Asymptotics for Subcritical Fully Nonlinear Equations with Isolated Singularities

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades
Doktor der NATURWISSENSCHAFTEN
Dr. rer. nat.
genehmigte Dissertation von

Dr. Wei Zhang

Erscheinungs- bzw. Druckjahr 2018

Referent : Prof. Dr. Elmar Schrohe
 Korreferent : Prof. Dr. YanYan Li
 Korreferent : Prof. Dr. Guofang Wang

Tag der Promotion : 04.12.2017

Asymptotik für subkritische voll nichtlineare Gleichungen mit isolierten Singularitäten

ZUSAMMENFASSUNG

In dieser Dissertation betrachten wir die Gleichung

$$
\sigma_{k}\left(A^{u}\right)=u^{\left(p-\frac{n+2}{n-2}\right) k},
$$

wobei $n \geq 3$ und $p \in\left(\frac{n}{n-2}, \frac{n+2}{n-2}\right)$. Dabei ist σ_{k} das k-te elementarsymmetrische Polynom in den Eigenwerten von A^{u} und

$$
A^{u}=-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} D^{2} u+\frac{2 n}{(n-2)^{2}} u^{-\frac{2 n}{n-2}} \nabla u \otimes \nabla u-\frac{2}{(n-2)^{2}} u^{-\frac{2 n}{n-2}}|\nabla u|^{2} I,
$$

wobei ∇u den Gradienten von u und $D^{2} u$ die Hessesche Matrix bezeichnen. Diese Gleichung ergibt sich in natürlicher Weise aus dem σ_{k}-Yamabe-Problem. Für $k=1$ erhalten wir

$$
-\Delta u=u^{p}
$$

dies ist einfach eine klassische subkritische semilinear-elliptische Gleichung.
Für $1 \leq k<\frac{n}{2}$ zeigen wir, dass eine zulässige Lösung dieser Gleichung mit nicht-hebbarer isolierter Singularität asymptotisch gleich einer radialen Lösung ist. Mit Hilfe einer genauen Analyse der linearisierten Gleichung sind wir dann in der Lage, asymptotische Entwicklungen höherer Ordnung für die Lösungen zu zeigen. Diese Resultate verallgemeinern die früheren bahnbrechenden Arbeiten von Caffarelli, Gidas und Spruck.

Als Beiprodukt erhalten wir Schoens Harnack-Ungleichung in Euklidischen Kugeln, das asymptotische Verhalten ganzer Lösungen. Basierend auf dem asymptotischen Verhalten erhalten wir einen weiteren Beweis des Liouville-Satz von Li und Li.

Schlüsselwörter: asymptotisches Verhalten, vollständig nichtlineare Gleichungen, isolierte Singularitäten

Asymptotics for Subcritical Fully Nonlinear Equations with Isolated Singularities

ABSTRACT

In this thesis, we consider this equation

$$
\sigma_{k}\left(A^{u}\right)=u^{\left(p-\frac{n+2}{n-2}\right) k}
$$

where $n \geq 3$ and $p \in\left(\frac{n}{n-2}, \frac{n+2}{n-2}\right)$. Here σ_{k} denotes the k th elementary symmetric function of the eigenvalues of A^{u}, and

$$
A^{u}=-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} D^{2} u+\frac{2 n}{(n-2)^{2}} u^{-\frac{2 n}{n-2}} \nabla u \otimes \nabla u-\frac{2}{(n-2)^{2}} u^{-\frac{2 n}{n-2}}|\nabla u|^{2} I
$$

where ∇u denotes the gradient of u and $D^{2} u$ denotes the Hessian of u. This equation arises naturally from the σ_{k} Yamabe equation. When $k=1$, it amounts to

$$
-\Delta u=u^{p}
$$

which is simply a classical subcritical semilinear elliptic equation.
We study the asymptotic behavior of solutions in a punctured ball. For $1 \leq k<\frac{n}{2}$, we prove that an admissible solution to this equation with a non-removable isolated singular point is asymptotic to a radial solution. Then we are able to obtain higher order expansion of solutions using analysis of the linearized operators. These results generalize earlier pioneering work of Caffarelli, Gidas and Spruck.

As a side effect, we also obtain Schoen's Harnack type inequality in Euclidean balls, asymptotic behavior of an entire solution. Based on the asymptotic behavior, we are able to give another proof of the Liouville type theorem obtained by Li and Li .

Key words: asymptotic behavior, fully nonlinear equations, isolated singularities

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all people who have helped and inspired me during my study at Leibniz Universität Hannover.

First of all, I would like to express my great gratitude to my thesis advisor, Prof. Dr. Elmar Schrohe, for his enormous guidance, consistent support and constant encouragements throughout my research and study. His insight and enthusiasm in research has deeply inspired me; his precise and rigorous style of mathematics has set me a life-time example. Moreover, his valuable advice for me is not only within mathematics but also outreach to many aspects of my life. It is a wonderful experience working with him.

I am very grateful to my defense committee members Prof. Dr. Joachim Escher, Prof. Dr. Elmar Schrohe, Prof. Dr. Lynn Heller, Prof. Dr. Wolfram Bauer and PD Dr. Michael J. Gruber, for their time and good comments.

Many thanks to my former advisor, Prof. Dr. Jiguang Bao, for his continuous encouragements and help. I would also like to thank Prof. Dr. YanYan Li for his constant encouragements, valuable comments, continuous support and his insightful PDE lectures. I am grateful to Prof. Dr. ZhengChao Han for a full explanation on his paper. I also wish to thank Prof. Dr. Jingyi Chen, Prof. Dr. Jiequan Li, Prof. Dr. Knut Smoczyk and Prof. Dr. Changyou Wang, for their encouragements and support.

I am indebted to my colleagues for providing a stimulating environment in which to learn and grow. I am especially grateful to Prof. Dr. Wolfram Bauer, PD Dr. Michael J. Gruber, Dr. Johannes Aastrup, Dr. Nikolaos Roidos, Dr. Achim Schneider, Dr. Magnus Goffeng, Dr. Karsten Bohlen, Dr. René Schulz, Dr. Franz Hanauska, Dr. Karsten Fritzsch, Dr. Raffael Hagger, Dr. Iain Forsyth, Dr. Bram Mesland, Dr. André Froehly, Dr. Pavel Silveira, Thorben Krietenstein, Moritz Doll, Robert Fulsche and Abdellah Laaroussi.

I owe a great deal to the administrative staff at Leibniz Universität Hannover for their support and assistance, especially to Susanne Rudolph, Carmen Gatzen, Natascha Krienen, Antje Günther, Manuela Schimmels, Kerstin Sjöstedt-Hellmuth, Sandra Jankowski and Friedrich Schulenburg.

Finally I would like to thank my parents for always believing in me, for their endless love and their support, without which I could never have made it here.

Table of contents

ZUSAMMENFASSUNG III
ABSTRACT V
ACKNOWLEDGEMENTS VII
1 Introduction 1
1.1 Yamabe problem 1
$1.2 \sigma_{k}$ Yamabe problem 2
1.3 Singular σ_{k} Yamabe problem 3
1.4 The object of study and main results 5
2 Classification of singularities 13
2.1 Preliminary 13
2.2 Classification of singularities 15
2.3 Sharpness of Theorem 2.1.3 18
3 Asymptotic behaviors of singular solutions 21
3.1 Classification of radial solutions 22
3.2 Perturbed ODE satisfied by the radial average 26
3.3 Asymptotic to a radial solution 30
4 Higher order asymptotic behaviors of the singular solutions 35
4.1 Linearization of the subcritical σ_{k} Yamabe equation 36
4.2 Comparison theorems 38
4.3 Existence of a parametrix 44
4.4 Expansion in terms of Wronskian 49
5 Harnack type inequality and Liouville type theorem 61
5.1 Harnack type inequality for Euclidean balls 61
5.2 Asymptotics for entire solutions 64
5.3 A Liouville type theorem . 67

REFERENCES 69
VITA 75

Chapter 1

Introduction

1.1 Yamabe problem

Let (M^{n}, g_{0}) be an n-dimensional, compact, smooth Riemannian manifold without boundary. For $n=2$, we see from the uniformization theorem of Poincaré that there exist metrics that are pointwise conformal to g and have constant Gauß curvature. For $n \geq 3$, the well-known Yamabe problem is to determine whether there exist metrics with constant scalar curvature that are pointwise conformal to g_{0}. The answer to the Yamabe problem is proved to be affirmative through Yamabe [87], Trudinger [82], Aubin [6] and Schoen [74]. See Lee and Parker [47] for a survey. See also Bahri [9] and Brezis and Bahri [10] for works on the Yamabe problem and related ones. Let $n \geq 3$ and $g=u^{\frac{4}{n-2}} g_{0}$ for some positive function u. The scalar curvature R_{g} of g can be calculated as

$$
R_{g}=u^{-\frac{n+2}{n-2}}\left(R_{g_{0}} u-\frac{4(n-1)}{n-2} \Delta_{g_{0}} u\right),
$$

where $R_{g_{0}}$ denotes the scalar curvature of g_{0} and $\Delta_{g_{0}}$ is the Laplace-Beltrami operator. Therefore the Yamabe problem is equivalent to the existence of a solution to

$$
\begin{equation*}
-\Delta_{g_{0}} u+\frac{n-2}{4(n-1)} R_{g_{0}} u=\frac{n-2}{4(n-1)} R_{g} u^{\frac{n+2}{n-2}}, \tag{1.1.1}
\end{equation*}
$$

where $R_{g} \equiv c$ for some constant c.
The first two terms of the operator on the left in (1.1.1), that is,

$$
\mathcal{L}_{g_{0}}:=\Delta_{g_{0}}-\frac{n-2}{4(n-1)} R_{g_{0}}
$$

give a second order linear elliptic differential operator known as the conformal Laplacian of the metric g_{0}.

Consider

$$
Q(\varphi)=\frac{\int_{M^{n}}\left(\left|\nabla_{g_{0}} \varphi\right|^{2}+\frac{n-2}{4(n-1)} R_{g_{0}} \varphi^{2}\right)}{\left(\int_{M^{n}}|\varphi|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}}},
$$

for $\varphi \in H^{1}\left(M^{n}\right) \backslash\{0\}$. It is easy to see that a positive critical point of the functional Q is a solution
to (1.1.1). The Sobolev quotient is given by

$$
Q\left(M^{n}, g_{0}\right)=\inf \left\{Q(\varphi) \mid \varphi \in H^{1}\left(M^{n}\right) \backslash\{0\}\right\} .
$$

Yamabe [87] attempted to prove that $Q\left(M^{n}, g_{0}\right)$ is always achieved. However, Trudinger [82] pointed out that Yamabe's proof is wrong and also corrected Yamabe's proof in the case $Q\left(M^{n}, g_{0}\right) \leq 0$.

It was proved by Aubin [6] that $Q\left(M^{n}, g_{0}\right)$ is attained if

$$
\begin{equation*}
Q\left(M^{n}, g_{0}\right)<Q\left(\mathbb{S}^{n}, g_{c}\right) \tag{1.1.2}
\end{equation*}
$$

where $\left(\mathbb{S}^{n}, g_{c}\right)$ denotes the standard n sphere. Aubin also verified the above inequality for $n \geq 6$ and M^{n} not locally conformally flat. The remaining cases are much more difficult since the local geometry does not contain sufficient information to conclude (1.1.2). In [74], Schoen established (1.1.2) by construcing global test functions in the remaining cases based on the positive mass theorem of Schoen and Yau [78].

In [77], Schoen obtained compactness results for the Yamabe problem. He proved that if (M^{n}, g_{0}) is locally conformally flat but not conformally diffeomorphic to the standard sphere, then all solutions to 1.1 .1 stay in a compact set of $C^{2}\left(M^{n}\right)$. When $\left(M^{n}, g_{0}\right)$ is not locally conformally flat, the same conclusion was proved by Li and Zhang [57] and Marques [62] independently for $n \leq 7$. For $8 \leq n \leq 24$, it was proved that this compactness result is still true under the assumption that the positive mass theorem holds in these dimensions, see Li and Zhang for $8 \leq n \leq 11$ [57, 58], and Khuri, Marques and Schoen [45] for $12 \leq n \leq 24$. However, there are counterexamples in dimensions $n \geq 25$, see Brendle [14] for $n \geq 52$, and Brendle and Marques [15] for $25 \leq n \leq 51$.

$1.2 \quad \sigma_{k}$ Yamabe problem

Recently, there is a lot of attention focusing on the Yamabe problem for the σ_{k} curvature, briefly the σ_{k} Yamabe problem. First we recall the Schouten tensor

$$
A_{g}=\frac{1}{n-2}\left(R i c_{g}-\frac{R_{g}}{2(n-1)} g\right)
$$

where Ric c_{g} is the Ricci tensor of g. Then we can decompose the Riemannian curvature tensor, Rm, into two parts

$$
R m=W_{g}+A_{g} \otimes g,
$$

where W_{g} is the Weyl tensor and \otimes denotes the Kulkari-Nomizu product, see for instance [12]. The main property of the Weyl tensor is its conformal invariance. Therefore the behavior of Riemannian curvature tensor under a conformal transformation of the metric is totally determined by the Schouten tensor.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be the set of eigenvalues of a symmetric $n \times n$ matrix A and for $1 \leq k \leq n, \sigma_{k}$ denote the k th elementary symmetric function of the eigenvalues

$$
\begin{equation*}
\sigma_{k}(\lambda)=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}} \cdots \lambda_{i_{k}} \tag{1.2.1}
\end{equation*}
$$

So the σ_{k} curvature of $\left(M^{n}, g\right)$ is defined as $\sigma_{k}\left(g^{-1} A_{g}\right)$. The σ_{k} Yamabe problem on $\left(M^{n}, g\right)$ consists in finding metrics with constant σ_{k} curvature in the same conformal class of g, namely,

$$
\begin{equation*}
\sigma_{k}\left(g^{-1} A_{g}\right)=\text { constant } \tag{1.2.2}
\end{equation*}
$$

When $k=1$, it is the well known Yamabe problem. When $k \geq 2$, the equation becomes fully nonlinear PDE, and we need to recall the following notion: a metric g on M is said to be k admissible or in the Γ_{k}^{+}class if it belongs to the k th positive cone Γ_{k}^{+}, where

$$
g \in \Gamma_{k}^{+} \Longleftrightarrow \sigma_{j}\left(g^{-1} A_{g}\right)>0, \quad \forall 1 \leq j \leq k
$$

If g is in Γ_{k}^{+}class, then the fully nonlinear equation is elliptic. In [39], Guan, Viaclovsky and Wang assert that if $g \in \Gamma_{k}^{+}$, then

$$
\operatorname{Ric}_{g} \geq \frac{2 k-n}{2 n(k-1)} R_{g} g
$$

Thus it is easy to see that $\operatorname{Ric}_{g}>0$ when $2 k>n$.
When $k \neq \frac{n}{2}$ and $\left(M^{n}, g\right)$ is locally conformally flat, 1.2 .2 is the Euler-Lagrange equation of the functional

$$
\mathcal{F}_{k}(g)=\frac{1}{\left(\operatorname{vol}_{g}\left(M^{n}\right)\right)^{\frac{n-2 k}{n}}} \int_{M^{n}} \sigma_{k}\left(g^{-1} A_{g}\right) d v o l_{g}
$$

see Viaclovsky [83]. In the case $k=\frac{n}{2}$, Brendle and Viaclovsky [16] present a variational characterization for 1.2 .2 . Under the assumption that g is in the Γ_{k}^{+}class, the σ_{k} Yamabe problem for locally conformally flat manifolds has been solved by Li and Li [48] and Guan and Wang [37] independently. This result is also extended to much more general symmetric functions of $\lambda\left(g^{-1} A_{g}\right)$ by Li and Li [49]. In addition, Guan and Wang [38] applied the gradient flow method to derive the conformally invariant Sobolev inequality for locally conformally flat manifolds. In the case of general manifolds, the solution to the σ_{k} Yamabe problem has been obtained by Chang, Gursky and Yang [21] first for $k=2$ and $n=4$, by Ge and Wang [29] for $k=2$ and $n>8$, by Li and Nguyen [53] for $k=\frac{n}{2}$, by Gursky and Viaclovsky [40, 41] for $2 k>n$. For $2 \leq 2 k \leq n$ this problem has been solved by Sheng, Trudinger and Wang [81] under the extra hypothesis that the operator is variational. We should point out that this hypothesis always holds for $k=1,2$, while it is shown in [13] that this extra assumption is equivalent to the locally conformally flatness. Hence, the σ_{k} Yamabe problem is still open for $3 \leq k<n / 2$ with $\left(M^{n}, g\right)$ not locally conformally flat.

1.3 Singular σ_{k} Yamabe problem

Given $\left(\mathbb{S}^{n}, g_{c}\right)$, the singular σ_{k} Yamabe problem is to construct a new metric g with constant σ_{k} curvature conformal to g_{c} and complete on $\Omega \subset \mathbb{S}^{n}$, where Ω is a domain in \mathbb{S}^{n}. This problem can be transformed to a problem in $\tilde{\Omega} \subset \mathbb{R}^{n}$ with a conformally flat metric. In this setting, if we consider the metric on $\tilde{\Omega}$ as $\tilde{g}=u^{\frac{4}{n-2}}|d x|^{2}$, where $|d x|^{2}$ is the usual Euclidean metric, then we will solve the equation

$$
\begin{equation*}
\sigma_{k}\left(A^{u}\right)=R \text { in } \tilde{\Omega} \tag{1.3.1}
\end{equation*}
$$

with singular boundary behavior. Here and throughout the thesis we use this notation:

$$
A^{u}=-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} D^{2} u+\frac{2 n}{(n-2)^{2}} u^{-\frac{2 n}{n-2}} \nabla u \otimes \nabla u-\frac{2}{(n-2)^{2}} u^{-\frac{2 n}{n-2}}|\nabla u|^{2} I
$$

where ∇u denotes the gradient of u and $D^{2} u$ denotes the Hessian of u. Taking $k=1$, we see that (1.3.1) becomes

$$
-\Delta u=R u^{\frac{n+2}{n-2}}
$$

The singular σ_{k} Yamabe problem has been extensively studied in recent years, also in the case when the ambient manifold is more general than the sphere. When $k=1$ and $R_{g}>0$, Schoen and Yau [79] proved that if a complete conformal metric g exists on a domain $\Omega \subset \mathbb{S}^{n}$ with $\sigma_{1}\left(g^{-1} A_{g}\right)$ bounded away from blew by a positive constant, then the Hausdorff dimension of $\mathbb{S}^{n} \backslash \Omega$, $\operatorname{dim}_{\mathcal{H}}\left(\mathbb{S}^{n} \backslash \Omega\right) \leq \frac{n-2}{2}$. If in addition, $\left|R_{g}\right|+\left|\nabla_{g} R_{g}\right|$ are bounded and there exists a constant c_{0} such that Ric $g_{g} \geq-c_{0} g$, then $\operatorname{dim}_{\mathcal{H}}\left(\mathbb{S}^{n} \backslash \Omega\right)<\frac{n-2}{2}$. In [75] Schoen constructed complete conformal metrics on $\mathbb{S}^{n} \backslash \Lambda$ when Λ is either a finite discrete set on \mathbb{S}^{n} containing at least two points or a set arising essentially as the limit set of a Kleinian group. Later Mazzeo and Pacard gave another proof of the result in [64]. They also proved in [63] that if $\Omega \subset \mathbb{S}^{n}$ is domain such that $\mathbb{S}^{n} \backslash \Omega$ consists of a finite number of disjoint smooth submanifolds of dimension $1 \leq k \leq \frac{n-2}{2}$, then there exists a complete metric on $\mathbb{S}^{n} \backslash \Omega$ with its scalar curvature identical to $n(n-1)$. See [69] for the earlier results in this direction. For the negative scalar curvature case, the results of Loewner and Nirenberg [59], Aviles [7], and Veron [85] imply that if $\Omega \subset \mathbb{S}^{n}$ admits a complete conformal metric with negative constant scalar curvature, then $\operatorname{dim}_{\mathcal{H}}\left(\mathbb{S}^{n} \backslash \Omega\right)>\frac{n-2}{2}$. Loewer and Nirenberg [59] also proved that if $\Omega \subset \mathbb{S}^{n}$ is a domain with smooth boundary, then there exists a complete conformal metric on Ω with its scalar curvature identical to -1 . Later this result was generalized by Finn [28] to the case of $\partial \Omega$ consisting of smooth submanifolds of dimension greater than $\frac{n-2}{2}$ and with boundary. For other development related to the negative scalar curvature case, see [46, 61, 67] and the references therein.

When $2 \leq k<\frac{n}{2}$, the singular σ_{k} Yamabe problem has been solved by Mazzieri and Ndiaye [65]. They proved that for a given finite set Λ of more than one point in \mathbb{S}^{n}, satisfying some additional assumptions involving their positions in the case $\operatorname{card}(\Lambda) \geq 5$, there are complete metrics on $\mathbb{S}^{n} \backslash \Lambda$, conformal to the standard metric g_{c} and having positive constant σ_{k} curvature. See [19, 66] for connected sum construction for σ_{k} curvature. In [24] Chang, Hang and Yang proved that if $\Omega \subset \mathbb{S}^{n}(n \geq 5)$ admits a complete, conformal metric g with

$$
\sigma_{1}\left(g^{-1} A_{g}\right) \geq c_{0}>0, \quad \sigma_{2}\left(g^{-1} A_{g}\right) \geq 0, \text { and }\left|R_{g}\right|+\left|\nabla_{g} R_{g}\right| \leq c_{1}
$$

then $\operatorname{dim}_{\mathcal{H}}\left(\mathbb{S}^{n} \backslash \Omega\right)<\frac{n-4}{2}$. This result was generalized by González [32] and Guan, Lin and Wang [35] to the case of $2<k<\frac{n}{2}$: if $\Omega \subset \mathbb{S}^{n}$ admits a complete, conformal metric g with

$$
\sigma_{1}\left(g^{-1} A_{g}\right) \geq c_{0}>0, \quad \sigma_{2}\left(g^{-1} A_{g}\right), \cdots, \sigma_{k}\left(g^{-1} A_{g}\right) \geq 0, \text { and }\left|R_{g}\right|+\left|\nabla_{g} R_{g}\right| \leq c_{1}
$$

then $\operatorname{dim}_{\mathcal{H}}\left(\mathbb{S}^{n} \backslash \Omega\right)<\frac{n-2 k}{2}$. González [33] also showed that isolated singularities of C^{3} solutions to 1.3.1 with finite volume are bounded.

1.4 The object of study and main results

We restrict our attention in this thesis to study the asymptotic behavior of singular solutions to the equation

$$
\begin{equation*}
\sigma_{k}^{1 / k}\left(A^{u}\right)=c u^{p-\frac{n+2}{n-2}} \tag{1.4.1}
\end{equation*}
$$

on the punctured ball, $B_{2}(0) \backslash\{0\}$, where $n \geq 3, \frac{n}{n-2}<p<\frac{n+2}{n-2}$ and c is normalized to be $\binom{n}{k} / 2^{k}$.
There are some relevant study on the singular solutions to (1.3.1), namely, the above equation with $p=\frac{n+2}{n-2}$. When $k=1$ and the right hand side of $1.3 .1 R=0,1.3 .1$ is the Laplace equation. A classical theorem of Bôcher asserts that any positive harmonic function in the punctured ball $B_{1}(0) \backslash\{0\}$ can be expressed as the sum of a multiple of the fundamental solution to the Laplace equation and a harmonic function in the unit ball $B_{1}(0)$. When $2 \leq k \leq \frac{n}{2}$ and $R=0, \mathrm{Li}$ and Nguyen [54] obtained the classification of the positive solutions to 1.3.1]. Li also [52] proved that a locally Lipschitz viscosity solution in $\mathbb{R}^{n} \backslash\{0\}$ must be radially symmetric about 0 . In the case $k=1$ and $R>0$, Caffarelli, Gidas and Spruck [17] proved the asymptotic radial symmetry of positive singular solutions to (1.3.1) on a punctured ball, and further proved that such solutions are asymptotic to radial singular solutions to $(1.3 .1)$ on $\mathbb{R}^{n} \backslash\{0\}$. More precisely, for any singular solution $u(x)$ to 1.3 .1 in $B_{1}(0) \backslash\{0\}$, there exists a radial singular solution $u^{*}(|x|)$ to 1.3.1) on $\mathbb{R}^{n} \backslash\{0\}$ such that

$$
u(x)=u^{*}(|x|)(1+o(1)), \text { as }|x| \rightarrow 0 .
$$

A key ingredient in the proof of the above asymptotic behavior near 0 is a "measure theoretic" variation of the moving plane technique, which had been developed by Alexandrov [1, 2, 3, 4, [5], Serrin [73], Gidas, Ni and Nirenberg [30] to prove symmetries of solutions to certain elliptic PDEs. Later, Korevaar, Mazzeo, Pacard and Schoen [44] improved the $o(1)$ remainder term to $O\left(|x|^{\alpha}\right)$ for some α. They also provided an expansion of u after the order $|x|^{\alpha}$ using rescaling analysis, classification of global singular solutions and analysis of linearized operators at these global singular solutions. When $2 \leq k \leq n$ and $R>0$, Chang, Han and Yang [23] classified all possible radial solutions to 1.3 .1 in Γ_{k}^{+}class on an annular domain including punctured ball and punctured Euclidean space. In [51], Li proved that an admissible solution with an isolated singularity at $0 \in \mathbb{R}^{n}$ to (1.3.1) is asymptotically symmetric. Later, Han, Li and Teixeira [42] studied the singular solution to (1.3.1) on a punctured ball when $2 \leq k \leq n$. Using the polar coordinate $x=(r, \theta)$ with $r=|x|$ and $\theta \in \mathbb{S}^{n-1}$, we introduce cylindrical variable $t=-\ln r$, so that

$$
g=u^{\frac{4}{n-2}}(x)|d x|^{2}=e^{-2 w(t, \theta)}\left(d t^{2}+d \theta^{2}\right) .
$$

They proved that

$$
\left|w(t, \theta)-w^{*}(t)\right| \leq C e^{-\alpha t} \text { as } t \rightarrow \infty,
$$

where $w^{*}(t)$ is a radial solution to 1.3.1. They also had the higher order expansion of w when $2 \leq k \leq \frac{n}{2}$. In 2013, A similar result was obtained by Wang [86] for conformal quotient equation.

