions {u j} such that∫

B3(0)
u

n(p−1)
2

j → 0

and
d(y j)

2
p−1 u j(u j) = max

y∈B2.8(0)
d(y)

2
p−1 u j(y)→ ∞,

where d(y) := dist(y, ∂B2.8(0)) = (2.8 − |y|). Let σ j = 1
2 d(y j) > 0, and set

v j(z) =
1

u j(y j)
u j(y j +

z

u j(y j)
p−1

2

),

where |z| ≤ r j := u j(y j)
p−1

2 σ j → ∞. Then we obtain

σ1/k
k (Av j) = v

p− n+2
n−2

j in Br j(0)

and ∫
Br j (0)

v
n(p−1)

2
j → 0. (5.2.1)

It is easy to see that v j(0) = 1 and supBr j (0) v j ≤ 2
2

p−1 . Therefore, from the estimates in [36], v j

converges uniformly in B1 along a subsequence, violating (5.2.1). �

Now we will show the asymptotic behavior of an entire solution. Our proof follows the line
of the proof of Theorem 1.28 in [48].

Proof of Theorem 1.4.6. By the maximum principle, using the positivity and the superharmonicity
of u, we have

u(x) ≥
min∂B1(0) u
|x|n−2 ∀|x| ≥ 1.

By Theorem 1.4.4 and the above inequality, for some positive universal constant C, we see

R2−n min
∂B1(0)

u ≤ min
∂BR(0)

u ≤ Cu(0)−
1
α R2−n. (5.2.2)

For R > 1, let
uR(x) := R

2
p−1 u(Rx), 1 ≤ |x| ≤ 9.

Then we get

σ1/k
k (AuR) = u

p− n+2
n−2

R , 1 ≤ |x| ≤ 9.

By above lemma,

max
|x|=4

∫
B3(x)

(uR)
n(p−1)

2 ≤

∫
|y|≥R

u
n(p−1)

2 → 0 as R→ ∞.
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Fix some positive number R0 ≥ 1 such that

max
|x|=4

∫
B3(x)

(uR)
n(p−1)

2 ≤

∫
|y|≥R0

u
n(p−1)

2 ≤ δ0, ∀ R ≥ R0.

Thus, from the above lemma, we see

max
B̄2(x)

uR ≤
1
δ0
, ∀ |x| = 4.

By Harnack inequality,
max
B̄1(x)

uR ≤ C min
B̄1(x)

uR, ∀ |x| = 4.

It follows from (5.2.2) and the above inequality that

C−1( min
∂B1(0)

u)R−
2

α(p−1) ≤ min
B̄1/2(x)

uR ≤ max
B̄1/2(x)

uR ≤ Cu(0)−
1
α R−

2
α(p−1) ∀ |x| = 4.

For R ≥ max{R0, u(0)−
p−1

2 },

σ1/k
k (AR

2
α(p−1) uR) = R−((n−2)p−n)(R

2
α(p−1) uR)p− n+2

n−2 .

Now we have
C−1 ≤ R

2
α(p−1) uR ≤ C in B 1

2
(x).

Applying local estimates in [36] to R
2

α(p−1) uR, we see

2∑
i=0

|∇i(R
2

α(p−1) uR)(x)| ≤ C, ∀ |x| ≥ R0,

where C is some positive constant independent of R. Therefore we have

0 < lim inf
|x|→∞

(|x|n−2u(x)) ≤ lim sup
|x|→∞

(|x|n−2u(x)) < ∞

and
lim sup
|x|→∞

(|x|n−1|∇u(x)| + |x|n|∇2u(x)|) < ∞.

Integrating equation −∆u ≥ up on Br(0) (r > 1) leads to∫
Br(0)

updx ≤ |
∫
∂Br(0)

∂u
∂v
| ≤ (max

|x|=r
|∇u(x)|)(|∂Br(0)|).

From the above inequality, we see ∫
BR(0)

up ≤ C, ∀ R > 0.