When $1 \leq k<\frac{n}{2}$, for some technical reasons, we replace u in 1.4 .1 with $u^{\frac{k(n-2)}{n-2 k}}$, then obtain

$$
\begin{equation*}
\sigma_{k}^{1 / k}\left(B^{u}\right)=c u^{p-\frac{n+2 k}{n-2 k}} \text { in } B_{2}(0) \backslash\{0\} \tag{1.4.2}
\end{equation*}
$$

with $\frac{n}{n-2 k}<p<\frac{n+2 k}{n-2 k}$, where

$$
B^{u}=-\frac{2 k}{n-2 k} u^{-\frac{n+2 k}{n-2 k}} D^{2} u+\frac{2 k n}{(n-2 k)^{2}} u^{-\frac{2 n}{n-2 k}} \nabla u \otimes \nabla u-\frac{2 k^{2}}{(n-2 k)^{2}} u^{-\frac{2 n}{n-2 k}|\nabla u|^{2} I . ~}
$$

Taking $k=1$, (1.4.1) or (1.4.2) amounts to, modulo a harmless positive constant,

$$
-\Delta u=u^{p} .
$$

$\sigma_{1}\left(A^{u}\right)=u^{p-\frac{n+2}{n-2}}$ is simply a classical subcritical semilinear elliptic equation.
This subcritical equation arises naturally from the σ_{k} Yamabe equation, at least for the case $1 \leq k<\frac{n}{2}$. Let us take $k=1$ as an example. Suppose that $u>0$ is a solution to

$$
-\Delta_{m} u=u^{\frac{m+2}{m-2}} \text { in } \mathbb{R}^{m} \backslash \Lambda
$$

with $\Lambda=\mathbb{R}^{m-n} \subset \mathbb{R}^{m}, m>n$, where Δ_{m} is the Laplace operator in m dimensions. Let u depend only on the first n variables. Then u is also a solution to

$$
-\Delta_{n} u=u^{p} \text { in } \mathbb{R}^{n} \backslash\{0\},
$$

where Δ_{n} is the Laplace operator in n dimensions, and $p=\frac{m+2}{m-2}$. If the dimension of Λ is less than $\frac{m-2}{2}$, then we have that $p \in\left(\frac{n}{n-2}, \frac{n+2}{n-2}\right)$. When the dimension of Λ is equal to $\frac{m-2}{2}$, we see that $p=\frac{n}{n-2}$. Each of these cases near isolated singular point has been well studied. For $\frac{n}{n-2}<p<\frac{n+2}{n-2}$, Gidas and Spruck [31] proved that if the singularity at 0 is non-removable, then

$$
u(x)=\frac{c_{0}}{|x|^{\frac{2}{p-1}}}(1+o(1)), \text { as }|x| \rightarrow 0
$$

where $c_{0}=\left[\frac{2(n-2)}{(p-1)^{2}}\left(p-\frac{n}{n-2}\right)\right]^{\frac{1}{p-1}}$. For $p=\frac{n}{n-2}$, Aviles [8] obtained that if the singularity at 0 is non-removable, then

$$
u(x)=\left[\frac{(n-2)^{2}}{2|x|^{2} \ln (1 /|x|)}\right]^{\frac{n-2}{2}}(1+o(1)), \text { as }|x| \rightarrow 0 .
$$

Our first theorem is a complete characterization for the solutions near isolated singularities.
Theorem 1.4.1. Assume that $u \in C^{2}\left(B_{2}(0) \backslash\{0\}\right)$ is a positive solution to 1.4.1) in $B_{2}(0) \backslash\{0\}$ in the Γ_{k}^{+}class. Then either there exist two constants C_{1} and C_{2} such that

$$
\begin{equation*}
\frac{C_{1}}{|x|^{\frac{2}{p-1}}} \leq u(x) \leq \frac{C_{2}}{|x|^{\frac{2}{p-1}}}, \tag{1.4.3}
\end{equation*}
$$

or u can be extended as a Hölder continuous function on $B_{2}(0)$; when $k=1$, u can actually be extended as a smooth solution to all of $B_{2}(0)$.

This theorem was obtained by González in [34] for $1 \leq k<\frac{n}{2}-1$. The main ingredient in her proof is the divergence structure of σ_{k} together with an Obata type argument. When $k=1$ and $\frac{n}{n-2}<p \leq \frac{n+2}{n-2}$, Caffarelli, Gidas and Spruck [17] proved this theorem. For $k=1$ and
$\frac{n}{n-2}<p \leq \frac{n+2}{n-2}$, this result was established by Gidas and Spruck [31]. When $1 \leq k \leq n$ and $p=\frac{n+2}{n-2}$, it was obtained by Han, Li and Teixeira [42]. We should note that this theorem is also valid for equation (1.4.2). To get the statement of the theorem for (1.4.2), we can replace (1.4.1) in Theorem 1.4.1 with (1.4.2).

In order to get the asymptotic behavior of a positive solution to (1.4.2) in $B_{2}(0) \backslash\{0\}$, we set $v(t, \theta)=|x|^{\frac{2}{p-1}} u(x)$ with $t=-\ln |x|$ and $\theta=\frac{x}{|x|}$. Since $u(x)$ is a solution to 1.4 .2$\}$ in $B_{2}(0) \backslash\{0\}$, we see that $v(t, \theta)$ is a solution to

$$
\begin{equation*}
\sigma_{k}\left(B^{v}\right)=c v^{(p+1) k} \text { in }\{t>-\ln 2\} \times \mathbb{S}^{n-1} \tag{1.4.4}
\end{equation*}
$$

with $\frac{n}{n-2 k}<p<\frac{n+2 k}{n-2 k}$. Here

$$
B^{v}:=\left(\begin{array}{ll}
B_{11}^{v} & B_{1 j}^{v} \\
B_{i 1}^{v} & B_{i j}^{v}
\end{array}\right)
$$

is a block matrix, where

$$
\begin{gathered}
B_{11}^{v}=\left(a+\frac{a^{2}}{2}\right) v_{t}^{2}-\frac{a^{2}}{2} v_{\theta}^{2}-a v_{t t} v+a(a b-1) v_{t} v-\frac{a b}{2}(2-a b) v^{2}, \\
B_{1 j}^{v}=-a v v_{t \theta_{j}}+a(1+a) v_{t} v_{\theta_{j}}+a(a b-1) v v_{\theta_{j}}, \\
B_{i 1}^{v}=-a v v_{\theta_{i} t}+a(1+a) v_{t} v_{\theta_{i}}+a(a b-1) v v_{\theta_{i}},
\end{gathered}
$$

and

$$
B_{i j}^{v}=a(1+a) v_{\theta_{i}} v_{\theta_{j}}-a v v_{\theta_{i} \theta_{j}}+\left[\frac{a b}{2}(2-a b) v^{2}-a(a b-1) v v_{t}-\frac{a^{2}}{2} v_{t}^{2}-\frac{a^{2}}{2} v_{\theta}^{2}\right] \delta_{i j}
$$

with $a=\frac{2 k}{n-2 k}$ and $b=\frac{2}{p-1}$. Thanks to the asymptotically radially symmetric properties (Theorem 2.1.4) and some a priori estimates by Guan and Wang [36], we can find that any admissible solution u to 1.4 .2 with a non-removable singularity at 0 is asymptotic to any radial solution to 1.4.2 satisfying (1.4.3). In terms of $v(t, \theta)$, we have
Theorem 1.4.2. Let $v(t, \theta)$ be a smooth solution to 1.4 .4 in $\{t>-\ln 2\} \times \mathbb{S}^{n-1}$ in the Γ_{k}^{+}class, where $n \geq 3,1 \leq k<\frac{n}{2}$. Then for any radial solution $\xi(t)$ to 1.4 .2 in $\mathbb{R} \times \mathbb{S}^{n-1}$ in the Γ_{k}^{+} class satisfying $C_{1} \leq \xi(t) \leq C_{2}$, there exist constants $\alpha>0, C>0$ and t_{0} such that in the case $k(a b-1)^{2} \neq 2 a(2-a b)$,

$$
\begin{equation*}
|v(t, \theta)-\xi(t)| \leq C \max \left\{e^{-t}, e^{-\operatorname{Re}\left(\alpha_{1}\right) t}\right\} \text { for } t>t_{0} \tag{1.4.5}
\end{equation*}
$$

in the case $k(a b-1)^{2}=2 a(2-a b)$,

$$
\begin{equation*}
|v(t, \theta)-\xi(t)| \leq C \max \left\{e^{-t}, t e^{-\alpha_{0} t}\right\} \text { for } t>t_{0} \tag{1.4.6}
\end{equation*}
$$

where $\alpha_{1}=\frac{k}{a}(a b-1)-\sqrt{\frac{k^{2}}{a^{2}}(a b-1)^{2}-\frac{2 k}{a}(2-a b)}$ and $\alpha_{0}=\frac{k}{a}(a b-1)$. In particular, $v(t, \theta)-c^{*}$ also satisfies 1.4.5 or 1.4.6, where $c^{*}=\left(\frac{(n-2 k)^{1 / k} a b(2-a b)}{n^{1 / k}}\right)^{\frac{1}{p-1}}$ is a solution to 1.4.4.

A linearization procedure and some integral estimates show that the radial average of $v(t, \theta)$,
$\beta(t)$, solves some perturbation form of 1.4.4. By exploiting the perturbed ODE satisfied by $\beta(t)$, we prove that the average $\beta(t)$ is approximated by any radial solution $\xi(t)$ to 1.4.4) satisfying $C_{1} \leq \xi(t) \leq C_{2}$. Combining Theorem 2.1.4, we arrive at the above theorem.

For the sake of simplicity, we set $w(t, \theta)=-a \ln v(t, \theta)$ with $a=\frac{2 k}{n-2 k}$. Since $v(t, \theta)$ is a solution to (1.4.4), we have that $w(t, \theta)$ is a solution to

$$
\begin{equation*}
\sigma_{k}\left(B^{w}\right)=c e^{-\frac{(p-1)}{a} w} \text { in }\{t>-\ln 2\} \times \mathbb{S}^{n-1} . \tag{1.4.7}
\end{equation*}
$$

Here

$$
B^{w}=\left(\begin{array}{ll}
B_{11}^{w} & B_{1 j}^{w} \\
B_{i 1}^{w} & B_{i j}^{w}
\end{array}\right)
$$

is a block matrix, where

$$
\begin{gathered}
B_{11}^{w}=w_{t t}+\frac{1}{2}\left(w_{t}^{2}-2(a b-1) w_{t}-a b(2-a b)\right)-\frac{1}{2} w_{\theta}^{2} \\
B_{1 j}^{w}=w_{t \theta_{j}}+w_{t} w_{\theta_{j}}-(a b-1) w_{\theta_{j}} \\
B_{i 1}^{w}=w_{\theta_{i} t}+w_{t} w_{\theta_{i}}-(a b-1) w_{\theta_{i}}
\end{gathered}
$$

and

$$
B_{i j}^{w}=w_{\theta_{i} \theta_{j}}+w_{\theta_{i}} w_{\theta_{j}}+\frac{1}{2}\left(-w_{t}^{2}+2(a b-1) w_{t}+a b(2-a b)-w_{\theta}^{2}\right) \delta_{i j}
$$

with $a=\frac{2 k}{n-2 k}$ and $b=\frac{2}{p-1}$.
Inspired by the work of Korevaar, Mazzeo, Pacard and Schoen [44] and Han, Li, Teixeira [42], we obtain higher order expansions for solutions to (1.4.7):

Theorem 1.4.3. Let $w(t, \theta)$ be a solution to $\sqrt{1.4 .7}$, in $\{t>-\ln 2\} \times \mathbb{S}^{n-1}$ in the Γ_{k}^{+}class, and let $\varphi(t)$ be the radial solution to 1.4 .7 in $\mathbb{R} \times \mathbb{S}^{n-1}$ in the Γ_{k}^{+}class. Then in the case $\varphi_{t} \equiv 0$, for any $\operatorname{Re}\left(a_{N 2}\right), N \geq 1$, there is a constant m_{N} that satisfies $m_{N} \operatorname{Re}\left(a_{01}\right) \leq \operatorname{Re}\left(a_{N 2}\right)<\left(m_{N}+1\right) \operatorname{Re}\left(a_{01}\right)$, some functions $\varphi_{i}(t, \theta), 1 \leq i \leq m_{N}-1$,

$$
f_{0}(t)=c_{01} e^{-a_{01} t}+c_{02} e^{-a_{02} t}, \quad f_{j}(t, \theta)=c_{j 2} e^{-a_{j 2} t} Y_{j}(\theta), \quad 1 \leq j \leq N
$$

which are solutions to the linearized equation of (1.4.7) at $\varphi(t)$, such that for large t and small $\varepsilon_{0}>0$,

$$
\begin{equation*}
\left|w(t, \theta)-\varphi(t)-f_{0}(t)-\sum_{i=1}^{m_{N}-1} \varphi_{i}(t, \theta)-\sum_{j=1}^{N} f_{j}(t, \theta)\right| \leq C e^{-\left(m_{N}+1\right) R e\left(a_{01}\right) t+\varepsilon_{0} t} \tag{1.4.8}
\end{equation*}
$$

where $c_{01}, c_{j 2}$ are constants, $a_{j 2}=\frac{(a b-1)(n-2 k)+\sqrt{(a b-1)^{2}(n-2 k)^{2}-4\left((2-a b)(n-2 k)-\lambda_{j}\right)}}{2}, \operatorname{Re}\left(a_{01}\right)=$ $\operatorname{Re}\left(\frac{(a b-1)(n-2 k)-\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(2-a b)(n-2 k)}}{2}\right)>0$ and $\left(\lambda_{j}, Y_{j}(\theta)\right)$ is the eigendata of $-\Delta_{\mathbb{S}^{n-1}}$; in the case $\varphi_{t} \not \equiv 0$, under the assumption $\operatorname{Re}\left(a_{02}\right) \leq 2 \operatorname{Re}\left(a_{01}\right)-\varepsilon_{0}$, there is a function

$$
f_{0}(t)=c_{0}(t)
$$

which is a solution to the linearized equation of (1.4.7) at $\varphi(t)$, such that for large t and small $\varepsilon_{0}>0$,

$$
\begin{equation*}
\left|w(t, \theta)-\varphi(t)-f_{0}(t)\right| \leq C e^{-2 R e\left(a_{01}\right) t+\varepsilon_{0} t}, \tag{1.4.9}
\end{equation*}
$$

where $\left|c_{0}(t)\right| \leq C e^{-R e\left(a_{01}\right) t+\frac{\varepsilon_{0}}{2} t}$.
This theorem requires some knowledge on the spectrum of the linearized operator of 1.4.7. We first obtain this linearized operator. Then after a long computation we proved that the indicial root of the linearized operator $\rho_{j}>\frac{\sqrt{13}-1}{2}$ for $\lambda_{j} \geq 2 n$ in Lemma 4.2.2. Next for a nonhomogeneous linearized equation, we apply a decomposition of the solutions with Wronskian function and the maximum principle to get the higher order estimates, then an iteration argument leads to the above theorem.

The analysis of linearized operator should be useful in constructing solutions to 1.3.1) on $\mathbb{S}^{n} \backslash \Lambda$, and in analyzing the moduli space of solutions to 1.3 .1 on $\mathbb{S}^{n} \backslash \Lambda$, when Λ is a submanifold. Actually Mazzeo and Pacard [63] proved that when $k=1$, there is a family of positive solutions to (1.4.1). Moreover, the solution space is locally a real analytic variety. Therefore along the line of the approach in [63] or following the way in the work of Roidos and Schrohe [70, 71, 72], we expect to obtain the same result for $2 \leq k<\frac{n}{2}$ in our future work.

As a side effect, we apply the moving spheres method to obtain the Harnack type inequality in Euclidean balls, asymptotic behavior of an entire solution. Based on the asymptotic behavior, we are able to give another proof of the remarkable Liouville type theorem obtained by Li and Li [49]. Recently, using the method of moving spheres and other approaches, Li and Nguyen [55] established blow-up profiles for any blowing-up sequence of solutions to general conformally invariant fully nonlinear elliptic equations on Euclidean domains.

Our next result concerns Schoen's Harnack type inequality without using the Liouville type theorem.

Theorem 1.4.4. Suppose that $u \in C^{2}\left(B_{3 R}(0)\right)$ is a positive solution to

$$
\begin{equation*}
\sigma_{k}^{1 / k}\left(A^{u}\right)=u^{p-\frac{n+2}{n-2}} \text { in } B_{3 R}(0) \tag{1.4.10}
\end{equation*}
$$

for some $R>0$. Then

$$
\left(\frac{\max }{B_{R}(0)} u\right)\left(\frac{\min }{B_{2 R}(0)} u\right)^{\alpha} \leq C R^{(2-n) \alpha}
$$

where C depends only on n, and $\alpha=\frac{2}{(n-2)(p-1)-2}>0$.
When $k=1$ and $p=\frac{n+2}{n-2}$, the above theorem was proved by Schoen [76] based on the Liouville type theorem of Caffarelli, Gidas and Spruck [17]. In the case $1 \leq k \leq n$ and $p=\frac{n+2}{n-2}, \mathrm{Li}$ and Li [48] obtained the result by the method of moving spheres, a variant of the method of moving planes. When $k=1, \alpha=1$ and $p \in\left(\frac{n}{n-2}, \frac{n+2}{n-2}\right)$, this theorem was proved by Li and Zhang [56] under an additional hypothesis that $\max _{\bar{B}_{R}} u \geq 1$. We note that our conclusion is invariant under the scaling $u(x) \rightarrow R^{\frac{2}{p-1}} u(R x)$. The Harnack type inequality yields the following consequence as established by Schoen in [76] for $k=1, p=\frac{n+2}{n-2}$, by Li and Li in [48] for $1 \leq k \leq n$ and $p=\frac{n+2}{n-2}$.

Corollary 1.4.5. Let u be as in Theorem 1.4.4 Then

$$
\begin{equation*}
\int_{B_{R}} u^{\frac{n(p-1)}{2}} \leq C(n) . \tag{1.4.11}
\end{equation*}
$$

Owing to the Harnack type inequality, we are able to get the asymptotic behavior of an entire solution.

Theorem 1.4.6. Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a positive solution to

$$
\sigma_{k}^{1 / k}\left(A^{u}\right)=u^{p-\frac{n+2}{n-2}} \text { in } \mathbb{R}^{n}
$$

in the Γ_{k}^{+}class, where $\frac{n}{n-2}<p<\frac{n+2}{n-2}$. Then

$$
\begin{equation*}
0<\liminf _{|x| \rightarrow \infty}\left(|x|^{n-2} u(x)\right) \leq \limsup _{|x| \rightarrow \infty}\left(|x|^{n-2} u(x)\right)<\infty, \tag{1.4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{|x| \rightarrow \infty}\left(|x|^{n-1}|\nabla u(x)|+|x|^{n}\left|\nabla^{2} u(x)\right|\right)<\infty . \tag{1.4.13}
\end{equation*}
$$

In the case $p=\frac{n+2}{n-2}$, the above theorem was proved by Li and Li [48]. Next we recall the remarkable Liouville type theorem obtained by Li and Li [49].
Theorem 1.4.7. For $n \geq 3$, assume that $u \in C^{2}\left(\mathbb{R}^{n}\right)$ is a positive solution to $\sigma_{k}^{1 / k}\left(A^{u}\right)=u^{p-\frac{n+2}{n-2}}$ in \mathbb{R}^{n} in the Γ_{k}^{+}class for some $p,-\infty<p \leq \frac{n+2}{n-2}$. Then either $u \equiv$ constant or $p=\frac{n+2}{n-2}$ and, for some $\bar{x} \in \mathbb{R}^{n}$ and some positive constants a_{1} and b_{1} satisfying $2 b_{1}^{2} a_{1}^{-2} I$ in the Γ_{k}^{+}class and $\sigma_{k}\left(2 b_{1}^{2} a_{1}^{-2} I\right)=1$,

$$
u(x) \equiv\left(\frac{a_{1}}{1+b_{1}^{2}|x-\bar{x}|^{2}}\right)^{(n-2) / 2}, x \in \mathbb{R}^{n} .
$$

When $k=1$ and $p=\frac{n+2}{n-2}$, this theorem was established by Caffarelli, Gidas and Spruck [17], while under some additional hypothesis, it was proved by Obata [68] and Gidas, Ni and Nirenberg [30]. Somewhat different proofs of the result of Caffarelli, Gidas and Spruck were given in [26], [56]. For $1 \leq k \leq n$ and $p=\frac{n+2}{n-2}$, under some hypothesis on u near infinity, the result was proved by Viaclovsky [83], [84]. For $k=2, n=4$ and $p=\frac{n+2}{n-2}$, the result is due to Chang, Gursky and Yang [21]. For $1 \leq k \leq n$, the result was established Li and Li [48]. For $k=2$ and $p=\frac{n+2}{n-2}$ in dimension $n=5$, as well as for the same case in dimension $n \geq 6$ under the additional hypothesis $\int_{\mathbb{R}^{n}} u^{2 n /(n-2)}<\infty$, the result was established by Chang, Gursky and Yang [22]. When $k=1$ and $1<p<\frac{n+2}{n-2}$, this result was obtained by Gidas and Spruck [31]. The proof of this theorem bases on an observation on the behavior of isolated singularities, which avoids using global information of the entire solution. Based on the asymptotic behavior of u near infinity (Theorem 1.4.6), we are able to give an another proof of the above theorem, Liouville type theorem, with $\frac{n}{n-2}<p<\frac{n+2}{n-2}$.
Corollary 1.4.8. For $n \geq 3$, let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a positive solution to

$$
\sigma_{k}^{1 / k}\left(A^{u}\right)=u^{p-\frac{n+2}{n-2}} \text { in } \mathbb{R}^{n}
$$

in the Γ_{k}^{+}class, where $\frac{n}{n-2}<p<\frac{n+2}{n-2}$. Then $u \equiv$ constant.

It is not hard to see that this result is also available for $p=\frac{n+2}{n-2}$. But it can not cover the case $-\infty<p \leq \frac{n}{n-2}$, because it heavily depends on the positivity of α (Theorem 1.4.4, where $\alpha=\frac{2}{(n-2)(p-1)-2}$.

By the way, it is sometimes more convenient to use different forms of 1.4.1). Let $u^{\frac{4}{n-2}}=$ $e^{-2 w_{0}}=v_{0}^{-2}$. From the definition of A^{u}, it is easy to see that 1.4.1 with $\frac{n}{n-2}<p<\frac{n+2}{n-2}$ is equivalent to

$$
\begin{equation*}
\sigma_{k}^{1 / k}\left(A^{w_{0}}\right)=e^{-\beta_{0} w_{0}}, \tag{1.4.14}
\end{equation*}
$$

where $1<\beta_{0}<2$ and

$$
A^{w_{0}}=D^{2} w_{0}+\nabla w_{0} \otimes \nabla w_{0}-\frac{\left|\nabla w_{0}\right|^{2}}{2} I,
$$

or

$$
\sigma_{k}^{1 / k}\left(A^{v_{0}}\right)=v_{0}^{\beta_{1}}
$$

where $0<\beta_{1}<1$ and

$$
A^{v_{0}}=v_{0} D^{2} v_{0}-\frac{\left|\nabla v_{0}\right|^{2}}{2} I .
$$

This thesis is organized as follows. In Chapter 2, we establish the classification of singularities, Theorem 1.4.1. In Chapter 3, we prove the asymptotic behavior, Theorem 1.4.2, by exploiting the ODE satisfied by the radial average. In Chapter 4, we give a proof of Theorem 1.4.3 by an analysis of the linearized operator. Theorems 1.4.4 1.4.6 are carried out in the last chapter, Chapter 5.

Chapter 2

Classification of singularities

In this chapter, we will establish the classification of solutions to 1.4.1 near an isolated singularity.

2.1 Preliminary

In this section, we list some preliminary facts which we will use later.
The following fact follows from a classical result of G. C. Evans [27]: Let E be a closed subset of $B_{2}(0)$ of capacity 0 -the standard capacity with respect to the Dirichlet integral, and let $u \in C^{2}\left(B_{2}(0) \backslash E\right)$ and $v \in C^{2}\left(B_{2}(0)\right)$ satisfy

$$
\begin{equation*}
u>v \text { and } \Delta u \leq 0 \leq \Delta v \text { in } B_{2}(0) \backslash E . \tag{2.1.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{diminf}_{\lim (x, E) \rightarrow 0}[u(x)-v(x)]>0 . \tag{2.1.2}
\end{equation*}
$$

Let $S \in C^{1}\left(\mathbb{R}^{n} \times \mathcal{S}^{n \times n}\right)$ satisfy

$$
-\frac{\partial S}{\partial M_{i j}}(p, M)>0, \quad \forall(p, M) \in \mathbb{R}^{n} \times \mathcal{S}^{n \times n},
$$

and let, for $\beta \in \mathbb{R} \backslash\{0\}$,

$$
T(t, p, M):=S\left(t^{-\frac{1+\beta}{\beta}} p, t^{-\frac{2+\beta}{\beta}} M\right), \quad(t, p, M) \in \mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathcal{S}^{n \times n}
$$

where $\mathcal{S}^{n \times n}$ denotes the set of $n \times n$ real symmetric matrices, $\mathcal{S}_{+}^{n \times n}$ denotes the subset of $\mathcal{S}^{n \times n}$ consisting of positive definite matrices. ($O(n)$ denotes the set of $n \times n$ real orthogonal matrices.)
Theorem 2.1.1. (Corollary 1.5 in [57]) For $n \geq 2$, let S, β and T be as above. If $-1<\beta<0$, we further require that

$$
S(p, 0) \geq 0 \quad \forall p \in \mathbb{R}^{n}
$$

Assume that $u \in C^{2}\left(B_{2}(0) \backslash\{0\}\right)$ and $v \in C^{2}\left(B_{2}(0)\right)$ satisfy

$$
v>0 \text { in } B_{2}(0)
$$

$$
\begin{gathered}
u>v \text { in } B_{2}(0) \backslash\{0\} \\
\Delta u \leq 0 \text { in } B_{2}(0) \backslash\{0\} \\
T\left(u, \nabla u, D^{2} u\right) \geq 0 \geq T\left(v, \nabla v, D^{2} v\right) \text { in } B_{2}(0) \backslash\{0\} .
\end{gathered}
$$

Then

$$
\liminf _{|x| \rightarrow 0}[u(x)-v(x)]>0
$$

Next we will list some theorems that are useful in our proofs. The main ingredient in the proof of these theorems is a blow up argument together with the moving sphere technique. The first theorem is a global result for solutions in \mathbb{R}^{n}.

Theorem 2.1.2. Assume that $u \in C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ is a positive solution to 1.4 .1$)$ in $\mathbb{R}^{n} \backslash\{0\}$ in the Γ_{k}^{+} class with $-\infty<p<\frac{n+2}{n-2}$. Then u is radially symmetric about the origin and $u^{\prime}(r)<0$.

Based on the observation in [49] and Theorem 2.1.1, the proof of the above theorem is along the proof of Theorem 1.2 in [51]. When $k=1$ and $\frac{n}{n-2} \leq p \leq \frac{n+2}{n-2}$, the above theorem is obtained by Caffarelli, Gidas and Spruck [17]. When $p=\frac{n+2}{n-2}, \mathrm{Li}$ [51] proved this theorem.

The second result is the fastest blow up rate of solutions near a singular point.
Theorem 2.1.3. Assume that $u \in C^{2}\left(B_{2}(0) \backslash\{0\}\right)$ is a positive solution to $(1.4 .1)$ in $B_{2}(0) \backslash\{0\}$ in the Γ_{k}^{+}class with $1<p<\frac{n+2}{n-2}$. Then

$$
\begin{equation*}
\limsup _{|x| \rightarrow 0}|x|^{\frac{2}{p-1}} u(x)<\infty \tag{2.1.3}
\end{equation*}
$$

The exponent $\frac{2}{p-1}$ in 2.1 .3 with $\frac{n}{n-2}<p<\frac{n+2}{n-2}$ is sharp for $1 \leq k<\frac{n}{2}$, see Section 2.3 for details. There are two ways to prove this theorem. The first one is from the Liouville type theorem obtained by Li and Li [49], which Prof. Dr. YanYan Li told me. The second is following the proof of Theorem 1.1' in [51] together with Theorem 2.1.1. When $k=1$ and $\frac{n}{n-2}<p \leq \frac{n+2}{n-2}$, this theorem is proved by Caffarelli, Gidas and Spruck [17]. When $p=\frac{n+2}{n-2}, \mathrm{Li}$ [51] showed it.

The third theorem states that the solutions are asymptotically radially symmetric.
Theorem 2.1.4. Assume that $u \in C^{2}\left(B_{2} \backslash\{0\}\right)$ is a positive solution to 1.4 .1 in the Γ_{k}^{+}class. Then

$$
\begin{equation*}
u(x)=\bar{u}(|x|)(1+O(|x|)) \text { as } x \rightarrow 0 \tag{2.1.4}
\end{equation*}
$$

where $\bar{u}(|x|)=\left|\mathbb{S}^{n-1}\right|^{-1} \int_{\mathbb{S}^{n-1}} u(|x|, \theta) d \theta$ is the spherical average of u.
The arguments of Theorem 1.3 in [51] and Theorem 2.1.1] yield the above theorem. When $k=1$, these results were proved by Caffarelli, Gidas and Spruck in [17]. When $1 \leq k \leq n$ and $p=\frac{n+2}{n-2}, \mathrm{Li}[51]$ obtained the similar results.

For $x \in \mathbb{R}^{n}$ and $\lambda>0$, consider the Kelvin transformation of u :

$$
u_{x, \lambda}=\frac{\lambda^{n-2}}{|y-x|^{n-2}} u\left(x+\frac{\lambda^{2}(y-x)}{|y-x|^{2}}\right), \quad y \in \mathbb{R}^{n} \backslash\{x\}
$$

For the reader's convenience, some calculus lemmas are taken from [56].

Lemma 2.1.5. (Lemma 11.2 in [56]) Let $f \in C^{1}\left(\mathbb{R}^{n}\right), n \geq 1, v>0$. Assume that

$$
\left(\frac{\lambda}{|y-x|}\right)^{v} f\left(x+\frac{\lambda^{2}(y-x)}{|y-x|^{2}}\right) \leq f(y), \forall \lambda>0, \quad x \in \mathbb{R}^{n}, \quad|y-x| \geq \lambda .
$$

Then $f \equiv$ constant.
Lemma 2.1.6. (Lemma 11.1 in [56]) Let $f \in C^{1}\left(\mathbb{R}^{n}\right), n \geq 1, v>0$. Suppose that for every $x \in \mathbb{R}^{n}$, there exists $\lambda(x)>0$ such that

$$
\left(\frac{\lambda}{|y-x|}\right)^{v} f\left(x+\frac{\lambda^{2}(y-x)}{|y-x|^{2}}\right)=f(y), \quad y \in \mathbb{R}^{n} \backslash\{x\} .
$$

Then for some $a \geq 0, d>0, \bar{x} \in \mathbb{R}^{n}$,

$$
f(x)= \pm\left(\frac{a}{d+|x-\bar{x}|^{2}}\right)^{\frac{v}{2}}
$$

2.2 Classification of singularities

In this section, we will prove Theorem 1.4.1.
Lemma 2.2.1. Suppose u is a positive solution to 1.4.1 in the Γ_{k}^{+}class. Then for all $0<r<\frac{1}{4}$, we have

$$
\begin{equation*}
\sup _{B_{2 r}(0) \backslash \overline{B_{r / 2}}(0)} u \leq C \inf _{B_{2 r}(0) \backslash \overline{B_{r / 2}}(0)} u, \tag{2.2.1}
\end{equation*}
$$

where C is a positive constant independent of r.
Proof. Let

$$
v(x)=r^{\frac{2}{p-1}} u(r x) .
$$

It follows from Theorem 2.1.3 that

$$
0<v(x) \leq C, \forall|x| \in\left[\frac{1}{4}, 4\right],
$$

where C is a positive constant independent of r. Moreover, v satisfies 1.4.2) as well. By Harnack inequality in [36], we get

$$
\sup _{\frac{1}{2} \leq|x| \leq 2} v(x) \leq C \inf _{\left.\frac{1}{2} \leq x \right\rvert\, \leq 2} v(x),
$$

where C is independent of r. Then (2.2.1) follows.
By Harnack inequality, we claim

$$
\begin{equation*}
\liminf _{|x| \rightarrow 0} u(x)=\infty, \tag{2.2.2}
\end{equation*}
$$

if 0 is a non-removable singularity of u. In fact, there exists a sequence x_{j} such that

$$
\begin{equation*}
r_{j}=\left|x_{j}\right| \rightarrow 0 \text { and } u\left(x_{j}\right) \rightarrow \infty \text { as } j \rightarrow \infty . \tag{2.2.3}
\end{equation*}
$$

It follows from (2.2.1) that

$$
\inf _{|x|=r_{j}} u \geq \frac{1}{C} u\left(x_{j}\right)
$$

By the maximum principle,

$$
\inf _{r_{j+1} \leq|x| \leq r_{j}} u(x)=\inf _{|x|=r_{j}, r_{j+1}} u(x) \geq \frac{1}{C} \min \left\{u\left(x_{j}\right), u\left(x_{j+1}\right)\right\} \rightarrow \infty
$$

as $j \rightarrow \infty$. The claim is proved.

Proposition 2.2.2. Let u be a positive solution to $(1.4 .1)$ in the Γ_{k}^{+}class. If

$$
\liminf _{|x| \rightarrow 0}|x|^{\frac{2}{p-1}} u(x)=0
$$

then u can be extended as a Hölder continuous function near the origin 0 . When $k=1, u$ can actually be extend as a smooth solution to all of $B_{2}(0)$.

Proof. By Theorem 2.1.3.

$$
\begin{equation*}
\sup _{0<|x| \leq 1}|x|^{\frac{2}{p-1}} u(x)<\infty \tag{2.2.4}
\end{equation*}
$$

Since $\Delta u \leq 0$ in $B_{2}(0) \backslash\{0\}$, we have

$$
\begin{equation*}
u(x) \geq \min _{\partial B_{1}(0)} u>0, \forall 0<|x| \leq 1 \tag{2.2.5}
\end{equation*}
$$

In fact, let v be the solution to $\Delta v=0$ in $B_{1}(0)$ with $v=u$ on $\partial B_{1}(0)$. From the maximum principle, we have $\min _{\partial B_{1}(0)} u \leq v(x) \leq \max _{\partial B_{1}(0)} u$ for all $x \in \bar{B}_{1}(0)$. Since $v(x)-u(x) \leq \max _{\partial B_{r}(0)}(v-u) \frac{r^{n-2}}{|x|^{n-2}}$ for $x \in \partial B_{r}(0), v(x)-u(x)=0$ for $x \in \partial B_{1}(0)$ and $\Delta(v-u) \geq 0$, by the maximum principle again, we see

$$
v(x)-u(x) \leq \max _{\partial B_{r}(0)}(v-u) \frac{r^{n-2}}{|x|^{n-2}} \leq \frac{\left(\max _{\partial B_{r}(0)} v+\max _{\partial B_{r}(0)} u\right) r^{n-2}}{|x|^{n-2}}
$$

for $x \in B_{1}(0) \backslash B_{r}(0)$. Sending $r \rightarrow 0$, we obtain $v(x) \leq u(x)$ for $x \in \bar{B}_{1}(0) \backslash\{0\}$. Thus $u(x) \geq v(x) \geq$ $\min _{\partial B_{1}(0)} u$ for $x \in \bar{B}_{1}(0) \backslash\{0\}$.

Since $\liminf \operatorname{lx|}_{|x| \rightarrow 0}|x|^{\frac{2}{p-1}} u(x)=0$, by 2.2 .1 , we obtain

$$
\lim _{|x| \rightarrow 0}|x|^{\frac{2}{p-1}} u(x)=0
$$

Then we have that $u(x) \leq|x|^{\frac{2}{1-p}}+c_{0}$ for some constant $c_{0}>0$. It follows that

$$
\int_{B_{\varepsilon}(0)} u^{\frac{n(p-1)}{2}} d x \leq \varepsilon
$$

Because the above inequality is invariant under the scaling $u(x) \rightarrow \varepsilon^{\frac{2}{p-1}} u(\varepsilon x)$, we get

$$
\int_{B_{1}(0)} u^{\frac{n(p-1)}{2}} d x \leq \varepsilon
$$

for small $\varepsilon>0$, that is, the volume smallness condition. Following the argument similar to that in [33], we have u is bounded, then u is a Hölder continuous function.

When $k=1$, we will obtain much stronger conclusion, that is, $u \in C^{\infty}\left(B_{2}(0)\right)$. This part is inspired by the work [44]. First, we claim that $u \in L^{q}\left(B_{2}(0)\right)$ for some $q>\frac{n(p-1)}{2}$. Let $v(t, \theta)=$ $|x|^{\frac{2}{p-1}} u(x)$, where $t=-\ln |x|, \theta=x /|x|$. Since u is a solution to $-\Delta u=u^{p}$, we see that v is a solution to

$$
v_{t t}+\Delta_{\mathbb{S}^{n-1}} v+\frac{2}{a}(a b-1) v_{t}-\frac{b}{a}(2-a b) v+v^{p}=0 \text { in }[-\ln 2, \infty) \times \mathbb{S}^{n-1}
$$

where $a=\frac{2}{n-2}$ and $b=\frac{2}{p-1}$. The hypothesis $\lim _{x \rightarrow 0}|x|^{\frac{2}{p-1}} u(x)=0$ implies that

$$
v(t, \theta) \rightarrow 0 \text { uniformally as } t \rightarrow \infty
$$

Therefore we see that

$$
\Delta v \geq-\frac{2}{a}(a b-1) v_{t}+C_{0} v
$$

for some $C_{0}>0$ and $t \geq t_{0}$ for sufficiently large t_{0}. Now we consider the function $\hat{v}=C_{1} e^{-\alpha_{1} t}+$ $\varepsilon e^{\alpha_{2} t}$ where $\alpha_{1}>0, \alpha_{2}>0$ and C_{1} is chosen large enough such that $C_{1} e^{-\alpha_{1} t_{0}}>v\left(t_{0}, \theta\right)$ for all $\theta \in \mathbb{S}^{n-1}$. Note that \hat{v} is a solution to $\Delta \hat{v}=-\frac{2}{a}(a b-1) \hat{v}_{t}+C_{0} \hat{v}$. By the maximum principle, we have

$$
v(t, \theta) \leq C_{1} e^{-\alpha_{1} t}+\varepsilon e^{\alpha_{2} t}
$$

for all θ. Since C_{1} is independent of ε, we may let ε go to zero. Then we get $e^{\alpha_{1} t} v(t, \theta) \leq C_{1}$ for $t \geq t_{0}$. Writing this in terms of u, we have

$$
u(x) \leq C_{1}|x|^{q_{1}} \text { for } q_{1}=\frac{2}{1-p}+\alpha_{1}
$$

This implies that $u \in L^{q}\left(B_{2}(0)\right)$ for some $q>\frac{n(p-1)}{2}$. Next from Lemma 2.1 in [17], we see that $u \in L^{p}\left(B_{2}(0)\right)$ and u is a distribution solution to $-\Delta u=u^{p}$ in $B_{2}(0)$. Then by the estimates in [88], we obtained

$$
\|u\|_{W^{2, q / p}(\Omega)} \leq C\left\|u^{p}\right\|_{L^{q / p}\left(B_{2}(0)\right)} \leq C\|u\|_{L^{q}\left(B_{2}(0)\right)}^{p} \leq C
$$

where $\Omega \subset \subset B_{2}(0)$. Using the Sobolev embedding theorem, we have that $u \in L^{\frac{n q}{n p-2 q}}(\Omega) \subset L^{p}(\Omega)$. After finite steps, we get $u \in C^{\alpha}\left(B_{2}(0)\right)$. Then by the Schauder theory, $u \in C^{2, \alpha}\left(B_{2}(0)\right)$. Finally we have $u \in C^{\infty}\left(B_{2}(0)\right)$.

Now we have established this proposition.

Proof of Theorem 1.4.1 By the above proposition and Theorem 2.1.3, we have that either there exist two constants C_{1} and C_{2} such that

$$
\frac{C_{1}}{|x|^{\frac{2}{p-1}}} \leq u(x) \leq \frac{C_{2}}{|x|^{\frac{2}{p-1}}}
$$

or u can be extended as a Hölder continuous function on $B_{2}(0)$, when $k=1$, u can actually be extended as a smooth solution to all of $B_{2}(0)$.

2.3 Sharpness of Theorem 2.1.3

The two lemmas in this section give the sharpness of Theorem 2.1.3.

Lemma 2.3.1. For $n \geq 3$, let $u(x)=|x|^{\frac{2}{1-p}}, x \in \mathbb{R}^{n} \backslash\{0\}$, where $\frac{n}{n-2}<p<\frac{n+2}{n-2}$. Then

$$
\begin{equation*}
\lambda\left(A^{u}\right)=\{-1,1, \ldots, 1\} \frac{4}{(n-2)(p-1)^{2}}\left(p-\frac{n}{n-2}\right) u^{p-\frac{n+2}{n-2}} \text { in } \mathbb{R}^{n} \backslash\{0\} . \tag{2.3.1}
\end{equation*}
$$

Proof. We write $u(x)$ as $u(r)$ with $r=|x|$, and only need to verify (2.3.1) at $x=(r, 0, \ldots, 0), r>0$. At this point,

$$
\nabla u=\left(u^{\prime}(r), 0, \ldots, 0\right), D^{2} u=\operatorname{diag}\left(u^{\prime \prime}, \frac{u^{\prime}(r)}{r}, \ldots, \frac{u^{\prime}(r)}{r}\right),
$$

and

$$
A^{u}(x)=\operatorname{diag}\left(\lambda_{1}^{u}(r), \lambda_{2}^{u}(r), \ldots, \lambda_{n}^{u}(r)\right),
$$

where

$$
\lambda_{1}^{u}(r)=-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} u^{\prime \prime}+\frac{2(n-1)}{(n-2)^{2}} u^{-\frac{2 n}{n-2}}\left(u^{\prime}\right)^{2},
$$

and

$$
\lambda_{2}^{u}(r)=\cdots=\lambda_{n}^{u}(r)=-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} \frac{u^{\prime}}{r}-\frac{2}{(n-2)^{2}} u^{-\frac{2 n}{n-2}}\left(u^{\prime}\right)^{2} .
$$

With this we compute

$$
\begin{gathered}
u^{\prime}=\frac{2}{1-p} r^{\frac{p+1}{1-p}}=\frac{2}{1-p} u^{\frac{p+1}{2}}, u^{\prime \prime}=\frac{2}{1-p} \frac{p+1}{2} u^{\frac{p-1}{2}} u^{\prime}=\frac{2(p+1)}{(p-1)^{2}} u^{p}, \\
\lambda_{1}^{u}(r)=-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} \frac{2(p+1)}{(p-1)^{2}} u^{p}+\frac{2(n-1)}{(n-2)^{2}} u^{-\frac{2 n}{n-2}} \frac{4}{(p-1)^{2}} u^{p+1} \\
=-\frac{4(p+1)}{(n-2)(p-1)^{2}} u^{p-\frac{n+2}{n-2}}+\frac{8(n-1)}{(n-2)^{2}(p-1)^{2}} u^{p-\frac{n+2}{n-2}} \\
=-\frac{4}{(n-2)(p-1)^{2}}\left(p-\frac{n}{n-2}\right) u^{p-\frac{n+2}{n-2},}
\end{gathered}
$$

and

$$
\begin{aligned}
\lambda_{2}^{u}(r)=\cdots=\lambda_{n}^{u}(r) & =-\frac{2}{n-2} u^{-\frac{n+2}{n-2}} \frac{2}{1-p} r^{\frac{2 p}{1-p}}-\frac{2}{(n-2)^{2}} u^{-\frac{2 n}{n-2}} \frac{4}{(p-1)^{2}} u^{p+1} \\
& =\frac{4}{(n-2)(p-1)} u^{p-\frac{n+2}{n-2}}-\frac{8}{(n-2)^{2}(p-1)^{2}} u^{p-\frac{n+2}{n-2}} \\
& =\frac{4}{(n-2)(p-1)^{2}}\left(p-\frac{n}{n-2}\right) u^{p-\frac{n+2}{n-2} .}
\end{aligned}
$$

This lemma is established.

Lemma 2.3.2. For $\lambda_{0}=(-1,1, \ldots, 1) \in \mathbb{R}^{n}, n \geq 2$,

$$
\begin{aligned}
& \sigma_{k}\left(\lambda_{0}\right)>0, \text { for } 1 \leq k<\frac{n}{2}, \\
& \sigma_{k}\left(\lambda_{0}\right)=0, \text { for } k=\frac{n}{2} \\
& \sigma_{k}\left(\lambda_{0}\right)<0, \text { for } \frac{n}{2}<k \leq n .
\end{aligned}
$$

It follows that $\frac{4}{(n-2)(p-1)^{2}}\left(p-\frac{n}{n-2}\right) u^{p-\frac{n+2}{n-2}}(-1,1, \ldots, 1)$ belongs to $\Gamma_{k}^{+}, \forall 1 \leq k<\frac{n}{2}$, and this vector does not belongs to $\Gamma_{k}^{+}, \forall k \geq \frac{n}{2}$.

Proof. It follows from Lemma 8.2 in [51].

Chapter 3

Asymptotic behaviors of singular solutions

A remarkable result of Caffarelli, Gidas and Spruck [17] says that if u is a positive solution to

$$
-\Delta u=u^{p} \text { in } B_{2}(0) \backslash\{0\}
$$

with a non-removable isolated singularity, then for $\frac{n}{n-2}<p<\frac{n+2}{n-2}$,

$$
u(x)=\frac{c_{0}}{|x|^{2 /(p-1)}}(1+o(1)), \text { as } x \rightarrow 0
$$

where $c_{0}=\left[\frac{2(n-2)}{(p-1)^{2}}\left(p-\frac{n}{n-2}\right)\right]^{1 /(p-1)}$.
Our objective in this chapter is to study similar problems for singular solutions to (1.4.2) with $1 \leq k<\frac{n}{2}$. In order to get the asymptotic behavior of a positive solution to 1.4 .2\rangle in $B_{2}(0) \backslash\{0\}$, we set $v(t, \theta)=|x|^{\frac{2}{p-1}} u(x)$ with $t=-\ln |x|$ and $\theta=\frac{x}{|x|}$. Since $u(x)$ is a solution to 1.4.2 in $B_{2}(0) \backslash\{0\}$, we see that $v(t, \theta)$ is a solution to

$$
\begin{equation*}
\sigma_{k}\left(B^{v}\right)=c v^{(p+1) k} \text { in }\{t>-\ln 2\} \times \mathbb{S}^{n-1}, \tag{3.0.1}
\end{equation*}
$$

with $\frac{n}{n-2 k}<p<\frac{n+2 k}{n-2 k}$. Here

$$
B^{v}:=\left(\begin{array}{ll}
B_{11}^{v} & B_{1 j}^{v} \\
B_{i 1}^{v} & B_{i j}^{v}
\end{array}\right)
$$

is a block matrix, where

$$
\begin{gathered}
B_{11}^{v}=\left(a+\frac{a^{2}}{2}\right) v_{t}^{2}-\frac{a^{2}}{2} v_{\theta}^{2}-a v_{t t} v+a(a b-1) v_{t} v-\frac{a b}{2}(2-a b) v^{2}, \\
B_{1 j}^{v}=-a v v_{t \theta_{j}}+a(1+a) v_{t} v_{\theta_{j}}+a(a b-1) v v_{\theta_{j}}, \\
B_{i 1}^{v}=-a v v_{\theta_{i} t}+a(1+a) v_{t} v_{\theta_{i}}+a(a b-1) v v_{\theta_{i}},
\end{gathered}
$$

and

$$
B_{i j}^{v}=a(1+a) v_{\theta_{i}} v_{\theta_{j}}-a v v_{\theta_{i} \theta_{j}}+\left[\frac{a b}{2}(2-a b) v^{2}-a(a b-1) v v_{t}-\frac{a^{2}}{2} v_{t}^{2}-\frac{a^{2}}{2} v_{\theta}^{2}\right] \delta_{i j}
$$

with $a=\frac{2 k}{n-2 k}$ and $b=\frac{2}{p-1}$. From $\frac{n}{n-2 k}<p<\frac{n+2 k}{n-2 k}$, it is easy to see that $1<a b<2$.