�
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5.3 A Liouville type theorem

In this section, we will give another proof of the Liouville type theorem obtained by Li and
Li [49].

First, we need a lemma:

Lemma 5.3.1. If u is a positive solution to σ1/k
k (Au) = up− n+2

n−2 in Rn in the Γ+
k class and

limx→∞ |x|n−2u(x) ≤ C1, where n
n−2 < p < n+2

n−2 , then

max
B̄R(0)

u ≤ c0 min
B̄R(0)

u,

where c0 is a positive constant independent of R.

Proof. Let
v(x) = R

2
p−1 u(Rx), x ∈ B1(0).

We see that v is a solution to σ1/k
k (Av) = v(p− n+2

n−2 ) in B1(0). Since limx→∞ |x|n−2u(x) ≤ C1, there
exists a constant M > 1 such that

u(x) ≤
C1

|x|n−2 , ∀ |x| ≥ M.

It follows that
v(x) = R

2
p−1 u(Rx) ≤ C2 := max{M

2
p−1 max

BM(0)
u,C1}.

By Harnack inequality in [36], we see that

max
B̄1/2(0)

v ≤ c0 min
B̄1/2(0)

v,

where c0 is independent of R. Then we get

max
B̄R/2(0)

u ≤ c0 min
B̄R/2(0)

u.

�

Proof of Corollary 1.4.8. We will prove this corollary by the method of moving spheres.
For x ∈ Rn and λ > 0, consider the Kelvin transformation of u:

ux,λ(y) =
λn−2

|y − x|n−2 u(x +
λ2(y − x)
|y − x|2

), y ∈ Rn\{x}.

We will show that
ux,λ(y) ≤ u(y), ∀λ > 0, x ∈ Rn, |y − x| ≥ λ.

Then by a calculus lemma [56], we get the conclusion

u ≡ constant.
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Without loss of generality, take x = 0, and use uλ to denote u0,λ. From Lemma 2.1 in [56], there
exists λ0 > 0 such that

uλ(y) ≤ u(y), |y| ≥ λ, ∀λ ∈ (0, λ0].

Then we define
λ̄ := sup{µ > 0|uλ ≤ u in Rn\Bλ(0), ∀0 < λ < µ}.

We claim that λ̄ = ∞. We prove it by contradiction. Suppose λ̄ < ∞, we will get that there exists
ε0 ∈ (0, 1) such that

uλ(y) ≤ u(y), |y| ≥ λ, ∀λ ∈ [λ̄, λ̄ + ε0].

This is a contradiction to the definition of λ̄. By the maximum principle, we see that

uλ̄(y) < u(y), |y| > λ̄

In particular, we have
uλ̄(y) < u(y), R0 ≥ |y| > λ̄,

where R0 = c
1

n−2
0 (λ̄ + 1) (c0 is the same one in the above lemma). By the uniform continuity of u,

there exists a small constant ε0 ∈ (0, 1) such that

uλ(y) ≤ u(y), R0 ≥ |y| > λ, λ ∈ [λ̄, λ̄ + ε0]. (5.3.1)

By the superharmonicity of u, we see that

u(y) ≥
Rn−2

0

|y|n−2 min
∂BR0 (0)

u, |y| ≥ R0,

Meanwhile we have

uλ(y) =
λn−2

|y|n−2 u(
λ2y
|y|2

) ≤
(λ̄ + 1)n−2

|y|n−2 max
B̄R0 (0)

u ≤
(λ̄ + 1)n−2

|y|n−2 c0 min
B̄R0 (0)

u ≤
Rn−2

0

|y|n−2 min
∂BR0 (0)

u

for |y| ≥ R0 and λ ∈ [λ̄, λ̄ + ε0]. Combining the above inequalities, we see

uλ(y) ≤ u(y), |y| ≥ R0, λ ∈ [λ̄, λ̄ + ε0]. (5.3.2)

From (5.3.1) and (5.3.2), we get

uλ(y) ≤ u(y), |y| ≥ λ, λ ∈ [λ̄, λ̄ + ε0].

�
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