3.1 Classification of radial solutions

In this section, we will show the asymptotic behaviors of positive radial solutions to 3.0.1) on $\mathbb{R} \times \mathbb{S}^{n-1}$.

When $v(t, \theta):=\xi(t)$ is a function of t, B^{v} becomes a block diagonal matrix

$$
B^{\xi}=\left(\begin{array}{cc}
A-\frac{B}{2} & 0 \\
0 & \frac{B}{2} \delta_{i j}
\end{array}\right),
$$

where

$$
A=a \xi^{2}-a \xi \xi_{t t}
$$

and

$$
B=a\left[-a \xi_{t}^{2}-2(a b-1) \xi_{t} \xi+b(2-a b) \xi^{2}\right] .
$$

Therefore we have

$$
\sigma_{k}\left(B^{\xi}\right)=\binom{n-1}{k-1}\left(A-\frac{B}{2}\right)\left(\frac{B}{2}\right)^{k-1}+\binom{n-1}{k}\left(\frac{B}{2}\right)^{k}=\binom{n}{k}\left(\frac{B}{2}\right)^{k-1}\left[\frac{k}{n}\left(A-\frac{B}{2}\right)+\frac{n-k}{2 n} B\right] .
$$

Meanwhile from definition of A and B, we get

$$
\begin{aligned}
\frac{k}{n}\left(A-\frac{B}{2}\right)+\frac{n-k}{2 n} B & =\frac{k}{n} A+\frac{n-2 k}{2 n} B \\
& =\frac{k}{n} a \xi_{t}^{2}-\frac{k}{n} a \xi \xi_{t t}+\frac{k}{n}\left[-a \xi_{t}^{2}-2(a b-1) \xi_{t} \xi+b(2-a b) \xi^{2}\right] \\
& =\frac{n-2 k}{2 n} a\left[-a \xi_{t t} \xi-2(a b-1) \xi_{t} \xi+b(2-a b) \xi^{2}\right] .
\end{aligned}
$$

It follows from $\sigma_{k}\left(B^{\xi}\right)=c \xi^{(p+1) k}$ with $c=\binom{n}{k} / 2^{k}$ that

$$
\begin{equation*}
\left[-a \xi_{t}^{2}-2(a b-1) \xi_{t} \xi+b(2-a b) \xi^{2}\right]^{k-1}\left[-a \xi_{t t} \xi-2(a b-1) \xi_{t} \xi+b(2-a b) \xi^{2}\right]=c_{1} \xi^{(p+1) k} \tag{3.1.1}
\end{equation*}
$$

where $c_{1}=\frac{n}{a^{k}(n-2 k)}$. Now we denote above equation as $\sigma_{k}\left(B^{\xi}\right)=c_{1} \xi^{(p+1) k}$.
Since σ_{k} has a fixed sign on $\mathbb{R}^{n} \times \mathbb{S}^{n-1}$, then either $B>0$ or $B<0$ for all $t \in \mathbb{R}$. And we claim $B>0$, i.e.,

$$
-a \xi_{t}^{2}-2(a b-1) \xi_{t} \xi+b(2-a b) \xi^{2}>0
$$

by a contradiction argument. Indeed $\xi(t) \in \Gamma_{k}^{+}$and $k \geq 2$ imply $\sigma_{1}, \sigma_{2}>0$. If $B<0$, then

$$
\sigma_{1}>0 \Rightarrow \frac{1}{n} A+\frac{n-2}{2 n} B>0 \Rightarrow A>\left(1-\frac{n}{2}\right) B,
$$

and

$$
\sigma_{2}>0 \Rightarrow \frac{2}{n} A+\frac{n-4}{2 n} B>0 \Rightarrow A<\left(1-\frac{n}{4}\right) B .
$$

Combining these two inequalities, we have

$$
\left(1-\frac{n}{4}\right) B>A>\left(1-\frac{n}{2}\right) B \Leftrightarrow 1-\frac{n}{4}<1-\frac{n}{2} \Leftrightarrow \frac{1}{2}>1 .
$$

This is a contradiction.
Next we claim that if $B>0$ and $\sigma_{k}>0$, then it is also satisfies $\sigma_{l}>0$ for any $1 \leq l<k$. In fact, $\sigma_{k}>0$ and $B>0$ imply that

$$
\frac{k}{n} A+\frac{n-2 k}{2 n} B>0 .
$$

Then it follows, for $1 \leq l<k$, that

$$
\begin{aligned}
\sigma_{l} & =\binom{n}{l}\left(\frac{B}{2}\right)^{l-1}\left[\frac{l}{n}\left(A-\frac{B}{2}\right)+\frac{n-l}{2 n} B\right]=\frac{l}{k}\binom{n}{l}\left(\frac{B}{2}\right)^{l-1}\left[\frac{k}{n} A+\left(\frac{k}{l}-\frac{2 k}{n}\right) \frac{B}{2}\right] \\
& =\frac{l}{k}\binom{n}{l}\left[\frac{k}{n} A+\left(1-\frac{2 k}{n}\right) \frac{B}{2}+\left(\frac{k}{l}-1\right) \frac{B}{2}\right]>0 .
\end{aligned}
$$

We now get an upper bound on the function $\xi(t)$. It is easy to see that the trajectory $\left(\xi(t), \xi_{t}(t)\right)$ is contained within the homoclinic orbit of the Hamiltonian system

$$
\begin{equation*}
\left[-a \eta_{t}^{2}+b(2-a b) \eta^{2}\right]^{k-1}\left[-a \eta_{t t} \eta+b(2-a b) \eta^{2}\right]=c_{1} \eta^{(p+1) k} \tag{3.1.2}
\end{equation*}
$$

which tends to $(0,0)$ as t tends both to $+\infty$ and $-\infty$. Let $\left(\hat{\eta}(t), \hat{\eta}_{t}(t)\right)$ parameterize this orbit. Then we conclude that

$$
\sup \xi \leq \sup \hat{\eta} .
$$

The conservation of Hamiltonian energy for 3.1.2) now shows that

$$
\left[-a \hat{\eta}_{t}^{2}+b(2-a b) \hat{\eta}^{2}\right]^{k}=\frac{2 c_{1}}{p+1} \hat{\eta}^{(p+1) k}
$$

$\hat{\eta}$ attains its supremum then $\hat{\eta}_{t}=0$, so we get the upper bound

$$
\xi^{p-1}(t)<(\sup \hat{\eta})^{p-1}=b(2-a b)\left(\frac{p+1}{2 c_{1}}\right)^{1 / k}
$$

Let $y_{1}=\xi$ and $y_{2}=\xi_{t}$. Then 3.1.1) is equivalent to the dynamical system

$$
\left\{\begin{array}{l}
\frac{d y_{1}}{d t}=y_{2}, \tag{3.1.3}\\
\frac{d y_{2}}{d t}=-\frac{c_{1} y_{1}^{(p+1) k-1}}{a B^{k-1}}-\frac{2}{a}(a b-1) y_{2}+\frac{b}{a}(2-a b) y_{1} .
\end{array}\right.
$$

Now we find the equilibrium points of (3.1.3) by solving the system:

$$
\left\{\begin{array}{l}
y_{2}=0, \tag{3.1.4}\\
-\frac{c_{1} y_{1}^{(p+1) k-1}}{a B^{k-1}}+\frac{b}{a}(2-a b) y_{1}=0 .
\end{array}\right.
$$

Since $y_{2}=0$, the second equation has the solution $y_{1,1}=0$ for all values of the parameters and, in addition, the solution

$$
\begin{equation*}
y_{1,2}=\left(\frac{b(2-a b)}{c_{1}^{1 / k}}\right)^{\frac{1}{p-1}}>0 \tag{3.1.5}
\end{equation*}
$$

Thus the system (3.1.3) has one equilibrium point $Y_{1}=(0,0)$, and an additional one, $Y_{2}=\left(y_{1,2}, 0\right)$ with $y_{1,2}$ is given by (3.1.5).

To study the behavior of 3.1 .3 near $(0,0)$, we analyze its linear approximation:

$$
\left\{\begin{array}{l}
\frac{d y_{1}}{d t}=y_{2}, \\
\frac{d y_{2}}{d t}=\frac{b}{a}(2-a b) y_{1}-\frac{2}{a}(a b-1) y_{2} .
\end{array}\right.
$$

Thus, we have the characteristic equation

$$
\lambda^{2}+\frac{2}{a}(a b-1) \lambda-\frac{b}{a}(2-a b)=0,
$$

with the roots

$$
\lambda_{1}=\frac{1}{a}(2-a b)>0 \text { and } \lambda_{2}=-b=-\frac{2}{p-1}<0 .
$$

The corresponding eigenvectors $\vec{v}_{1(2)}$ are given by

$$
\vec{v}_{1(2)}=\binom{1}{\lambda_{1(2)}}
$$

such that $A_{(0,0)} \vec{v}_{1(2)}=\lambda_{1(2)} \vec{v}_{1(2)}$, where

$$
A_{(0,0)}=\left(\begin{array}{cc}
0 & 1 \\
\frac{b}{a}(2-a b)-\frac{2}{a}(a b-1)
\end{array}\right)
$$

Therefore we see that the point $(0,0)$ is a saddle point.
Now we study the second equilibrium point Y_{2} :

$$
Y_{2}=\left(y_{1,2}, 0\right) \text { with } y_{1,2}=\left(\frac{b(2-a b)}{c_{1}^{1 / k}}\right)^{\frac{1}{p-1}}>0
$$

Here we have the following linear approximation of (3.1.3) near the point Y_{2} :

$$
A_{Y_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{2 k}{a}(2-a b) & -\frac{2 k}{a}(a b-1)
\end{array}\right)
$$

with the characteristic equation

$$
r^{2}+\frac{2 k}{a}(a b-1) r+\frac{2 k}{a}(2-a b)=0
$$

We have the following eigenvalues

$$
r_{1}=\left(-\frac{2}{a}(a b-1) k+\sqrt{\left.\left(\frac{2}{a}(a b-1) k\right)^{2}-\frac{8 k}{a}(2-a b)\right)} / 2,\right.
$$

and

$$
r_{2}=\left(-\frac{2}{a}(a b-1) k-\sqrt{\left.\left(\frac{2}{a}(a b-1) k\right)^{2}-\frac{8 k}{a}(2-a b)\right)} / 2,\right.
$$

and the eigenvectors $\vec{z}_{1(2)}:=\left(1, r_{1(2)}\right)^{T}$ such that $A_{Y_{2}} \vec{z}_{1(2)}=r_{1(2)} \vec{z}_{1(2)}$. Thus, we have the following alternatives for the equilibrium point Y_{2} :
1.If $\left(\frac{2}{a}(a b-1) k\right)^{2}-\frac{8 k}{a}(2-a b) \geq 0$, then Y_{2} is a stable node.
2.If $\left(\frac{2}{a}(a b-1) k\right)^{2}-\frac{8 k}{a}(2-a b)<0$, then Y_{2} is a stable focus.

Now we study the critical points of the system (3.1.3). We determine asymptotic behavior of solutions to system (3.1.3) by comparing them with the corresponding solutions of the linearized system at the points Y_{1} and Y_{2}. there are solutions $Y(t)$ that tend to Y_{1} or Y_{2} as $t \rightarrow \infty$. Locally, the nonlinear system may be thought of as a perturbation of the linear one. The results from Hartman (Chapter X, Theorem 13.1, Corollary 16.3 in [43]) guarantee that the principal term of asymptotic behavior is the same for a solution tending to the origin for the system (3.1.3) and its linearization.

Next we will investigate the first integral of φ, where $\xi(t)=e^{-\frac{1}{a} \varphi(t)}$. From 3.1.1, we see that φ satisfies

$$
\begin{equation*}
B(\varphi)^{k-1}\left(a \varphi_{t t}+B(\varphi)\right)=c_{2} e^{-\frac{(p-1) k}{a} \varphi} \tag{3.1.6}
\end{equation*}
$$

where $c_{2}=\frac{n}{n-2 k}$ and

$$
B(\varphi)=-\varphi_{t}^{2}+2(a b-1) \varphi_{t}+a b(2-a b) .
$$

Proposition 3.1.1. If φ is a bounded solution to 3 3.1.6 in the Γ_{k}^{+}class, then

$$
B(\varphi)^{k}=\frac{2 c_{2}}{p+1} e^{-\frac{(p-1) k}{a} \varphi}+e^{\frac{2 k}{a} \varphi} h(t, \varphi)
$$

where $h(t, \varphi)>0$ for large t

Proof. Since

$$
\begin{aligned}
\left(e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k}\right)_{t} & =-\frac{2 k}{a} e^{-\frac{2 k}{a} \varphi} \varphi_{t} B(\varphi)^{k}+e^{-\frac{2 k}{a} \varphi} k B(\varphi)^{k-1}\left[-2 \varphi_{t} \varphi_{t t}+2(a b-1) \varphi_{t t}\right] \\
& =-\frac{2 k}{a} e^{-\frac{2 k}{a} \varphi} \varphi_{t} B(\varphi)^{k}-2 k e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k-1} \varphi_{t t}\left(\varphi_{t}-a b+1\right) \\
& =-\frac{2 k}{a} e^{-\frac{2 k}{a} \varphi}\left(\varphi_{t}-a b+1\right) B(\varphi)^{k-1}\left(a \varphi_{t t}+B(\varphi)\right)-\frac{2 k}{a}(a b-1) e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k} \\
& =-\frac{2 k c_{2}}{a} e^{-\frac{k(p+1) \varphi}{a}} \varphi_{t}+\frac{2 k c_{2}}{a}(a b-1) e^{-\frac{(p+1) k}{a} \varphi}-\frac{2 k}{a}(a b-1) e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k} \\
& =\frac{2 c_{2}}{p+1}\left(e^{-\frac{(p+1) k}{a} \varphi}\right)_{t}+\frac{2 k c_{2}}{a}(a b-1) e^{-\frac{(p+1) k}{a} \varphi}-\frac{2 k}{a}(a b-1) e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k},
\end{aligned}
$$

we have

$$
\begin{aligned}
\left(e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k}-\frac{2 c_{2}}{p+1} e^{-\frac{(p+1) k}{a} \varphi}\right)_{t}= & -\frac{2 k}{a}(a b-1)\left[e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k}-\frac{2 c_{2}}{p+1} e^{-\frac{(p+1) k}{a} \varphi}\right] \\
& +\frac{2 k c_{2}}{a}(a b-1)\left(1-\frac{2}{p+1}\right) e^{-\frac{(p+1) k}{a} \varphi} .
\end{aligned}
$$

Using variation of constant, we obtain

$$
\begin{aligned}
e^{-\frac{2 k}{a} \varphi} B(\varphi)^{k}-\frac{2 c_{2}}{p+1} e^{-\frac{(p+1) k}{a} \varphi}= & \frac{2 k c_{2}}{a}(a b-1)\left(1-\frac{2}{p+1}\right) e^{-\frac{2 k}{a}(a b-1) t} \int_{0}^{t} e^{-\frac{k(p+1)}{a} \varphi+\frac{2 k}{a}(a b-1) s} d s \\
& +C e^{-\frac{2 k}{a}(a b-1) t}=: h(t, \varphi) .
\end{aligned}
$$

where C is a constant.
It follows that

$$
B(\varphi)^{k}=\frac{2 c_{2}}{p+1} e^{-\frac{(p-1) k}{a} \varphi}+e^{\frac{2 k}{a} \varphi} h(t, \varphi) .
$$

Now we show that $h(t, \varphi)>0$ for large t. In fact, by the boundedness of φ, we have

$$
\begin{aligned}
e^{-\frac{2 k}{a}(a b-1) t} \int_{0}^{t} e^{-\frac{k(p+1)}{a} \varphi+\frac{2 k}{a}(a b-1) s} d s & \geq C_{1} e^{-\frac{2 k}{a}(a b-1) t} \int_{0}^{t} e^{\frac{2 k}{a}(a b-1) s} d s \\
& =\frac{a C_{1}}{2 k(a b-1)} e^{-\frac{2 k}{a}(a b-1) t}\left(e^{\frac{2 k}{a}(a b-1) t}-1\right) \\
& =\frac{a C_{1}}{2 k(a b-1)}\left(1-e^{-\frac{2 k}{a}(a b-1) t}\right) \\
& \geq \frac{a C_{1}}{4 k(a b-1)},
\end{aligned}
$$

for large t. Then it is easy to see that $h(t, \varphi)>0$ for large t. So this proposition is established.

3.2 Perturbed ODE satisfied by the radial average

As in the previous section, in terms of $t=-\ln r=-\ln |x|$,

$$
v(t, \theta)=r^{\frac{2}{p-1}} u(r, \theta)=e^{-\frac{1}{a} w(t, \theta)},
$$

the spherical average of $v(t, \theta)$

$$
\beta(t):=\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} v(t, \theta) d \theta,
$$

and the spherical average of $w(t, \theta)$

$$
\gamma(t):=\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} w(t, \theta) d \theta
$$

(2.1.3) is reformulated as

$$
\begin{equation*}
v(t, \theta) \leq C \text { and } e^{-\frac{1}{a} w(t, \theta)} \leq C \tag{3.2.1}
\end{equation*}
$$

We also derive from (2.1.4) that

$$
\begin{equation*}
|v(t, \theta)-\beta(t)| \leq C \beta(t) e^{-t}, \tag{3.2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
|w(t, \theta)-\gamma(\theta)| \leq C e^{-t} \tag{3.2.3}
\end{equation*}
$$

Equation (3.2.2) is simply a reformulation of (2.1.4) in terms of $v(t, \theta)$ and $\beta(t)$. In terms of $w(t, \theta)$, (3.2.2) is

$$
\left|e^{-\frac{1}{a} w(t, \theta)-\ln \beta(t)}-1\right| \leq C e^{-t}
$$

from which it follows that, for some $\hat{C}>0$,

$$
\begin{equation*}
|w(t, \theta)+a \ln \beta(t)| \leq \hat{C} e^{-t} . \tag{3.2.4}
\end{equation*}
$$

Integrating over \mathbb{S}^{n-1}, we obtain

$$
\begin{equation*}
|\gamma(t)+a \ln \beta(t)| \leq \hat{C} e^{-t} . \tag{3.2.5}
\end{equation*}
$$

Equations (3.2.4) and (3.2.5) imply 3.2.3).
We have the gradient estimates for positive singular solutions $u(x)$ in the Γ_{k}^{+}class to 1.4 .2 in $B_{2}(0) \backslash\{0\}$.

Proposition 3.2.1. Let $u(x)$ be a positive singular solution to $\sqrt{1.4 .2)}$ in $B_{2}(0) \backslash\{0\}$ in the Γ_{k}^{+}class, $v(t, \theta), \beta(t), w(t, \theta)$ and $\gamma(t)$ be defined above. Then for any $\delta>0$ small, there exists a constant $C>0$ depending on δ such that

$$
\begin{equation*}
\left|\nabla_{t, \theta}^{j}(v(t, \theta)-\beta(t))\right| \leq C \beta(t) e^{-(1-\delta) t} \tag{3.2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla_{t, \theta}^{j}(w(t, \theta)-\gamma(t))\right| \leq C e^{-(1-\delta) t} \tag{3.2.7}
\end{equation*}
$$

for all $t \geq 0$ and $j=1,2$.
Now we provide an argument for (3.2.7). First, (3.2.1) and the gradient estimates for solutions to 1.4.2], see [36], give a bound $\hat{B}>0$ depending on $j>0$ and C in 3.2.1], such that

$$
\begin{equation*}
\left|\nabla_{t, \theta}^{j} w(t, \theta)\right| \leq \hat{B} . \tag{3.2.8}
\end{equation*}
$$

This obviously leads to

$$
\begin{equation*}
\left|\nabla_{t, \theta}^{j} \gamma(t)\right| \leq \hat{B}, \tag{3.2.9}
\end{equation*}
$$

which, together with (3.2.8), implies that

$$
\left|\nabla_{t, \theta}^{j}(w(t, \theta)-\gamma(t))\right| \leq 2 \hat{B} .
$$

This estimate, together with (3.2.3) and interpolation, proves 3.2.7. Similarly, we have 3.2.6.
Let $v(t, \theta)$ be a positive solution to 1.4 .4 in $\left\{t>t_{0}\right\} \times \mathbb{S}^{n-1}$ in the Γ_{k}^{+}class, and $\beta(t)$ is defined
in the beginning of this section. We first make a proposition,
Proposition 3.2.2. If $2 k<n$, then $\beta(t)$ satisfies
$\left[-a \beta_{t}^{2}-2(a b-1) \beta_{t} \beta+b(2-a b) \beta^{2}\right]^{k-1}\left[-a \beta_{t t} \beta-2(a b-1) \beta_{t} \beta+b(2-a b) \beta^{2}\right]=c_{1} \beta^{(p+1) k}\left(1+\eta_{1}(t)\right)$,
where $\eta_{1}(t)$ has the decay rate $\eta_{1}(t)=O\left(e^{-t}\right)$ as $t \rightarrow \infty$.
Proof. Let $\sigma_{k}\left(A^{v}\right)$ be a functional of $v(t, \theta)$, then with

$$
\hat{v}(t, \theta)=v(t, \theta)-\beta(t),
$$

we have the following expansion

$$
\sigma_{k}\left(A^{v}\right)=\sigma_{k}\left(A^{\beta}\right)+L_{\beta(t)}[\hat{v}(t, \theta)]+\hat{\eta}_{1}(t, \theta),
$$

where $L_{\beta(t)}$ denotes the linearized operator for $\sigma_{k}\left(A^{v(t, \theta)}\right)$ at $\beta(t)$, and $\hat{\eta}_{1}(t, \theta)$ satisfies

$$
\left|\hat{\eta}_{1}(t, \theta)\right|=O\left(\beta^{2}(t) e^{-2(1-\delta) t}\right) \text { as } t \rightarrow \infty,
$$

by 3.2.6 and $\left|\nabla_{t}^{j} \beta(t)\right| \leq C$. Next,
$v(t, \theta)^{(p+1) k}=\beta(t)^{(p+1) k}\left(1+\frac{\hat{v}(t, \theta)}{\beta(t)}\right)^{(p+1) k}=\beta(t)^{(p+1) k}+(p+1) k \beta(t)^{(p+1) k-1} \hat{v}(t, \theta)+\beta(t)^{(p+1) k} \hat{\eta}_{2}(t, \theta)$,
where $\left|\hat{\eta}_{2}(t, \theta)\right|=O\left(\beta(t)^{2} e^{-2 t}\right)$ as $t \rightarrow \infty$ from 3.2.2. Integrating over $\theta \in \mathbb{S}^{n-1}$, we have

$$
\begin{gathered}
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \sigma_{k}\left(A^{\beta(t)}\right) d \theta=\left[-a \beta_{t}^{2}-2(a b-1) \beta_{t} \beta+b(2-a b) \beta^{2}\right]^{k-1}\left[-a \beta_{t t} \beta-2(a b-1) \beta_{t} \beta+b(2-a b) \beta^{2}\right] \\
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} L_{\beta(t)}[\hat{v}(t, \theta)] d \theta=0, \frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \beta(t)^{(p+1) k} d \theta=\beta(t)^{(p+1) k}, \\
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \hat{\eta}_{1}(t, \theta)=O\left(e^{-2(1-\delta) t}\right) \text { as } t \rightarrow \infty, \\
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \beta(t)^{(p+1) k-1} \hat{v}(t, \theta) d \theta=O\left(\beta^{(p+1) k} e^{-t}\right) \text { as } t \rightarrow \infty
\end{gathered}
$$

and

$$
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \beta(t)^{(p+1) k} \hat{\eta}_{2}(t, \theta)=O\left(\beta^{(p+1) k+2} e^{-2 t}\right) \text { as } t \rightarrow \infty
$$

Thus we obtain 3.2.10).
Next we make another proposition relating the asymptotic behavior of u with that of $\beta(t)$.
Lemma 3.2.3. If

$$
\begin{equation*}
\liminf _{x \rightarrow 0}|x|^{\frac{2}{p-1}} u(x)>0 \tag{3.2.11}
\end{equation*}
$$

Then for some $\varepsilon>0$,

$$
\begin{equation*}
B(\beta):=-a \beta_{t}^{2}-2(a b-1) \beta_{t} \beta+b(2-a b) \beta^{2} \geq \varepsilon \tag{3.2.12}
\end{equation*}
$$

for all sufficiently large t.
Proof. Inequality (3.2.12) is proved by noting that (3.2.11) and (3.2.1) imply that

$$
\begin{equation*}
\frac{1}{C} \leq \beta(t) \leq C \tag{3.2.13}
\end{equation*}
$$

for some C, which, together with (3.2.10), implies that, for large $t, B(\beta)$ never changes sign, which, in turn with 3.2.13,,$\nabla_{t, \theta}^{j} v(t, \theta) \mid \leq C$ and $\left|\nabla_{t, \theta}^{j} \beta(t)\right| \leq C$, implies that, for some $\varepsilon>0, B(\beta) \geq \varepsilon$ for all sufficiently large t.

Let $w(t, \theta)$ be a bounded solution to 1.4 .7$\}$ in $\left\{t>t_{0}\right\} \times \mathbb{S}^{n-1}$ in the Γ_{k}^{+}class, and $\gamma(t)$ is defined in the beginning of this section. We make the proposition

Proposition 3.2.4. If $2 k<n$, then $\gamma(t)$ satisfies
$\left.e^{\frac{(p-1) k}{a} \gamma_{\{ }}\left\{-\gamma_{t}^{2}+2(a b-1) \gamma_{t}+a b(2-a b)\right]^{k-1}\left[a \gamma_{t t}-\gamma_{t}^{2}+2(a b-1) \gamma_{t}+a b(2-a b)\right]+\eta_{2}\right\}=c_{2}\left(1+\eta_{3}(t)\right)$,
where $\eta_{2}(t)=O\left(e^{-2(1-\delta) t}\right), \eta_{3}=O\left(e^{-2 t}\right)$ as $t \rightarrow \infty$, for arbitrarily small $\delta>0$ as in 3.2.7), and $c_{2}=\frac{n}{n-2 k}$.

Proof. Let $\sigma_{k}\left(A^{w}\right)$ be a functional of $w(t, \theta)$, then with $\hat{w}(t, \theta):=w(t, \theta)-\gamma(t)$, we have the following expansion

$$
\sigma_{k}\left(A^{w}\right)=\sigma_{k}\left(A^{\gamma(t)}\right)+L_{\gamma(t)}[\hat{w}(t, \theta)]+\hat{\eta}_{1}(t, \theta),
$$

where $L_{\gamma(t)}$ denotes the linearized operator for $\sigma_{k}\left(A^{w}\right)$ at $\gamma(t)$, and $\hat{\eta}_{1}(t, \theta)$ satisfies $\left|\hat{\eta}_{1}(t, \theta)\right|=$ $O\left(e^{-2(1-\delta) t}\right)$ as $t \rightarrow \infty$ by 3.2.7) and 3.2.9. Next,

$$
e^{\frac{(p-1) k}{a} w(t, \theta)}=e^{\frac{(p-1) k}{a} \gamma(t)} \cdot e^{\frac{(p-1) k}{a} \hat{w}(t, \theta)},
$$

and

$$
e^{-\frac{(p-1) k}{a} \hat{w}(t, \theta)}=1-\frac{(p-1) k}{a} \hat{w}(t, \theta)+\hat{\eta}_{2}(t, \theta),
$$

where $\left|\hat{\eta}_{2}(t, \theta)\right|=O\left(e^{-2 t}\right)$ as $t \rightarrow \infty$ from 3.2.3. Integrating over $\theta \in \mathbb{S}^{n-1}$, we get

$$
\begin{gathered}
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \sigma_{k}\left(A^{\gamma(t)}\right) d \theta=\left[-\gamma_{t}^{2}+2(a b-1) \gamma_{t}+a b(2-a b)\right]^{k-1}\left[a \gamma_{t t}-\gamma_{t}^{2}+2(a b-1) \gamma_{t}+a b(2-a b)\right], \\
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \hat{w}(t, \theta) d \theta=0 \\
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} L_{\gamma(t)}[\hat{w}(t)] d \theta=0 \\
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \hat{\eta}_{1}(t, \theta) d \theta=O\left(e^{-2(1-\delta) t}\right) \text { as } t \rightarrow \infty,
\end{gathered}
$$

and

$$
\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} \hat{\eta}_{2}(t, \theta) d \theta=O\left(e^{-2 t}\right) \text { as } t \rightarrow \infty
$$

Finally, we obtain (3.2.14).

Lemma 3.2.5. If (3.2.11) holds, then for some $\varepsilon>0$,

$$
B(\gamma):=-\gamma_{t}^{2}+2(a b-1) \gamma_{t}+a b(2-a b) \geq \varepsilon,
$$

for all sufficiently large t.
Proof. If 3.2.11 holds, then from 3.2.1), we have

$$
\begin{equation*}
-C \leq \gamma(t) \leq C \tag{3.2.15}
\end{equation*}
$$

for some C. Together with (3.2.14), we see that, for large $t, B(\gamma)$ never changes sign. Furthermore, it follows from 3.2.9) and 3.2.15) that for some $\varepsilon>0, B(\gamma) \geq \varepsilon$ for all sufficiently large t.

3.3 Asymptotic to a radial solution

Based on Theorem 2.1.4, we give a proof of Theorem 1.4.2.
Proof of Theorem 1.4.2 Recall that $v(t, \theta)$ is a solution to

$$
\sigma_{k}\left(A^{v}\right)=c_{1} v^{(p+1) k} \text { in }\left\{t>t_{0}\right\} \times \mathbb{S}^{n-1} .
$$

From Theorem 2.1.4, we have 3.2.2, that is,

$$
|v(t, \theta)-\beta(t)| \leq C \beta(t) e^{-t} .
$$

We claim that for any solution $\xi(t)$ to $\sigma_{k}\left(A^{\xi}\right)=c_{1} \xi^{(p+1) k}$ in $\mathbb{R} \times \mathbb{S}^{n-1}$ with $C_{1} \leq \xi \leq C_{2}$,

$$
|\beta(t)-\xi(t)| \leq C e^{-\alpha t} .
$$

Combining above two inequalities, we obtain

$$
\begin{equation*}
|v(t, \theta)-\xi(t)| \leq C \max \left\{e^{-\alpha t}, e^{-t}\right\} . \tag{3.3.1}
\end{equation*}
$$

In particular, we have

$$
\left|v(t, \theta)-y_{1,2}\right| \leq C \max \left\{e^{-\alpha t}, e^{-t}\right\}
$$

where

$$
y_{1,2}=\left(\frac{b(2-a b)}{c_{1}^{1 / k}}\right)^{\frac{1}{p-1}}>0 .
$$

Recall that $\beta(t)$ is a solution to

$$
\begin{equation*}
\beta_{t t}+\frac{2}{a}(a b-1) \beta_{t}-\frac{b}{a}(2-a b) \beta=-\frac{c_{1} \beta^{(p+1) k-1}}{a B^{k-1}(\beta)}\left(1+\eta_{1}(t)\right) . \tag{3.3.2}
\end{equation*}
$$

Then in the case $k(a b-1)^{2} \neq 2 a(2-a b)$, we have

$$
\begin{equation*}
\left|\beta(t)-y_{1,2}\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t} \tag{3.3.3}
\end{equation*}
$$

in the case $k(a b-1)^{2}=2 a(2-a b)$, we have

$$
\begin{equation*}
\left|\beta(t)-y_{1,2}\right| \leq C t e^{-\alpha_{0} t}, \tag{3.3.4}
\end{equation*}
$$

where $\alpha_{1}=\frac{k}{a}(a b-1)-\sqrt{\frac{k^{2}}{a^{2}}(a b-1)^{2}-\frac{2 k}{a}(2-a b)}$ and $\alpha_{0}=\frac{k}{a}(a b-1)$.
For the sake of clarity, we divide the proof into three steps.
Step 1 , we will show that $\hat{\beta}(t):=\beta(t)-y_{1,2} \rightarrow 0$ and $\hat{\beta}_{t}(t) \rightarrow 0$ as $t \rightarrow \infty$. In fact, inspired by the work of Caffarelli, Gidas and Spruck [17], we multiply (3.3.2) by β_{t} and integrate by parts, then we have

$$
\left.\frac{1}{2} \beta_{t}^{2}\right|_{s} ^{t}+\frac{2}{a}(a b-1) \int_{s}^{t} \beta_{t}^{2}-\left.\frac{b(2-a b)}{2 a} \beta^{2}\right|_{s} ^{t}=O\left(\left.\beta^{(p-1) k+2}\right|_{s} ^{t}\right)+O\left(e^{-s}\right) .
$$

It follows that $\int_{s}^{\infty} \beta_{t}^{2}<C$ and therefore $\beta_{t} \rightarrow 0$ as $t \rightarrow \infty$. Multiplying 3.3.2 by $\beta_{t t}$ and integrating by parts, we also find $\int_{s}^{\infty} \beta_{t t}^{2}<C$ and so $\beta_{t t} \rightarrow 0$ as $t \rightarrow \infty$. Passing to the limit as $t \rightarrow \infty$ in 3.3.2, we conclude that

$$
\lim _{t \rightarrow \infty} \beta(t)=\left(\frac{b(2-a b)}{c_{1}^{1 / k}}\right)^{\frac{1}{p-1}}=y_{1,2} .
$$

Step 2, we claim that $|\hat{\beta}(t)|=\left|\beta(t)-y_{1,2}\right| \leq C e^{-R e\left(\alpha_{1}\right) t+\varepsilon t}$ for any $\varepsilon>0$ and $t \geq t_{0}$ for sufficiently large t_{0}. From 3.3.2, we see that $\hat{\beta}(t)$ satisfies

$$
\hat{\beta}_{t t}+\frac{2 k}{a}(a b-1) \hat{\beta}_{t}+\frac{2 k}{a}(2-a b) \hat{\beta}=\hat{\eta}\left(t, \hat{\beta}, \hat{\beta}_{t}\right),
$$

where $\hat{\beta} \rightarrow 0, \hat{\beta}_{t} \rightarrow 0$ and $\left|\hat{\eta}\left(t, \hat{\beta}, \hat{\beta}_{t}\right)\right|=o\left(\sqrt{|\hat{\beta}|^{2}+\left|\hat{\beta}_{t}\right|^{2}}\right)$ as $t \rightarrow \infty$. It follows that

$$
Y(t)=e^{t A} Y\left(t_{0}\right)+\int_{t_{0}}^{t} e^{(t-s) A} f(s, Y(s)) d s
$$

where

$$
\begin{gathered}
Y(t)=\left(\hat{\beta}(t), \hat{\beta}_{t}(t)\right)^{T}, \quad f(s, Y(s))=\left(0, \hat{\eta}\left(s, \hat{\beta}, \hat{\beta_{s}}\right)\right)^{T} \\
A=\left(\begin{array}{cc}
0 & 1 \\
-\frac{2 k}{a}(2-a b)-\frac{2 k}{a}(a b-1)
\end{array}\right),
\end{gathered}
$$

Because the real parts of the characteristic roots of A are negative, there exist positive constants C and $\operatorname{Re}\left(\alpha_{1}\right)>0$ such that

$$
\left|e^{t A}\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t}, \quad \text { for } t \geq 0
$$

Then we have

$$
|Y(t)| \leq C\left|Y\left(t_{0}\right)\right| e^{-R e\left(\alpha_{1}\right) t}+C \int_{t_{0}}^{t} e^{-(t-s) R e\left(\alpha_{1}\right)}|f(s, Y(s))| d s .
$$

For $\varepsilon<\operatorname{Re}\left(\alpha_{1}\right)$, there exists $t_{0}>0$ such that $|f(t, Y(t))| \leq \frac{\varepsilon|Y(t)|}{C}$ for any $t \geq t_{0}$. Then it follows

$$
e^{R e\left(\alpha_{1}\right) t}|Y(t)| \leq C\left|Y\left(t_{0}\right)\right|+\varepsilon \int_{t_{0}}^{t} e^{\operatorname{Re}\left(\alpha_{1}\right) s}|Y(s)| d s
$$

The Gronwall inequality yields

$$
e^{R e\left(\alpha_{1}\right) t}|Y(t)| \leq C\left|Y\left(t_{0}\right)\right| e^{\varepsilon t}
$$

that is,

$$
|Y(t)| \leq C\left|Y\left(t_{0}\right)\right| e^{-R e\left(\alpha_{1}\right) t+\varepsilon t}
$$

Now we have $|\hat{\beta}(t)|+\left|\hat{\beta}_{t}(t)\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t+\varepsilon t}$ for sufficiently large t.

Step 3, we will prove that in the case $k(a b-1)^{2} \neq 2 a(2-a b)$,

$$
\left|\beta(t)-y_{1,2}\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t}
$$

in the case $k(a b-1)^{2}=2 a(2-a b)$,

$$
\left|\beta(t)-y_{1,2}\right| \leq C t e^{-\alpha_{0} t}
$$

Now $\hat{\beta}$ satisfies this equation

$$
\hat{\beta}_{t t}+\frac{2 k}{a}(a b-1) \hat{\beta}_{t}+\frac{2 k}{a}(2-a b) \hat{\beta}=\hat{\eta}\left(t, \hat{\beta}, \hat{\beta}_{t}\right)
$$

where $|\hat{\beta}(t)| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t+\varepsilon t},\left|\hat{\beta}_{t}(t)\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t+\varepsilon t}$ and $\left|\hat{\eta}\left(t, \hat{\beta}, \hat{\beta}_{t}\right)\right|=O\left(|\hat{\beta}|^{2}+\left|\hat{\beta}_{t}\right|^{2}\right) \leq C e^{-2 \operatorname{Re}\left(\alpha_{1}\right) t+2 \varepsilon t}$. For any small $\varepsilon_{1}>0$, we can choose $\varepsilon>0$ small enough such that $|\hat{\eta}| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t-\varepsilon_{1} t}$.

When $k(a b-1)^{2} \neq 2 a(2-a b)$, by the variation of constant formula, we see that

$$
\hat{\beta}(t)=c_{1} e^{-\alpha_{1} t}+c_{2} e^{-\alpha_{2} t}+e^{-\alpha_{2} t} \int_{t_{0}}^{t} \frac{e^{-\alpha_{1} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s+e^{-\alpha_{1} t} \int_{t}^{\infty} \frac{e^{-\alpha_{2} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s
$$

where $\alpha_{2}=\frac{k}{a}(a b-1)+\sqrt{\frac{k^{2}}{a^{2}}(a b-1)^{2}-\frac{2 k}{a}(2-a b)}, c_{1}$ and c_{2} are constants. Note that $\operatorname{Re}\left(\alpha_{2}\right) \geq$ $\operatorname{Re}\left(\alpha_{1}\right)$. From the decay rate of $\hat{\eta}$, we have

$$
\left|e^{-\alpha_{2} t} \int_{t_{0}}^{t} \frac{e^{-\alpha_{1} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t}
$$

and

$$
\left|e^{-\alpha_{1} t} \int_{t}^{\infty} \frac{e^{-\alpha_{2} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s\right| \leq C e^{-R e\left(\alpha_{1}\right) t}
$$

Combining the above inequalities, we obtain

$$
|\hat{\beta}(t)| \leq C e^{-R e\left(\alpha_{1}\right) t}
$$

When $k(a b-1)^{2}=2 a(2-a b)$, by the variation of constant formula, we have that

$$
\hat{\beta}(t)=c_{1} t e^{-\alpha_{0} t}+c_{2} e^{-\alpha_{0} t}+e^{-\alpha_{0} t} \int_{t_{0}}^{t} \frac{s e^{-\alpha_{0} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s+t e^{-\alpha_{0} t} \int_{t}^{\infty} \frac{e^{-\alpha_{0} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s
$$

From the decay of $\hat{\eta}$, we see that

$$
\left|e^{-\alpha_{0} t} \int_{t_{0}}^{t} \frac{s e^{-\alpha_{0} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s\right| \leq C t e^{-\alpha_{0} t}
$$

and

$$
\left|t e^{-\alpha_{0} t} \int_{t}^{\infty} \frac{e^{-\alpha_{0} s} \hat{\eta}}{e^{-\frac{2 k}{a}(a b-1) s}} d s\right| \leq C t e^{-\alpha_{0} t}
$$

By the above inequalities, we obtain

$$
|\hat{\beta}(t)| \leq C t e^{-\alpha_{0} t}
$$

Similarly, ξ is any solution to

$$
\xi_{t t}+\frac{2}{a}(a b-1) \xi_{t}-\frac{b}{a}(2-a b) \xi=-\frac{c_{1} \xi^{(p+1) k-1}}{a B^{k-1}(\xi)}
$$

with $C_{1} \leq \xi \leq C_{2}$. Then in the case $k(a b-1)^{2} \neq 2 a(2-a b)$, we have

$$
\begin{equation*}
\left|\xi(t)-y_{1,2}\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t} \tag{3.3.5}
\end{equation*}
$$

in the case $k(a b-1)^{2}=2 a(2-a b)$, we have

$$
\begin{equation*}
\left|\xi(t)-y_{1,2}\right| \leq C t e^{-\alpha_{0} t} \tag{3.3.6}
\end{equation*}
$$

When $k(a b-1)^{2} \neq 2 a(2-a b)$, from 3.3 .3 and 3.3 .5 , we obtain

$$
|\beta(t)-\xi(t)|=\left|\left(\beta(t)-y_{1,2}\right)-\left(\xi(t)-y_{1,2}\right)\right| \leq\left|\beta(t)-y_{1,2}\right|+\left|\xi(t)-y_{1,2}\right| \leq C e^{-\operatorname{Re}\left(\alpha_{1}\right) t}
$$

When $k(a b-1)^{2}=2 a(2-a b)$, by 3.3.4 and 3.3.6, we see

$$
|\beta(t)-\xi(t)|=\left|\left(\beta(t)-y_{1,2}\right)-\left(\xi(t)-y_{1,2}\right)\right| \leq\left|\beta(t)-y_{1,2}\right|+\left|\xi(t)-y_{1,2}\right| \leq C t e^{-\alpha_{0} t}
$$

Now we proved the claim.

Chapter 4

Higher order asymptotic behaviors of the singular solutions

In this chapter, we will obtain the higher order asymptotic behaviors of the singular solutions to 1.4 .2 by an analysis of the linearized operator. Let $u(x)$ be a solution to $\sigma_{k}\left(B^{u}\right)=c u^{\left(p-\frac{n+2 k}{n-2 k}\right) k}$, $\frac{n}{n-2 k}<p<\frac{n+2 k}{n-2 k}$, for x over the punctured ball $B_{2}(0) \backslash\{0\}$, where c is normalized to be $\binom{n}{k} / 2^{k}$. It is assumed that B^{u} is in the Γ_{k}^{+}class over $B_{2}(0) \backslash\{0\}$.

For the sake of simplicity, we set $w(t, \theta)=-a \ln \left(|x|^{\frac{2}{p-1}} u(x)\right)$, where $t=-\ln |x|, \theta=\frac{x}{|x|}$ and $a=\frac{2 k}{n-2 k}>0$. Since $u(x)$ is a solution to 1.4.2, we have that $w(t, \theta)$ is a solution to

$$
\begin{equation*}
\sigma_{k}\left(B^{w}\right)=c e^{-\frac{(p-1) k}{a} w} \text { in }\{t>-\ln 2\} \times \mathbb{S}^{n-1} \tag{4.0.1}
\end{equation*}
$$

Here

$$
B^{w}=\left(\begin{array}{cc}
B_{11}^{w} & B_{1 j}^{w} \\
B_{i 1}^{w} & B_{i j}^{w}
\end{array}\right)
$$

is a block matrix, where

$$
\begin{gathered}
B_{11}^{w}=w_{t t}+\frac{1}{2}\left(w_{t}^{2}-2(a b-1) w_{t}-a b(2-a b)\right)-\frac{1}{2} w_{\theta}^{2} \\
B_{1 j}^{w}=w_{t \theta_{j}}+w_{t} w_{\theta_{j}}-(a b-1) w_{\theta_{j}} \\
B_{i 1}^{w}=w_{\theta_{i} t}+w_{t} w_{\theta_{i}}-(a b-1) w_{\theta_{i}}
\end{gathered}
$$

and

$$
B_{i j}^{w}=w_{\theta_{i} \theta_{j}}+w_{\theta_{i}} w_{\theta_{j}}+\frac{1}{2}\left(-w_{t}^{2}+2(a b-1) w_{t}+a b(2-a b)-w_{\theta}^{2}\right) \delta_{i j}
$$

with $a=\frac{2 k}{n-2 k}$ and $b=\frac{2}{p-1}$.
It follows from Theorem 2.1.3 that 3.2.1 holds, i.e., for some constant $C_{2}>0$,

$$
w(t, \theta) \leq C_{2}
$$

for all $(t, \theta) \in \mathbb{R}^{+} \times \mathbb{S}^{n-1}$. It follows from our discussion in the beginning of the previous section that u with isolated singularities implies, for some constant $C_{1}>0$,

$$
w(t, \theta) \geq-C_{1}
$$

for $(t, \theta) \in \mathbb{R}^{+} \times \mathbb{S}^{n-1}$, namely, $w(t, \theta)$ is bounded over $(t, \theta) \in \mathbb{R}^{+} \times \mathbb{S}^{n-1}$.
We make the following assertions about the behavior of $w(t, \theta)$ as $t \rightarrow \infty$.

- Let $t_{j} \rightarrow \infty$ be any sequence tending to ∞, then $\left\{w_{j}(t, \theta):=w\left(t+t_{j}, \theta\right)\right\}$ has a subsequence converging to any bounded limiting solution $\varphi(t)$ of 4.0 .1 defined for $(t, \theta) \in \mathbb{R} \times \mathbb{S}^{n-1}$. The convergence is uniform on any compact subset of $\mathbb{R}^{+} \times \mathbb{S}^{n-1}$.
- Any angular derivative of $w, \partial_{\theta} w(t, \theta)$ converges to 0 as $t \rightarrow \infty$.
- $\partial_{\theta} w(t, \theta)$ converges to 0 at an exponential rate as $t \rightarrow \infty$, and

$$
\left|w(t, \theta)-\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} w(t, \omega) d \omega\right|
$$

converges to 0 at an exponential rate as $t \rightarrow \infty$.

- For any bounded solution $\varphi(t)$ of (4.0.1) such that $w(t, \theta)$ converges to $\varphi(t)$ at an exponential rate as $t \rightarrow \infty$.

By the result of last section we know that $-C_{1} \leq w(t, \theta) \leq C_{2}$ for all $t \geq 0$. By local estimates for 4.0.1] [36], we also get the uniform boundedness of any derivative $\left|\nabla_{t, \theta}^{j} w(t, \theta)\right| \leq C$ for all $t \geq 0$. Let $\left\{\tau_{j}\right\}$ be any sequence of numbers converging to ∞, and define $w_{j}(t, \theta)=w\left(t+\tau_{j}, \theta\right)$. Then $w_{j}(t, \theta)$ defined on $\left[-\tau_{j}, \infty\right) \times \mathbb{S}^{n-1}$ and satisfies 4.0.1] there. Using the uniform bounds on any derivative of w_{j}, we may choose a subsequence of the v_{j} converging in the C^{2} topology on any compact subset of $\mathbb{R} \times \mathbb{S}^{n-1}$. The limit function, w_{∞}, still satisfies 4.0.1, does not go to ∞ because of the lower bound for w and is defined on the whole cylinder. By Theorem 2.1.2, we deduce that $v_{\infty}(t, \theta)=v_{\infty}(t)$.

4.1 Linearization of the subcritical σ_{k} Yamabe equation

To compute the linearized operator of (4.0.1) at a bounded radial solution $\varphi(t)$, we use

$$
B^{w}=\left(\begin{array}{cc}
B_{11}^{w} & B_{1 j}^{w} \\
B_{i 1}^{w} & B_{i j}^{w}
\end{array}\right)
$$

When $w(t, \theta)=\varphi(t), B^{w}$ becomes a block diagonal matrix

$$
\left(\begin{array}{cc}
A-\frac{B}{2} & 0 \\
0 & \frac{B}{2} \delta_{i j}
\end{array}\right)
$$

where

$$
A:=\varphi_{t t}
$$

and

$$
B:=-\varphi_{t}^{2}+2(a b-1) \varphi_{t}+a b(2-a b) .
$$

When we linearized $\sigma_{k}\left(B^{w}\right)$ at such a block diagonal matrix, the coefficient matrix consisting of the coefficients of the Newton tensor

$$
T_{i j}=\frac{1}{(k-1)!} \delta_{j_{1} \ldots j_{k-1} j}^{i_{1}, i_{k-1} i} A_{i_{1} j_{1}} \cdots A_{i_{k-1} j_{k-1}}
$$

is also diagonal

$$
T_{11}=\binom{n-1}{k-1} \frac{B^{k-1}}{2^{k-1}}
$$

while for $i \geq 2$,

$$
\begin{aligned}
T_{i i} & =\binom{n-1}{k-1} \frac{n-k}{n-1} \frac{B^{k-1}}{2^{k-1}}+\frac{n-2}{k-2} \frac{B^{k-2}}{2^{k-2}}\left(A-\frac{B}{2}\right) \\
& =\binom{n-1}{k-1} \frac{B^{k-2}}{2^{k-2}}\left(\frac{n-k}{n-1} \frac{B}{2}\right)+\binom{n-1}{k-1} \frac{k-1}{n-1} \frac{B^{k-2}}{2^{k-2}}\left(A-\frac{B}{2}\right) \\
& =\binom{n-1}{k-1} \frac{B^{k-2}}{2^{k-2}}\left[\frac{k-1}{n-1} A+\frac{n-2 k+1}{n-1} \frac{B}{2}\right] .
\end{aligned}
$$

So the linearization of $\sigma_{k}\left(B^{w}\right)$ at $\varphi(t)$ is

$$
\begin{aligned}
L_{\varphi}[f]= & T_{11}\left[f_{t t}+\varphi_{t} f_{t}-(a b-1) f_{t}\right]+\sum_{i=2}^{n}\left[f_{\theta_{i} \theta_{i}}-\varphi_{t} f_{t}+(a b-1) f_{t}\right] \\
= & T_{11} f_{t t}+\left[T_{11}-(n-1) T_{22}\right]\left(\varphi_{t}-(a b-1)\right) f_{t}+T_{22} \Delta_{\theta} f \\
= & \binom{n-1}{k-1} \frac{B^{k-1}}{2^{k-1}} f_{t t}+\binom{n-1}{k-1} \frac{B^{k-2}}{2^{k-2}}\left[\frac{k-1}{n-1} A+\frac{n-2 k+1}{n-1} \frac{B}{2}\right] \Delta_{\theta} f \\
& \left.+\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right) \frac{B^{k-1}}{2^{k-1}}-\binom{n-1}{k-1} \frac{B^{k-2}}{2^{k-2}}\left[(k-1) A+(n-2 k+1) \frac{B}{2}\right]\right\}\left(\varphi_{t}-(a b-1)\right) f_{t} \\
= & \binom{n-1}{k-1} \frac{B^{k-2}}{2^{k-2}}\left[\frac{B}{2} f_{t t}+\left(\frac{k-1}{n-1} A+\frac{n-2 k+1}{n-1} \frac{B}{2}\right) \Delta_{\theta} f\right. \\
& \left.-\left((k-1) A+(n-2 k) \frac{B}{2}\right)\left(\varphi_{t}-(a b-1)\right) f_{t}\right] \\
= & \binom{n-1}{k-1} \frac{B^{k-2}}{2^{k-2}}\left[D(t) f_{t t}+E(t) f_{t}+F(t) \Delta_{\theta} f\right],
\end{aligned}
$$

where

$$
\begin{gathered}
D(t):=\frac{B}{2}, \\
E(t):=-\left(\varphi_{t}-(a b-1)\right)\left((k-1) A+(n-2 k) \frac{B}{2}\right),
\end{gathered}
$$

and

$$
F(t):=\frac{k-1}{n-1} A+\frac{n-2 k+1}{n-1} \frac{B}{2} .
$$

Since $\varphi(t)$ is a solution to

$$
\sigma_{k}\left(B^{\varphi}\right)=c e^{-\frac{(p-1)}{a} \varphi},
$$

where c is normalized to be $\binom{n}{k} / 2^{k}$, the linearization of the nonlinear partial differential equation $\sigma_{k}\left(B^{w}\right)=c e^{-\frac{(p-1) k}{a} w}$ at $\varphi(t)$ is then

$$
L_{\varphi} f+\frac{c(p-1) k}{a} e^{-\frac{(p-1) k}{a} \varphi} f=0 .
$$

If we take the projections of $f(t, \cdot)$ into spherical harmonics:

$$
f(t, \theta)=\sum_{j} f_{j}(t) Y_{j}(\theta),
$$

where $Y_{j}(\theta)$ are the normalized eigenfunctions of Δ_{θ} on $L^{2}\left(\mathbb{S}^{n-1}\right)$, then f_{j} satisfies ordinary differential equation

$$
\begin{equation*}
L_{j}\left[f_{j}\right]:=f_{j}^{\prime \prime}(t)+\frac{E(t)}{D(t)} f_{j}^{\prime}(t)+\left\{-\lambda_{j} \frac{F(t)}{D(t)}+\frac{n(p-1) e^{-\frac{(p-1) k}{a} \varphi}}{2 a B^{k-1}}\right\} f_{j}(t)=0, \tag{4.1.1}
\end{equation*}
$$

where λ_{j} are the eigenvalues of $-\Delta_{\theta}$ on $L^{2}\left(\mathbb{S}^{n-1}\right)$ associated with $Y_{j}(\theta)$, thus

$$
\lambda_{0}=0, \quad \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=n-1, \quad \lambda_{j} \geq 2 n, \quad \forall j>n .
$$

Note that $Y_{0}(\theta)=$ constant .

4.2 Comparison theorems

Similar to properties of the linearized operator to the scalar curvature operator used in [44], and the σ_{k} curvature operator used in [42], we have the following properties for the L_{j} 's.

Proposition 4.2.1. For all solutions $\varphi(t)$ to (4.0.1) with $h>0, k<\frac{n}{2}$ and $j \geq 1$, the following holds:
(a) $L_{j}[f]=0$ has a pair of linearly independent solution basis in \mathbb{R}, one of which grows unbounded and the other one decays exponentially as $t \rightarrow \infty$;
(b) Any solution of $L_{j}[f]=0$ which is bounded for \mathbb{R}^{+}must decay exponentially;
(c) Any solution of $L_{j}[f]=0$ which is bounded for all of \mathbb{R} must be identically 0 ;
(d) Any non-zero solution of $L_{j}[f]=0$ which is bounded for all of \mathbb{R}^{+}must be unbounded in \mathbb{R}^{-}.

Following the proof of Proposition 2 in [42], for $1 \leq j \leq n,(a)-(d)$ of this proposition follow from an explicit solution basis to (4.1.1); for $j \geq n+1$, the argument relies on the sign of the coefficient of the term of zero order to be negative.

Since $\varphi(t)$ satisfies 4.0.1, with $\sigma_{k}\left(B^{\varphi}\right)=\binom{n}{k} e^{-\frac{(p-1) k}{a} \varphi} / 2^{k}, 4.0 .1$ becomes

$$
\begin{equation*}
B^{k-1}\left(a \varphi_{t t}+B\right)=c_{2} e^{-\frac{(p-1) k}{a} \varphi} \tag{4.2.1}
\end{equation*}
$$

where $c_{2}=\frac{n}{n-2 k}, a=\frac{2 k}{n-2 k}$ and $B=-\varphi_{t}^{2}+2(a b-1) \varphi_{t}+a b(2-a b)$. Let f_{0} is a solution to 4.1.1) for $\lambda_{0}=0$, namely,

$$
f_{0}^{\prime \prime}(t)+\frac{E(t)}{D(t)} f_{0}^{\prime}(t)+\frac{n(p-1) e^{-\frac{(p-1) k}{a} \varphi}}{2 a B^{k-1}} f_{0}(t)=0 .
$$

It follows from Theorem 1.4.2 that

$$
\left|\varphi_{t}\right| \leq C e^{-\alpha t},
$$

and

$$
\left|\varphi+\frac{a}{(p-1) k} \ln \left[\frac{n-2 k}{n}(a b(2-a b))^{k}\right]\right| \leq C e^{-\alpha t} .
$$

Then using the same ODE technique in Theorem 1.4.2, we are able to get

$$
\left|f_{0}(t)\right| \leq C e^{-\operatorname{Re}\left(a_{01}\right) t},
$$

where

$$
a_{01}=\frac{(a b-1)(n-2 k)-\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2},
$$

or

$$
\left|f_{0}(t)\right| \leq C t e^{-\frac{(a b-1)(n-2 k)}{2} t} .
$$

When $\varphi \equiv-\frac{a}{(p-1) k} \ln \left[\frac{n-2 k}{n}(a b(2-a b))^{k}\right], 4$ 4.1.1 for $\lambda_{0}=0$ is a constant coefficients ODE, then we see that

$$
f_{0}(t)=c_{01} e^{-a_{01} t}+c_{02} e^{-a_{02} t}
$$

where

$$
a_{02}=\frac{(a b-1)(n-2 k)+\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2},
$$

and c_{01}, c_{02} are arbitrary constants.

Proof of Proposition 4.2.1 For $\lim _{t \rightarrow \infty} h(t, \varphi)>0$ and $\lambda_{j}=n-1$, which corresponds to $Y_{j}(\theta)=\theta_{j}$, we claim that

$$
f_{1}^{+}:=\left(a b-\varphi_{t}\right) e^{t}
$$

is a solution to 4.1.1) for $\lambda_{j}=n-1$. This is due the translation invariance of 1.4.2): if $u(x)$ is a solution to (1.4.2], so is $u(x+\hat{a})$ for any $\hat{a} \in \mathbb{R}^{n}$. In terms of $w(t, \theta)$, this means that

$$
w_{\hat{a}}(t, \theta):=-a b \ln |x|-a \ln u(x+\hat{a})
$$

is a solution to 4.0.1). Thus $\partial_{\hat{a}_{j}}{ }_{\hat{a}}=0 w_{\hat{a}}(t, \theta)$ is a solution to the linearized equation of 4.0.1). But when $w(t, \theta)=\varphi(t)$, we have Since

$$
\begin{aligned}
\partial_{\hat{a}_{j}} \mid \hat{a}=0 w_{\hat{a}}(t, \theta) & =-a \partial_{x_{j}} \ln u(x)=\partial_{x_{j}}(a b \ln |x|+w(t, \theta)) \\
& =\frac{a b}{|x|} \theta_{j}+\varphi_{t}\left(-\frac{1}{|x|}\right) \theta_{j}=\left(a b-\varphi_{t}\right) e^{t} \theta_{j} .
\end{aligned}
$$

Therefore $\left(a b-\varphi_{t}\right) e^{t}$ is a solution to 4.1.1 with $\lambda_{j}=n-1$. Another solution to 4.1.1 with
$\lambda_{j}=n-1$ is

$$
f_{1}^{-}=\left(a b-\varphi_{t}\right) e^{t} \int_{t}^{\infty} \frac{1}{\left(a b-\varphi_{t}\right)^{2} e^{2 t}} \exp \left(-\int_{0}^{t} \frac{E(s)}{D(s)} d s\right) d t
$$

When $\lim _{t \rightarrow \infty} h(t, \varphi)>0$, and $2 k<n$, the solution $\varphi(t)$ has the bound

$$
\frac{1}{C} \leq a b-\varphi_{t} \leq C
$$

for some $C>0$. So $\left\{\left(a b-\varphi_{t}\right) e^{t},\left(a b-\varphi_{t}\right) \int_{t}^{\infty} \frac{1}{\left(a b-\varphi_{t}\right)^{2} e^{2 t}} \exp \left(-\int_{0}^{t} \frac{E(s)}{D(s)} d s\right) d t\right\}$ forms a solution basis for (4.1.1) with $\lambda_{j}=n-1$, with one exponentially decaying and the other one exponentially growing, and the conclusion of the proposition in the case $\lambda_{j}=n-1$ follows from the explicit basis.
For $\lambda_{j} \geq 2 n$, we will verify that
the coefficient of f_{j} in 4.1.1) has a negative upper bound.
Assuming (4.2.2), we sketch the proof for properties $(a)-(d)$ of L_{j} for the case $\lambda_{j} \geq 2 n$. The key is to check that for $\lambda>0$ small, $e^{ \pm \lambda t}$ are supersolutions of $L_{j}[f]=0$. This is because

$$
\begin{aligned}
L_{j}\left[e^{ \pm \lambda}\right] & =e^{ \pm \lambda}\left(\lambda^{2} \pm \lambda \frac{E(t)}{D(t)}-\lambda_{j} \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}\right) \\
& =e^{ \pm \lambda}\left(\lambda^{2} \pm \lambda\left[1-(n-1) \frac{F(t)}{D(t)}\right]\left(\varphi_{t}-(a b-1)\right)-\lambda_{j} \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}\right),
\end{aligned}
$$

and it follows from (4.2.2) that for $\lambda_{j} \geq 2 n$,

$$
-\lambda_{j} \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}
$$

has a negative upper bound. Furthermore, from (4.2.1), we get

$$
\begin{aligned}
F(t) & =\frac{k-1}{n-1} A+\frac{n-2 k+1}{n-1} \frac{B}{2} \\
& =\frac{k-1}{n-1} \frac{1}{a}\left(\frac{n}{n-2 k} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k-1}}-B\right)+\frac{n-2 k+1}{k-1} \frac{B}{2} \\
& =\frac{k-1}{n-1} \frac{n-2 k}{2 k} \frac{n}{n-2 k} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k-1}}-\frac{k-1}{n-1} \frac{n-2 k}{2 k} B+\frac{n-2 k+1}{2(n-1)} B \\
& =\frac{n(k-1)}{2 k(n-1)} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k-1}}+\frac{n-k}{2 k(n-1)} B .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\frac{F(t)}{D(t)} & =\frac{n(k-1)}{k(n-1)} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k}}+\frac{n-k}{k(n-1)} \\
& =\frac{n(k-1)}{k(n-1)} \frac{2 n}{\frac{2 n}{(p+1)(n-2 k)} e^{-\frac{(p-1) k}{a} \varphi}+e^{\frac{2 k}{a} \varphi} h(t, \varphi)}+\frac{n-k}{k(n-1)} \\
& =\frac{n(k-1)}{k(n-1)} \frac{(p+1)(n-2 k)}{2 n} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{e^{-\frac{(p-1) k}{a} \varphi}+\hat{h}(t, \varphi)}+\frac{n-k}{k(n-1)},
\end{aligned}
$$

where $\hat{h}(t, \varphi)=\frac{(p+1)(n-2 k)}{2 n} e^{\frac{2 k}{a} \varphi} h(t, \varphi)$. Here we used the fact that

$$
B^{k}=\frac{2 n}{(p+1)(n-2 k)} e^{-\frac{(p-1) k}{a} \varphi}+e^{\frac{2 k}{a} \varphi} h(t, \varphi), \quad \lim _{t \rightarrow \infty} h(t, \varphi)>0 .
$$

By 3.2.1), we see that

$$
\frac{n-k}{k(n-1)} \leq \frac{F(t)}{D(t)} \leq \frac{(p+1)(k-1)(n-2 k)}{2 k(n-1)}+\frac{n-k}{k(n-1)} .
$$

It is clear that we can choose $\lambda>0$ small to make

$$
L_{j}\left[e^{ \pm \lambda t}\right]<0
$$

for all $t \in \mathbb{R}$.
Now fix such a $\lambda>0$. We claim that if $f(t)$ is a bounded solution to $L_{j}[f]=0$ in $\mathbb{R}^{ \pm}$, then

$$
|f(t)| \leq|f(0)| e^{\mp \lambda t}
$$

for all $t \in \mathbb{R}^{ \pm}$, which then implies (b). This is because for any $\epsilon>0,|f(0)| e^{\mp \lambda t}+\epsilon e^{ \pm \lambda t}$ is a supersolution to L_{j} in $\mathbb{R}^{ \pm}$. Therefore if $f(t)$ is a bounded solution to $L_{j}[f]=0$ in $\mathbb{R}^{ \pm}$, then by the maximum principle, we have

$$
|f(t)| \leq|f(0)| e^{\mp \lambda t}+\epsilon e^{ \pm \lambda t}
$$

for all $t \in \mathbb{R}^{ \pm}$. For any fixed $t \in \mathbb{R}^{ \pm}$, since the above estimate holds for all $\epsilon>0$, we can send ϵ to 0 to verify our claim. (c) follows from (b) and the maximum principle, and (d) obviously is a direct corollary of (c).

Next, any L_{j} has a pair of linearly independent basis $\left\{f_{1}, f_{2}\right\}$ in \mathbb{R}. If both are bounded in \mathbb{R}^{+}, and \hat{c}_{1} and \hat{c}_{2} are such that

$$
\hat{c}_{1} f_{1}(0)+\hat{c}_{2} f_{2}(0)=0,
$$

then our claim implies that

$$
\hat{c}_{1} f_{1}(t)+\hat{c}_{2} f_{2}(t) \equiv 0 \text { in } \mathbb{R}^{+},
$$

contradicting their choice.
It remains to establish that there is a nontrivial solution to $L_{j}[f]=0$ bounded in \mathbb{R}^{+}. Since we have verified that L_{j} is uniformly elliptic in \mathbb{R}^{+}and satisfies the maximum principle, we can
establish the desired existence by a convergence argument for solutions which are constructed on a sequence of finite intervals that exhaust \mathbb{R}^{+}.

Finally we will verify 4.2 .2 . Since $1 \geq B>0$, we see that, when $\lambda_{j} \geq 2 n$, the coefficient of $f_{j}(t)$ in (4.1.1) is bounded from above by

$$
\begin{aligned}
& -\lambda_{j} \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi} \\
= & -\lambda_{j}\left[\frac{n(k-1)}{k(n-1)} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k}}+\frac{n-k}{k(n-1)}\right]+\frac{n(p-1)}{2 a B^{k}} e^{-\frac{(p-1) k}{a} \varphi} B \\
\leq & -\frac{2 n e^{-\frac{(p-1) k}{a} \varphi}}{(n-1) B^{k}}\left(\frac{n(k-1)}{k}-\frac{(p-1)(n-1)}{4 a} B\right)-\frac{2 n(n-k)}{k(n-1)} \\
< & -\frac{2 n e^{-\frac{(p-1) k}{a} \varphi}}{(n-1) B^{k}}\left(n-\frac{n}{k}-\frac{4 k}{n-2 k} \frac{n-2 k}{2 k} \frac{n-1}{4}\right)-\frac{2 n(n-k)}{k(n-1)} \\
= & -\frac{2 n e^{-\frac{(p-1) k}{a} \varphi}}{(n-1) B^{k}}\left(n-\frac{n}{k}-\frac{n}{2}+\frac{1}{2}\right)-\frac{2 n(n-k)}{k(n-1)} \\
< & -\frac{2 n(n-k)}{k(n-1)}<0,
\end{aligned}
$$

when $n>k \geq 2$. When $k=1$, the above estimate gives

$$
\begin{aligned}
& -\lambda_{j} \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi} \\
\leq & -\frac{2 n e^{-\frac{(p-1) k}{a} \varphi}}{(n-1) B^{k}}\left(\frac{n(k-1)}{k}-\frac{(p-1)(n-1)}{4 a} B\right)-\frac{2 n(n-k)}{k(n-1)} \\
= & n\left(e^{-\frac{(p-1) k}{a} \varphi}-2\right) \\
\leq & -n,
\end{aligned}
$$

as $\varphi(t) \geq 0$, which follows from

$$
\frac{2 c_{2}}{p+1} e^{-\frac{(p-1) k}{a} \varphi}+e^{\frac{2 k}{a} \varphi} h(t, \varphi)=B \leq 1
$$

with $\lim _{t \rightarrow \infty} h(t, \varphi)>0$.
This proposition can be considered as comparison theorem for $L_{j}[f]=0$. However Theorem 1.4.5 requires some more detailed knowledge about the linearized operator to $\sigma_{k}\left(B^{w}\right)=c e^{-\frac{p-1}{a} k w}$. To be more precise, the decay rates of bounded solutions to $L_{j}[f]=0$ on \mathbb{R}^{+}need to be faster that e^{-t} when $\lambda_{j} \geq 2 n$. In the case $2 k<n$ and $h>0, L_{j}$ is an ordinary differential operator without period coefficients, so we can not apply the Floquet theory. Now we can formulate and prove a version that does not need L_{j} to have the structure to apply the Floquet theory.

Lemma 4.2.2. When $2 k<n$ and $h>0$, for any $\beta \leq \beta_{*}$ with $\beta_{*} \geq(\sqrt{13}-1) / 2$, and for all $\lambda_{j} \geq 2 n$, any bounded solution f of $L_{j}[f]=0$ in \mathbb{R}^{+}satisfies $|f(t)| \leq C e^{-\beta t}$.

Remark 4.2.1. In the case $2 k<n$ and $h>0$, above lemma allows a direct construction of a bounded
(in fact, decaying) fundamental solution to $L_{j}[f]=0$ in \mathbb{R}^{+}which is positive. Therefore in such cases comparison theorems show that the characteristic roots ρ_{j} of L_{j} are monotone increasing as λ_{j} increases.

Proof. When $\lambda_{j} \geq 2 n, \lambda \leq 2$, we can find $\lambda \geq \frac{\sqrt{13}-1}{2}$. In fact, we have

$$
\begin{aligned}
L_{j}\left[e^{-\lambda t}\right] & =e^{-\lambda t}\left(\lambda^{2}-\lambda\left[1-(n-1) \frac{F(t)}{D(t)}\right]\left(\varphi_{t}-(a b-1)\right)-\lambda j \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a B^{k}} e^{-\frac{(p-1) k}{a} \varphi} B\right) \\
& \leq e^{-\lambda t}\left(\lambda^{2}-\lambda+\lambda(n-1) \frac{F(t)}{D(t)}-2 n \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k}}\right) \\
& \leq e^{-\lambda t}\left(\lambda^{2}-\lambda+(n(\lambda-2)-\lambda) \frac{F(t)}{D(t)}+\frac{n(p-1)}{2 a} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k}}\right) \\
& \leq e^{-\lambda t}\left(\lambda^{2}-\lambda-[(2-\lambda) n+\lambda] \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k}}++\frac{n(p-a)}{2 a} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{B^{k}}\right. \\
& \left.-[(2-\lambda) n+\lambda] \frac{n-k}{k(n-1)}\right) .
\end{aligned}
$$

Here we use the fact that

$$
1-(n-1) \frac{F(t)}{D(t)} \leq 1-\frac{n-k}{k}=\frac{2 k-n}{k}<0 .
$$

Since

$$
B^{k}=\frac{2 n}{(p+1)(n-2 k)} e^{-\frac{(p-1) k}{a} \varphi}+\hat{h}(t, \varphi), \quad h(t, \varphi)>0,
$$

we get

$$
\begin{aligned}
L_{j}\left[e^{-\lambda t}\right] \leq & e^{-\lambda t}\left(\lambda^{2}-\lambda+\left[\frac{n(p-1)}{2 a}-[(2-\lambda) n+\lambda] \frac{n(k-1)}{k(n-1)}\right] \frac{e^{-\frac{(p-1) k}{a} \varphi}}{\frac{2 n}{(p+1)(n-2 k)} e^{-\frac{(p-1) k}{a} \varphi}+\hat{h}(t, \varphi)}\right. \\
& \left.-[(2-\lambda) n+\lambda] \frac{n-k}{k(n-1)}\right) \\
& <e^{-\lambda t}\left(\lambda^{2}-\lambda+\frac{(P+1)(n-2 k)}{2}\left[\frac{p-1}{2 a}-[(2-\lambda) n+\lambda] \frac{k-1}{k(n-1)}\right]\right. \\
& \left.-[(2-\lambda) n+\lambda] \frac{n-k}{k(n-1)}\right) \\
\leq & e^{-\lambda t}\left(\lambda(\lambda-1)+\frac{(p+1)(n-2 k)}{2}\left[1-[(2-\lambda) n+\lambda] \frac{k-1}{k(n-1)}\right]\right. \\
& \left.-[(2-\lambda) n+\lambda] \frac{n-k}{k(n-1)}\right)
\end{aligned}
$$

Let $\lambda=1+\varepsilon$. Then we have $2-\lambda=1-\varepsilon, \lambda-1=\varepsilon$ and

$$
\begin{aligned}
L_{j}\left[e^{-\lambda t}\right]< & e^{-\lambda t}\left((1+\varepsilon) \varepsilon+\frac{(p+1)(n-2 k)}{2}\left(1-[(n+1)-(n-1) \varepsilon] \frac{k-1}{k(n-1)}\right)\right. \\
& \left.-[(n+1)-(n-1) \varepsilon] \frac{n-k}{k(n-1)}\right)
\end{aligned}
$$

Next we obtain

$$
\begin{aligned}
L_{j}\left[e^{-\lambda t}\right]< & e^{-\lambda t}\left((1+\varepsilon) \varepsilon+n\left[1-\frac{(n+1)(k-1)}{k(n-1)}+(n-1) \varepsilon \frac{k-1}{k(n-1)}\right]\right. \\
& \left.-\frac{(n+1)(n-k)}{k(n-1)}+\varepsilon(n-1) \frac{n-k}{k(n-1)}\right) \\
= & e^{-\lambda t}\left((1+\varepsilon) \varepsilon+\frac{n k(n-1)-n(n+1)(k-1)-(n+1)(n-k)}{k(n-1)}\right) \\
& \left.+\varepsilon n\left(1-\frac{1}{k}\right)+\varepsilon\left(\frac{n}{k}-1\right)\right) \\
= & e^{-\lambda t}\left(\varepsilon^{2}+n \varepsilon-1\right) .
\end{aligned}
$$

Now we can choose $\varepsilon=\frac{\sqrt{n^{2}+4}-n}{2}$, that is,

$$
\lambda=\frac{\sqrt{n^{2}+4}-n+2}{2} \geq \frac{\sqrt{13}-1}{2}
$$

such that $L_{j}\left[e^{-\lambda t}\right] \leq 0$. Then by the maximum principle, we have

$$
|f(t)| \leq C e^{-\beta t} .
$$

Note that the coefficient of f_{j}^{\prime} in $L_{j}\left[f_{j}\right]$ is

$$
\frac{E(t)}{D(t)}=\frac{-\left(\varphi_{t}-(a b-1)\right)\left(2(k-1) \varphi_{t t}+(n-2 k)\left(-\varphi_{t}^{2}+2(a b-1) \varphi_{t}+a b(2-a b)\right)\right)}{-\varphi_{t}^{2}+2(a b-1) \varphi_{t}+a b(2-a b)}
$$

which may alter its sign as $t \rightarrow \infty$. Therefore it is hard to be controlled in computation. In [42], they introduced a function $V(t)$ to remove this term involving f_{j}^{\prime}. But in our case, it is not easy to recover the results by their method.

4.3 Existence of a parametrix

In this section, we will give some existence results for the linearized equation in weighted Sobolev spaces, which inspired by [44, 63, 64]

Let $M:=\mathbb{R} \times \mathbb{S}^{n-1}$ and $M^{+}:=[0,+\infty) \times \mathbb{S}^{n-1}$. For $\delta \in \mathbb{R}$, we define the weighted L^{2} space

$$
L_{\delta}^{2}(M):=e^{\delta t} L^{2}(M)
$$

endowed with the norm

$$
\|u\|_{L_{\delta}^{2}(M)}:=\left\|e^{-\delta t} u\right\|_{L^{2}(M)} .
$$

More generally, for $k \in \mathbb{N}$, we define the weighted Sobolev space

$$
\|u\|_{W_{\delta}^{k, 2}(M)}:=e^{\delta t} W^{k, 2}(M)
$$

endowed with the norm $\|u\|_{W_{\delta}^{k, 2}(M)}:=\left\|e^{-\delta t} u\right\|_{W^{k, 2}(M)}$. It is easy to check that $\left(W_{\delta}^{k, 2}(M),\|\cdot\|_{W_{\delta}^{k, 2}(M)}\right)$ is a Banach space. We also define the weighted Hölder space $C_{\delta}^{k, \alpha}(M)$ as

$$
\left\{u:\|u\|_{C_{\delta}^{k, \alpha}(M)}:=\left\|e^{-\delta t} u\right\|_{C^{k, \alpha}(M)}<\infty\right\}
$$

For the more information on the weighted Sobolev spaces and Hölder spaces, see the references ([11], [18]).

We next define

$$
L u:=\left(\partial_{t t}+\bar{d} \partial_{t}+\bar{e} \Delta_{\theta}+\bar{g}\right) u
$$

where $\bar{d}, \bar{e}>0$ and \bar{g} are constants. We also use Ind to denote the set of the indicial roots of the operator L.
$u \in W_{\delta}^{1,2}(M)$ is said to be a solution to $L u=f$ for $f \in L_{\delta}^{2}(M)$, if u satisfies

$$
\int_{M}\left(-\partial_{t} u \partial_{t} v-\bar{e} \partial_{\theta} u \partial_{\theta} v+\bar{d} \partial_{t} u v+\bar{g} u v\right) d t d \omega=\int_{M} f v d t d \omega
$$

for all $v \in C_{c}^{\infty}(M)$.

Lemma 4.3.1. Assume that $f \in L_{\delta}^{2}(M)$, where $\delta \in \mathbb{R}$ and $\delta \notin$ Ind. If $u \in W_{\delta}^{1,2}(M)$ is a solution to $L u=f$ in M. Then we have

$$
\|u\|_{W_{\delta}^{2,2}(M)} \leq C\|f\|_{L_{\delta}^{2}(M)}
$$

Proof. Let $U=e^{-\delta t} u$ and $F=e^{-\delta t} f$. It follows that U and F satisfy the following equation

$$
e^{-\delta t} L\left(e^{\delta t} U\right)=F
$$

that is,

$$
\partial_{t t} U+\bar{e} \Delta_{\theta} U+(2 \delta+\bar{d}) \partial_{t} U+\left(\delta^{2}+\delta \bar{d}+\bar{g}\right) U=F \text { in } M
$$

For $t_{0} \in \mathbb{Z}$, applying the interior estimates with $\Omega^{\prime}=\left[t_{0}-1, t_{0}+1\right] \times \mathbb{S}^{n-1}$ and $\Omega=\left[t_{0}-2, t_{0}+2\right] \times \mathbb{S}^{n-1}$, we have

$$
\|U\|_{W^{2,2}\left(\Omega^{\prime}\right)} \leq C\left(\|U\|_{L^{2}(\Omega)}+\|F\|_{L^{2}(\Omega)}\right)
$$

Then we sum the above inequality over t_{0}, and obtain

$$
\begin{equation*}
\|U\|_{W^{2,2}(M)} \leq C\left(\|U\|_{L^{2}(M)}+\|F\|_{L^{2}(M)}\right) \tag{4.3.1}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\|U\|_{L^{2}(M)} \leq C\|F\|_{L^{2}(M)} \tag{4.3.2}
\end{equation*}
$$

In fact, we employ the Fourier transform of U and F in t, that is,

$$
\hat{U}(\xi, \theta)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} U(t, \theta) e^{-i \xi t} d t \text { and } \hat{F}(\xi, \theta)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} F(t, \theta) e^{-i \xi t} d t
$$

Using the eigenfunction decomposition of the function F as $F=\sum_{j \in \mathbb{N}} F_{j}$, where, for all $t \in[0, \infty)$,
$F_{j}(t, \cdot) \in E_{j}$ the j-th eigenspace of $-\Delta_{\mathbb{S}^{n-1}}$ associated to the eigenvalue λ_{j}, we see that

$$
\begin{equation*}
\hat{U}=\sum_{j \in \mathbb{N}} \frac{1}{\left(\delta+\frac{\bar{d}}{2}+i \xi\right)^{2}-\frac{\bar{d}^{2}}{4}+\bar{g}-\bar{e} \lambda_{j}} \hat{F}_{j} . \tag{4.3.3}
\end{equation*}
$$

By Plancheral formula, we obtain

$$
\|U\|_{L^{2}(M)}^{2}=\|\hat{U}\|_{L^{2}(M)}^{2} \leq C\|\hat{F}\|_{L^{2}(M)}^{2}=\|F\|_{L^{2}(M)}^{2},
$$

where C depends on δ.
Combining (4.3.1) and 4.3.2), we have

$$
\|U\|_{W^{2,2}(M)} \leq C\|F\|_{L^{2}(M)} .
$$

This completes the proof of this lemma.

Remark 4.3.1. In [11], Bartnik obtained the similar L^{p} estimates for Δ operator in Euclidean spaces, where $1<p<\infty$. The proof relies on a sharp estimate for the flat Laplacian based on an explicit expression for the integral kernel of Δ^{-1} on weighted Sobolev spaces.

Corollary 4.3.2. Assume that $f \in L_{\delta}^{2}\left(M^{+}\right)$, where $\delta \in \mathbb{R}$ and $\delta \notin$ Ind. If $u \in W_{\delta}^{1,2}\left(M^{+}\right)$is a solution to $L u=f$ in M^{+}with $u=0$ on $\{0\} \times \mathbb{S}^{n-1}$. Then we have

$$
\|u\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

Proof. It can be proved by a standard method. For the reader's convenience, we include the proof. We now extend u and f to $t<0$ by odd extension, i.e.,

$$
\tilde{u}(t, \theta)= \begin{cases}u(t, \theta), & t \geq 0, \\ -u(-t, \theta), & t<0,\end{cases}
$$

and

$$
\tilde{f}(t, \theta)= \begin{cases}f(t, \theta), & t \geq 0, \\ -f(-t, \theta), & t<0\end{cases}
$$

It is not difficult to verify that $\tilde{u} \in W_{\delta}^{2,2}\left(M^{+}\right), \tilde{f} \in L_{\delta}^{2}\left(M^{+}\right)$. And \tilde{u} and \tilde{f} satisfy the following equation

$$
L \tilde{u}=\tilde{f} \text { in } M
$$

almost everywhere. Then by the above lemma, we see that

$$
\|\tilde{u}\|_{W_{\delta}^{2,2}(M)} \leq C\|\tilde{f}\|_{L_{\delta}^{2}(M)} \leq 2 C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

It follows that

$$
\|u\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

Proposition 4.3.3. Assume that $f \in L_{\delta}^{2}\left(M^{+}\right)$, where $\delta \in \mathbb{R}$ and $\delta \notin$ Ind. Then there exists a solution $u \in W_{\delta}^{1,2}\left(M^{+}\right)$to $L u=f$ in M^{+}with $u=0$ on $\{0\} \times \mathbb{S}^{n-1}$. Moreover, we have

$$
\|u\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

Proof. We employ the eigenfunction decomposition of the function f as $f(t, \theta)=\sum_{j \in \mathbb{N}} f_{j}(t, \theta)$, where, for all $t \in[0,+\infty), f_{j}(t, \cdot) \in E_{j}$ the j-th eigenspace of $-\Delta_{\mathbb{S}^{n-1}}$ associated to the eigenvalue λ_{j}. Denote $j_{0} \in \mathbb{N}$ be the least index such that

$$
\left(\delta+\frac{\bar{d}}{2}\right)^{2}-\frac{\bar{d}^{2}}{4}+\bar{g}<\bar{e} \lambda_{j_{0}}
$$

Let $\tilde{f}=\sum_{j \geq j_{0}} f$. It is easy to see that $\tilde{f} \in L_{\delta}^{2}\left(M^{+}\right)$. For any $t_{0}>0$, there exists a unique solution $u_{t_{0}}$ to

$$
\left\{\begin{array}{l}
L u_{t_{0}}=\tilde{f}, \text { in }\left(0, t_{0}\right) \times \mathbb{S}^{n-1} \\
u_{t_{0}}=0, \quad \text { on }\{0\} \times \mathbb{S}^{n-1} \text { and }\left\{t_{0}\right\} \times \mathbb{S}^{n-1}
\end{array}\right.
$$

In fact, the existence of $u_{t_{0}}$ is from the Fredholm alternative theorem, since $L u_{t_{0}}$ satisfies the maximum principle when $j \geq j_{0}$, that is, 0 is the unique solution to $L u_{t_{0}}=0$ with vanishing boundary condition.

Now we claim that

$$
\left\|u_{t_{0}}\right\|_{W_{\delta}^{2,2}\left(\left(0, t_{0}\right) \times \mathbb{S}^{n-1}\right)} \leq C\|\tilde{f}\|_{L_{\delta}^{2}\left(\left(0, t_{0}\right) \times \mathbb{S}^{n-1}\right)}
$$

where C does not dependent on t_{0}. In particular, we have

$$
\begin{equation*}
\left\|u_{t_{0}}\right\|_{W_{\delta}^{1,2}\left(\left(0, t_{0}\right) \times \mathbb{S}^{n-1}\right)} \leq C\|\tilde{f}\|_{L_{\delta}^{2}\left(\left(0, t_{0}\right) \times \mathbb{S}^{n-1}\right)} \tag{4.3.4}
\end{equation*}
$$

In fact, using the similar argument in Lemma 4.3.1, we are able to get the estimates.
By the interior estimates, we obtain

$$
\left\|u_{m}\right\|_{W_{\delta}^{2,2}\left((0,1) \times \mathbb{S}^{n-1}\right)} \leq C\|\tilde{f}\|_{L_{\delta}^{2}\left((0, m) \times \mathbb{S}^{n-1}\right)} \leq C, \quad \forall m>1
$$

where C does not depend on m. Therefore there is a subsequence $\left\{u_{m}^{(1)}\right\}$, such that

$$
u_{m}^{(1)} \rightarrow u^{(1)} \quad \text { in } \quad W_{\delta}^{1,2}\left((0,1) \times \mathbb{S}^{n-1}\right), \quad \text { as } m \rightarrow \infty
$$

Similarly there is a subsequence $\left\{u_{m}^{(k)}\right\}$, such that

$$
u_{m}^{(k)} \rightarrow u^{(k)} \quad \text { in } \quad W_{\delta}^{1,2}\left((0, k) \times \mathbb{S}^{n-1}\right), \quad \text { as } m \rightarrow \infty
$$

and $u^{(k)}=u^{(j)}$ in $(0, j) \times \mathbb{S}^{n-1}, j=1,2, \cdots, k-1$.
Define $\tilde{u}(t, \theta)=u^{(k)}(t, \theta)$, if $(t, \theta) \in(0, k) \times \mathbb{S}^{n-1}$, then $\tilde{u}(t, \theta)$ is defined on $(0, \infty) \times \mathbb{S}^{n-1}$. Consider sequence $\left\{u_{m}^{(m)}\right\}$ in diagram, for any $(0, k) \times \mathbb{S}^{n-1}$,

$$
u_{m}^{(m)} \rightarrow \tilde{u} \quad \text { in } \quad W_{\delta}^{1,2}\left((0, k) \times \mathbb{S}^{n-1}\right), \quad \text { as } m \rightarrow \infty \quad\left(\left\{u_{m}^{(m)}\right\} \subset\left\{u_{m}^{(k)}\right\}, \text { if } m>k\right)
$$

Since

$$
L u_{m}^{(m)}=\tilde{f} \quad \text { in }(0, k) \times \mathbb{S}^{n-1}, \quad \forall m>k,
$$

we then find $\tilde{u} \in W_{\delta, l o c}^{1,2}\left(M^{+}\right)$is the solution to

$$
L \tilde{u}=\tilde{f} .
$$

Let $m \rightarrow \infty$ in (4.3.4), we see that

$$
\|\tilde{u}\|_{W_{\delta}^{1,2}\left(M^{+}\right)} \leq C\|\tilde{f}\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

It follows that

$$
\begin{equation*}
\|\tilde{u}\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\|\tilde{f}\|_{L_{\delta}^{2}\left(M^{+}\right)} . \tag{4.3.5}
\end{equation*}
$$

When $j \leq j_{0}-1$, by the variation of constant formula, we see that

$$
u_{j}(t, \theta)=u_{j}^{-}(t) \int_{m^{+}}^{t} \frac{u_{j}^{+}(s) f_{j}(t, \theta)}{W_{0}(s)} d s-u_{j}^{+}(t) \int_{m^{-}}^{t} \frac{u_{j}^{-}(s) f_{j}(s, \theta)}{W_{0}(s)} d s,
$$

where the Wronskian of $\left\{u_{j}^{+}(s):=\exp \left(\frac{-\bar{d}+\sqrt{\sqrt{d^{2}}-4\left(\bar{g}-\bar{e} \lambda_{j}\right)}}{2} s\right), u_{j}^{-}(s)=\exp \left(\frac{-\bar{d}-\sqrt{\bar{d}^{2}-4\left(\bar{g}-\bar{e} \lambda_{j}\right)}}{2} s\right)\right\}$, $W_{0}(s)=e^{-\bar{d} s}$, and $m^{+}=0$ or $\infty, m^{-}=0$ or ∞. It is not difficult to see that

$$
\left\|e^{-\delta t} u_{j}\right\|_{L^{2}\left(M^{+}\right)} \leq C\left\|e^{-\delta t} f_{j}\right\|_{L^{2}\left(M^{+}\right)},
$$

where C depends on δ and j. Then we see that

$$
\begin{equation*}
\left\|u_{j}\right\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\left\|f_{j}\right\|_{L_{\delta}^{2}\left(M^{+}\right)} . \tag{4.3.6}
\end{equation*}
$$

Therefore

$$
u=\sum_{j=0}^{j_{0}-1} u_{j}+\tilde{u}
$$

is the solution to $L u=f$ in M^{+}with $u=0$ on $\{0\} \times \mathbb{S}^{n-1}$ and $\lim _{t \rightarrow \infty} e^{-\delta t} u=0$. Moreover, combining (4.3.5) and 4.3.6), we have

$$
\|u\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

Inspired by the work of R. Lockhart and R. McOwen [60], we will get
Proposition 4.3.4. Assume that $f \in L_{\delta}^{2}\left(M^{+}\right)$, where $\delta \in \mathbb{R}$ and $\delta \notin$ Ind. Then there exists a solution $u \in W_{\delta}^{1,2}\left(M^{+}\right)$to $L_{\varphi} u=f$ in M^{+}with $u=0$ on $\{0\} \times \mathbb{S}^{n-1}$. Moreover, we have

$$
\|u\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

Proof. From the above proposition, we have that, for given $f \in L_{\delta}^{2}\left(M^{+}\right)$, there exists a solution
$u^{*} \in W_{\delta}^{2,2}\left(M^{+}\right)$such that

$$
L u^{*}=f \text { in } M^{+} .
$$

Then by Theorem 1.4.2, we conclude that

$$
\left\|L u^{*}-L_{\varphi} u^{*}\right\|_{L_{\delta}^{2}\left(M^{+}\right)} \leq C e^{-\alpha t}\left\|u^{*}\right\|_{W_{\delta}^{2,2}\left(M^{+}\right)} .
$$

It follows that

$$
\left\|f-L_{\varphi} L^{-1} f\right\|_{L_{\delta}^{2}\left(M^{+}\right)} \leq C e^{-\alpha t}\|f\|_{L_{\delta}^{2}\left(M^{+}\right)}
$$

where C does not depend on t. Let t large enough such that $C e^{-\alpha t}<1$. Then we see that

$$
\left\|I-L_{\varphi} L^{-1}\right\|<1 .
$$

By Neumann series, we get $L_{\varphi} L^{-1}$ is invertible and bounded. It follows that the inverse of L_{φ} is $L_{\varphi}^{-1}=L\left(L_{\varphi} L^{-1}\right)^{-1}$. Then we obtain

$$
\|u\|_{L_{\delta}^{2}\left(M^{+}\right)} \leq C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

Finally, by the estimates in [88], we have

$$
\|u\|_{W_{\delta}^{2,2}\left(M^{+}\right)} \leq C\|f\|_{L_{\delta}^{2}\left(M^{+}\right)} .
$$

4.4 Expansion in terms of Wronskian

With the knowledge in the previous sections, following the same line of the proof of Proposition 3 in [42], we can establish

Proposition 4.4.1. Suppose that $f(t, \theta) \rightarrow 0$ as $t \rightarrow \infty$, uniformly in $\theta \in \mathbb{S}^{n-1}$, and satisfies

$$
\begin{equation*}
L_{\varphi}(f)+\frac{(p-1) k}{2^{k} a}\binom{n}{k} e^{-\frac{(p-1) k}{a} \varphi} f=r(t, \theta) \tag{4.4.1}
\end{equation*}
$$

for all $t>t_{0}$ and $\theta \in \mathbb{S}^{n-1}$. Suppose that for some $0<\beta<\min \left\{\beta_{*},(a b-1)(n-2 k)+1\right\}$ and $0<\varepsilon_{0} \ll \beta,|r(t, \theta)| \leq C e^{-\beta t}$. When $\varphi_{t} \equiv 0, \beta \neq \operatorname{Re}\left(a_{01}\right)$ and $\operatorname{Re}\left(a_{02}\right)$, there exist constants c_{01} and c_{02}, such that

$$
\begin{equation*}
\left|f(t, \theta)-\left(c_{01} e^{-a_{01} t}+c_{02} e^{-a_{02} t}\right) Y_{0}(\theta)\right| \leq C e^{-\beta t} \tag{4.4.2}
\end{equation*}
$$

where

$$
a_{01}=\frac{(a b-1)(n-2 k)-\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2},
$$

and

$$
a_{02}=\frac{(a b-1)(n-2 k)+\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2} .
$$

In fact, if $\min \left\{\beta_{*},(a b-1)(n-2 k)\right\} \leq \beta<(a b-1)(n-2 k)+1$, then it continues to hold, and when
$\beta \geq(a b-1)(n-2 k)+1$, we have

$$
\begin{equation*}
\left|f(t, \theta)-\left(c_{01} e^{-a_{01} t}+c_{02} e^{-a_{02} t}\right) Y_{0}(\theta)\right| \leq C e^{-((a b-1)(n-2 k)+1) t} . \tag{4.4.3}
\end{equation*}
$$

When $\beta=\operatorname{Re}\left(a_{01}\right)$ or $\beta=\operatorname{Re}\left(a_{02}\right)$, we get

$$
\begin{equation*}
\left|f(t, \theta)-\left(c_{01} e^{-a_{01} t}+c_{02} e^{-a_{02} t}\right) Y_{0}(\theta)\right| \leq C t e^{-\beta t} . \tag{4.4.4}
\end{equation*}
$$

When $\varphi \neq 0, \operatorname{Re}\left(a_{02}\right) \leq 2 \operatorname{Re}\left(a_{01}\right)-\varepsilon_{0}$ and $0<\beta<\min \left\{\beta_{*},(a b-1)(n-2 k)+1+\varepsilon_{0}\right\}$, there exists a function $c_{0}(t)$ such that

$$
\begin{equation*}
\left|f(t, \theta)-c_{0}(t) Y_{0}(\theta)\right| \leq C e^{-\beta t+2 \varepsilon_{0} t} \tag{4.4.5}
\end{equation*}
$$

Indeed, if $\left.\min \left\{\beta_{*}, a b-1\right)(n-2 k)+1+\varepsilon_{0}\right\} \leq \beta<(a b-1)(n-2 k)+1+\varepsilon_{0}$, then it continues to hold, and when $\beta \geq(a b-1)(n-2 k)+1+\varepsilon_{0}$, we have

$$
\begin{equation*}
\left|f(t, \theta)-c_{0}(t) Y_{0}(\theta)\right| \leq C e^{-((a b-1)(n-2 k)+1)+2 \varepsilon_{0} t} . \tag{4.4.6}
\end{equation*}
$$

Proof. Define

$$
\hat{f}(t, \theta)=f(t, \theta)-\sum_{j=0}^{n} \pi_{j}[f(t, \theta)] Y_{j}(\theta),
$$

where $f_{j}(t):=\pi_{j}[f(t, \theta)]$ is the L^{2} orthogonal projection of $f(t, \theta)$ onto span $\left\{Y_{j}(\theta)\right\}$. Then

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \hat{f}(t, \theta) Y_{j}(\theta) d \theta=\int_{\mathbb{S}^{n-1}} \nabla \hat{f}(t, \theta) \cdot \nabla Y_{j}(\theta) d \theta=\int_{\mathbb{S}^{n-1}} \Delta_{\theta} Y_{j}(\theta) \hat{f}(t, \theta) d \theta=0 . \tag{4.4.7}
\end{equation*}
$$

for $j=0, \ldots, n$. As a consequence

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Delta_{\theta} f(t, \theta) \hat{f}(t, \theta) d \theta=-\int_{\mathbb{S}^{n-1}}\left|\nabla_{\theta} \hat{f}(t, \theta)\right|^{2} d \theta, \tag{4.4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} f_{t}(t, \theta) \hat{f}(t, \theta) d \theta=\int_{\mathbb{S}^{n-1}} \hat{f}_{t}(t, \theta) \hat{f}(t, \theta) d \theta=\frac{1}{2} \frac{d}{d t} \int_{\mathbb{S}^{n-1}}|\hat{f}(t, \theta)|^{2} d \theta . \tag{4.4.9}
\end{equation*}
$$

In the following we will prove separately the expected decays for $\hat{f}(t, \theta)$ and $f_{j}(t)=\pi_{j}[f(t, \theta)]$, for $j=0,1, \ldots, n$. We first estimate $f_{j}(t)=\pi_{j}[f(t, \theta)]$ for $j=0,1, \ldots, n$. Multiplying both sides of (4.4.1) by

$$
\left(\frac{B^{k-2}}{2^{k-2}}\binom{n-1}{k-1} D(t)\right)^{-1} Y_{j}(\theta)
$$

and integrating over $\theta \in \mathbb{S}^{n-1}$, we have

$$
\begin{equation*}
f_{j}^{\prime \prime}(t)+\frac{E(t)}{D(t)} f_{j}^{\prime}(t)+\left[\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}-\lambda_{j} \frac{F(t)}{D(t)}\right] f_{j}(t)=r_{j}(t), \tag{4.4.10}
\end{equation*}
$$

where

$$
r_{j}(t)=\int_{\mathbb{S}^{n-1}} R(t, \theta) Y_{j}(\theta) d \theta
$$

with

$$
R(t, \theta)=\left(\frac{B^{k-2}}{2^{k-2}}\binom{n-1}{k-1} D(t)\right)^{-1} r(t, \theta) .
$$

First we treat the case $\varphi_{t} \not \equiv 0$. We will write out the details for the $h(t, \varphi)>0$. For $j=1,2, \ldots, n$, $\lambda_{j}=n-1$, and $f_{1}^{+}(t)=\left(a b-\varphi_{t}\right) e^{t}$ and

$$
f_{1}^{-}=\left(a b-\varphi_{t}\right) e^{t} \int_{t}^{\infty} \frac{1}{\left(a b-\varphi_{t}\right)^{2} e^{2 t}} \exp \left(-\int_{0}^{t} \frac{E(s)}{D(s)} d s\right) d t
$$

form a solution basis to the homogeneous equation

$$
f^{\prime \prime}(t)+\frac{E(t)}{D(t)} f^{\prime}(t)+\left[\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}-(n-1) \frac{F(t)}{D(t)}\right] f(t)=0 .
$$

Since $f_{j}(t)$ is a solution to 4.4.10) and $f_{j}(t) \rightarrow 0$ as $t \rightarrow \infty$, by the variation of constant formula, we have

$$
\begin{equation*}
f_{j}(t)=c f_{1}^{-}(t)+f_{1}^{-}(t) \int_{0}^{t} \frac{f_{1}^{+}(s) r_{j}(s)}{W_{1}(s)} d s+f_{1}^{+}(t) \int_{t}^{\infty} \frac{f_{1}^{-}(s) r_{j}(s)}{W_{1}(s)} \tag{4.4.11}
\end{equation*}
$$

for some constant c, where

$$
W_{1}(s)=f_{1}^{+}(s)\left(f_{1}^{-}(s)\right)^{\prime}-f_{1}^{-}(s)\left(f_{1}^{+}(s)\right)^{\prime}
$$

is the Wronskian of $\left\{f_{1}^{+}, f_{1}^{-}\right\}$, and satisfies

$$
\left(W_{1}(s)\right)^{\prime}=-\frac{E(s)}{D(s)} W_{1}(s) .
$$

From

$$
\begin{aligned}
\frac{E(t)}{D(t)} & =\left[1-(n-1) \frac{F(t)}{D(t)}\right]\left(\varphi_{t}-(a b-1)\right) \\
& =\left[1-\frac{(k-1)(p+1)(n-2 k)}{2 k} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{e^{-\frac{(p-1) k}{a} \varphi}+\hat{h}(t, \varphi)}-\frac{n-k}{k}\right]\left(\varphi_{t}-(a b-1)\right) \\
& =\left[\frac{2 k-n}{k}-\frac{(k-1)(p+1)(n-2 k)}{2 k} \frac{e^{-\frac{(p-1) k}{a} \varphi}}{e^{-\frac{(p-1) k}{a} \varphi}+\hat{h}(t, \varphi)}\right]\left(\varphi_{t}-(a b-1)\right)
\end{aligned}
$$

we get

$$
\frac{1}{C} e^{-(n-2 k)(a b-1) s-\varepsilon_{0} s} \leq W_{1}(s) \leq C e^{-(n-2 k)(a b-1) s+\varepsilon_{0} s}
$$

for $\varepsilon_{0} \ll \beta$. According to our assumption on the decay rate of $r(t, \theta)$, we have

$$
\left|r_{j}(s)\right| \leq C e^{-\beta s} .
$$

Therefore we obtain

$$
\left|\int_{t}^{\infty} \frac{f_{1}^{-}(s) r_{j}(s)}{W_{1}(s)} d s\right| \leq C \int_{t}^{\infty} e^{-\left(1+\beta-2 \varepsilon_{0}\right) s} d s \leq C e^{-\left(1+\beta-2 \varepsilon_{0}\right) t}
$$

from which we deduce that

$$
\left|f_{1}^{+}(t) \int_{t}^{\infty} \frac{f_{1}^{-}(s) r_{j}(s)}{W_{1}(s)} d s\right| \leq C e^{-\left(\beta-2 \varepsilon_{0}\right) t}
$$

When $\beta \neq(n-2 k)(a b-1)+1+\varepsilon_{0}$, we also have

$$
\left|\int_{0}^{t} \frac{f_{1}^{+}(s) r_{j}(s)}{W_{1}(s)} d s\right| \leq C \int_{0}^{t} e^{\left((n-2 k)(a b-1)+1+\varepsilon_{0}-\beta\right) s} d s \leq C e^{\left((n-2 k)(a b-1)+1+\varepsilon_{0}-\beta\right) t}
$$

from which we conclude that

$$
\left|f_{1}^{-}(t) \int_{0}^{t} \frac{f_{1}^{+}(s) r_{j}(s)}{W_{1}(s)} d s\right| \leq C e^{-\left(\beta-2 \varepsilon_{0}\right) t} .
$$

Putting these estimates into (4.4.11), we get

$$
\left|f_{j}-c\left(a b-\varphi_{t}\right) e^{t} \int_{t}^{\infty} \frac{1}{\left(a b-\varphi_{t}\right)^{2} e^{2 t}} \exp \left(-\int_{0}^{t} \frac{E(s)}{D(s)} d s\right) d t\right| \leq C e^{-\left(\beta-2 \varepsilon_{0}\right) t}
$$

When $\beta=(n-2 k)(a b-1)+1+\varepsilon_{0}$, we see that

$$
\left|\int_{0}^{t} \frac{f_{1}^{+}(s) r_{j}(s)}{W_{1}(s)} d s\right| \leq C \int_{0}^{t} d s \leq C t
$$

from which we deduce that

$$
\left|f_{1}^{-}(t) \int_{0}^{t} \frac{f_{1}^{+}(s) r_{j}(s)}{W_{1}(s)} d s\right| \leq C t e^{-\left(\beta-2 \varepsilon_{0}\right) t} .
$$

Therefore from 4.4.11, we see

$$
\left|f_{j}-c\left(a b-\varphi_{t}\right) e^{t} \int_{t}^{\infty} \frac{1}{\left(a b-\varphi_{t}\right)^{2} e^{2 t}} \exp \left(-\int_{0}^{t} \frac{E(s)}{D(s)} d s\right) d t\right| \leq C t e^{-\left(\beta-2 \varepsilon_{0}\right) t}
$$

For $j=0, f_{0}(t)$ is a solution to

$$
\begin{equation*}
f_{0}^{\prime \prime}(t)+\frac{E(t)}{D(t)} f_{0}^{\prime}(t)+\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi} f_{0}(t)=r_{0}(t) . \tag{4.4.12}
\end{equation*}
$$

It follows that

$$
Y(t)=c \Phi(t)+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) F(s) d s
$$

where $\Phi(t)$ is a fundamental solution matrix of the system

$$
\frac{d Y(t)}{d t}=A(t) Y(t)
$$

with

$$
A(t)=\left(\begin{array}{cc}
0 & 0 \\
-\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}-\frac{E(t)}{D(t)}
\end{array}\right),
$$

$Y(t)=\left(f_{0}(t), f_{0}^{\prime}(t)\right)^{T}$ and $F(s)=\left(0, r_{0}(s)\right)^{T}$. Employing the same argument in Theorem 1.4.2, we get that, for any small ε_{0},

$$
|\Phi(t)| \leq C e^{-R e\left(a_{01}\right) t+\frac{\varepsilon_{0}}{2} t},
$$

where

$$
a_{01}=\frac{(a b-1)(n-2 k)-\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2} .
$$

Then by the definition of the Wronskian, we see

$$
|\Phi(t)| \geq C e^{-R e\left(a_{02}\right) t-\frac{\varepsilon_{0}}{2} t}
$$

where

$$
a_{02}=\frac{(a b-1)(n-2 k)+\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2} .
$$

When $\beta<\operatorname{Re}\left(a_{01}\right)$, for some $t_{0} \in(0, \infty)$, from the decay rate of $r_{0}(s)$, we have

$$
|Y(t)-c \Phi(t)| \leq C \int_{t_{0}}^{t} e^{\left(-R e\left(a_{01}\right)+\frac{\varepsilon_{0}}{2}\right)(t-s)} e^{-\beta s} d s=C e^{-\beta t} .
$$

When $\operatorname{Re}\left(a_{02}\right) \leq 2 \operatorname{Re}\left(a_{01}\right)-\varepsilon_{0}<\beta, t_{0}=\infty$, from the decay rate of $r_{0}(s)$, we obtain

$$
|Y(t)-c \Phi(t)| \leq C \int_{t}^{\infty} e^{\left(-R e\left(a_{02}\right)-\frac{\varepsilon_{0}}{2}\right)(t-s)} e^{-\beta s} d s=C e^{-\beta t}
$$

Combining above estimates, we have

$$
\left|f_{0}(t)-c_{0}(t)\right| \leq C e^{-\beta t},
$$

where $\left|c_{0}(t)\right| \leq C e^{-R e\left(a_{01}\right) t+\frac{\varepsilon_{0}}{2} t}$.

Now we estimate the decay rate of $\hat{f}(t, \theta)$. This part is analogous to an approach in [80]. Multiplying both sides of 4.4.10) by

$$
\left(\frac{B^{k-2}}{2^{k-2}}\binom{n-1}{k-1} D(t)\right)^{-1} \hat{f}(t, \theta)
$$

integrating over $\theta \in \mathbb{S}^{n-1}$ and from 4.4.8 and 4.4.9, we get

$$
\begin{aligned}
& \int_{\mathbb{S}^{n-1}}\left(\hat{f}_{t t}(t, \theta) \hat{f}(t, \theta)+\frac{E(t)}{D(t)} \hat{f} t(t, \theta) \hat{f}(t, \theta)+\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}|\hat{f}(t, \theta)|^{2}\right) d \theta \\
& -\frac{F(t)}{D(t)} \int_{\mathbb{S}^{n-1}}\left|\nabla_{\theta} \hat{f}(t, \theta)\right|^{2} d \theta \\
= & \int_{\mathbb{S}^{n-1}} R(t, \theta) \hat{f}(t, \theta) d \theta,
\end{aligned}
$$

where

$$
\frac{1}{C} r(t, \theta) \leq R(t, \theta)=\left(\frac{B^{k-2}}{2^{k-2}}\binom{n-1}{k-1} D(t)\right)^{-1} r(t, \theta) \leq C r(t, \theta)
$$

Defining

$$
y(t)=\sqrt{\int_{\mathbb{S}^{n-1}}|\hat{f}(t, \theta)|^{2} d \theta}
$$

then

$$
y(t) y^{\prime}(t)=\int_{\mathbb{S}^{n-1}} \hat{f}_{t}(t, \theta) \hat{f}(t, \theta) d \theta
$$

and

$$
y(t) y^{\prime \prime}(t)=\int_{\mathbb{S}^{n-1}}\left(\hat{f}_{t t}(t, \theta) \hat{f}(t, \theta)+\left|\hat{f}_{t}(t, \theta)\right|^{2}\right) d \theta-\left|y^{\prime}(t)\right|^{2}
$$

By Cauchy-Schwarz inequality

$$
y(t) y^{\prime}(t) \leq\left(\int_{\mathbb{S}^{n-1}}\left|\hat{f}_{t}(t, \theta)\right|^{2} d \theta\right)^{\frac{1}{2}} y(t)
$$

which implies that

$$
\left|y^{\prime}(t)\right|^{2} \leq \int_{\mathbb{S}^{n-1}}\left|\hat{f}_{t}(t, \theta)\right|^{2} d \theta
$$

Since $\lambda_{j}=2 n$, we have

$$
\int_{\mathbb{S}^{n-1}}\left|\nabla_{\theta} \hat{f}(t, \theta)\right|^{2} d \theta \geq 2 n \int_{\mathbb{S}^{n-1}}|\hat{f}(t, \theta)|^{2} d \theta
$$

Combining these inequalities, we obtain

$$
y(t) y^{\prime \prime}(t)+\frac{E(t)}{D(t)} y(t) y^{\prime}(t)+\left[\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}-2 n \frac{F(t)}{D(t)}\right] y^{2}(t) \geq-\|R(t, \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)} y(t)
$$

whenever $y(t)>0$, from which we deduce that

$$
y^{\prime \prime}(t)+\frac{E(t)}{D(t)} y^{\prime}(t)+\left[\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}-2 n \frac{F(t)}{D(t)}\right] y(t) \geq-\|R(t, \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}
$$

whenever $y(t)>0$. According to our assumption on $r(t, \theta)$, we have

$$
\|R(t, \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)} \leq C e^{-\beta t}
$$

for some constant $C>0$. By Lemma 4.2.2,

$$
\left(\partial_{t t}+\frac{E(t)}{D(t)} \partial_{t}+\left[\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}-2 n \frac{F(t)}{D(t)}\right]\right) e^{-\beta t} \leq-\epsilon e^{-\beta t}
$$

for some $\epsilon>0$ when $\beta<\beta_{*}$. Therefore $z(t):=\frac{C}{\epsilon} e^{-\beta t}$ satisfies

$$
\begin{equation*}
\left(\partial_{t t}+\frac{E(t)}{D(t)} \partial_{t}+\left[\frac{n(p-1)}{2 a B^{k-1}} e^{-\frac{(p-1) k}{a} \varphi}-2 n \frac{F(t)}{D(t)}\right]\right)(z(t)-y(t)) \leq 0 \tag{4.4.13}
\end{equation*}
$$

whenever $y(t)>0$ We also know that $y(t) \rightarrow 0$ as $t \rightarrow \infty$. We may choose $C>0$ large so that $z(0) \geq y(0)$. Then we claim that

$$
y(t) \leq z(t) \quad \forall t \geq 0
$$

Indeed, if not, $\min (z(t)-y(t))<0$ is finite, and is attained at some t_{*} and $\partial_{t}(z(t)-y(t))_{t=t_{*}}=0$, as well as $\left.\partial_{t t}(z(t)-y(t))\right|_{t=t_{*}} \geq 0$. This contradicts 4.4.13). Thus we conclude that

$$
y(t)=\sqrt{\int_{\mathbb{S}^{n-1}}|\hat{f}(t, \theta)|^{2} d \theta} \leq \frac{C}{\epsilon} e^{-\beta t}
$$

We can now bootstrap this integral estimate to obtain a pointwise decay estimate

$$
|\hat{f}(t, \theta)| \leq C e^{-\beta t}
$$

When $\beta \geq \beta_{*}$, we can simply split those components f_{j} of f with $\lambda_{j}=2 n$ from $\hat{f}(t, \theta)$, and estimate them as we did for $f_{j}, j=0,1, \ldots, n$, and estimate $\hat{f}(t, \theta)$ with an improved exponential decay rate.

When $\varphi_{t} \equiv 0$, that is, $\varphi \equiv-\frac{a}{(p-1) k} \ln \left[\frac{n-2 k}{n}(a b(2-a b))^{k}\right]$, along the above steps, we can get (4.4.2) and 4.4.3) easily. We only write out the detail for $j=0$.

For $j=0, f_{0}^{+}=e^{-a_{01} t}$ and $f_{0}^{-}=e^{-a_{02} t}$ form a solution basis to the homogeneous equation

$$
\begin{equation*}
f_{0}^{\prime \prime}(t)+(a b-1)(n-2 k) f_{0}^{\prime}(t)+(2-a b)(n-2 k) f_{0}(t)=0 \tag{4.4.14}
\end{equation*}
$$

where

$$
a_{01}=\frac{(a b-1)(n-2 k)-\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2},
$$

and

$$
a_{02}=\frac{(a b-1)(n-2 k)+\sqrt{(a b-1)^{2}(n-2 k)^{2}-4(n-2 k)(2-a b)}}{2} .
$$

Since f_{0} is a solution to 4.4.10 with $\lambda_{0}=0$ and $f_{0} \rightarrow 0$ as $t \rightarrow \infty$, by the variation of constant formula, we see

$$
\begin{equation*}
f_{0}(t)=c_{01} f_{0}^{+}(t)+c_{02} f_{0}^{-}(t)+f_{0}^{-}(t) \int_{m^{+}}^{t} \frac{f_{0}^{+}(s) r_{0}(s)}{W_{0}(s)} d s-f_{0}^{+}(t) \int_{m^{-}}^{t} \frac{f_{0}^{-}(s) r_{0}(s)}{W_{0}(s)} d s \tag{4.4.15}
\end{equation*}
$$

where the Wronskian of $\left\{f_{0}^{+}(s), f_{0}^{-}(s)\right\}, W_{0}(s)=e^{-(n-2 k)(a b-1) s}$, and $m^{+}=0$ or $\infty, m^{-}=0$ or ∞.

When $a_{01} \neq \beta$, from the decay rate of $r(t, \theta)$, we get

$$
\left|\int_{m^{-}}^{t} \frac{f_{0}^{-}(s) r_{0}(s)}{W_{0}(s)} d s\right| \leq C e^{R e\left(a_{01}\right) t-\beta t},
$$

from which we deduce that

$$
\left|f_{0}^{+}(t) \int_{m^{-}}^{t} \frac{f_{0}^{-}(s) r_{0}(s)}{W_{0}(s)} d s\right| \leq C e^{-\beta t} .
$$

Meanwhile we have

$$
\left|\int_{m^{+}}^{t} \frac{f_{0}^{+}(s) r_{0}(s)}{W_{0}(s)} d s\right| \leq C e^{R e\left(a_{02}\right) t-\beta t},
$$

from which we conclude that

$$
\left|f_{0}^{-}(t) \int_{m^{+}}^{t} \frac{f_{0}^{+}(s) r_{0}(s)}{W_{0}(s)} d s\right| \leq C e^{-\beta t}
$$

Combining above estimates and (4.4.15), we obtain

$$
\left|f_{0}(t)-c_{01} f_{0}^{+}(t)-c_{02} f_{0}^{-}(t)\right| \leq C e^{-\beta t}
$$

When $a_{01}=\beta$ or $a_{02}=\beta$, we have

$$
\left|f_{0}(t)-c_{01} f_{0}^{+}(t)-c_{02} f_{0}^{-}(t)\right| \leq C t e^{-\beta t} .
$$

Remark 4.4.1. In fact, if $|f(t, \theta)| \leq C e^{-\alpha t}, \alpha>\operatorname{Re}\left(a_{N 2}\right)$ and $|r(t, \theta)| \leq C e^{-\beta t}, \alpha<\beta<\operatorname{Re}\left(a_{(N+1) 2}\right)$, $N \geq 1$, then we still have

$$
|f(t, \theta)| \leq C e^{-\beta t}
$$

where

$$
a_{N 2}=\frac{(a b-1)(n-2 k)+\sqrt{(a b-1)^{2}(n-2 k)^{2}-4\left((2-a b)(n-2 k)-\lambda_{N}\right)}}{2} .
$$

Now we provide a proof of Theorem 1.4.3. The proof is similar to the one for singular Yamabe problem [44] and the other one for singular σ_{k} Yamabe problem [42], once we have got the needed linear analysis.

Proof of Theorem 1.4.3 Our starting point is

$$
L_{\varphi} w_{1}+E\left(w_{1}\right)+\frac{(p-1) k}{a} e^{-\frac{(p-1) k}{a} \varphi} w_{1}=0,
$$

and we have

$$
\begin{equation*}
\left|E\left(w_{1}\right)\right| \leq C e^{-2 \alpha t}, \text { whenever we have }\left|w_{1}, \partial w_{1}, \partial^{2} w_{2}\right| \leq C e^{-\alpha t}, \tag{4.4.16}
\end{equation*}
$$

where $w_{1}(t, \theta)=w(t, \theta)-\varphi(t)$. We only give a proof for $\varphi_{t} \equiv 0$. When $\varphi_{t} \not \equiv 0$, it is not hard to obtain 1.4.9) under the assumption $\operatorname{Re}\left(a_{02}\right) \leq 2 \operatorname{Re}\left(a_{01}\right)-\varepsilon_{0}$. In Theorem 1.4.2 we have established the following:

Step 1. For some $\alpha_{0}>0,\left|w_{1}, \partial w_{1}, \partial^{2} w_{1}\right| \leq C e^{-\alpha_{0} t}$.

If $\alpha_{0} \geq 2 \operatorname{Re}\left(a_{01}\right)$, we stop and have proved

$$
|w(t, \theta)-\varphi(t)|=\left|w_{1}(t, \theta)\right| \leq C e^{-2 \operatorname{Re}\left(a_{01}\right) t} .
$$

If $\operatorname{Re}\left(a_{01}\right)<\alpha_{0}<2 \operatorname{Re}\left(a_{01}\right)$, we jump to Step 3 ; if $\alpha_{0} \leq \operatorname{Re}\left(a_{01}\right)$, we move to
Step 2. Recall that we now have

$$
\left|E\left(w_{1}\right)\right| \leq C e^{-2 \alpha_{0} t} .
$$

If $\operatorname{Re}\left(a_{01}\right)<2 \alpha_{0} \leq 2 \operatorname{Re}\left(a_{01}\right)$, then we still have

$$
\left|E\left(w_{1}\right)\right| \leq C e^{-2 \alpha t}
$$

for some $\operatorname{Re}\left(a_{01}\right)<2 \alpha<2 \operatorname{Re}\left(a_{01}\right)$ and can apply Proposition 4.4.1 to imply that

$$
\begin{equation*}
\left|w(t, \theta)-\varphi(t)-f_{0}(t)\right| \leq C e^{-2 \alpha t}, \tag{4.4.17}
\end{equation*}
$$

where $f_{0}:=c_{01} e^{-a_{01} t}+c_{02} e^{-a_{02} t}$ for some constants a_{01} and a_{02}, then jump to Step 3; if $2 \alpha_{0} \leq$ $\operatorname{Re}\left(a_{01}\right)$, we may take α_{0} to satisfy $2 \alpha_{0}<\operatorname{Re}\left(a_{01}\right)$ and apply Proposition 4.4.1 to imply that

$$
\left|w_{1}(t, \theta)-f_{0}(t)\right| \leq C e^{-2 \alpha_{0} t} .
$$

This certainly implies that

$$
\begin{equation*}
\left|w_{1}(t, \theta)\right| \leq C e^{-2 \alpha_{0} t} . \tag{4.4.18}
\end{equation*}
$$

Next we use higher derivative estimates for $w(t, \theta)$ and $\varphi(t)$ and interpolation with (4.4.18) to obtain

$$
\left|w_{1}, \partial w_{1}, \partial^{2} w_{1}\right| \leq C e^{-2 \alpha^{\prime} t}
$$

for any $\alpha^{\prime}<\alpha_{0}$. Now we go back to the beginning of Step 2 and repeat the process with a new $\alpha_{1}>\alpha_{0}$ to replace the α_{0} there, say, $\alpha_{1}=1.9 \alpha_{0}$. After a finite number of steps, we will reach a stage where $2 \alpha>\operatorname{Re}\left(a_{01}\right)$ and ready to move onto

Step 3. At this stage, we have

$$
\left|w_{1}(t, \theta)\right| \leq C e^{-R e\left(a_{01}\right) t} .
$$

Repeating the last part of Step 2 involving the derivative estimates for $w(t, \theta)$ and $\varphi(t)$ to bootstrap the estimates for $E\left(w_{1}\right)$ to

$$
\left|E\left(w_{1}\right)\right| \leq C e^{-\alpha t}
$$

with α can be as close to $2 \operatorname{Re}\left(a_{01}\right)$ as one needs. Then we can apply Proposition 4.4.1 to obtain 1.4.8. We should note that $\left|E\left(w_{1}\right)\right| \leq C e^{-2 R e\left(a_{01}\right)}$ when $k=1$.

Step 4. Case 1: $k=1$.
From the previous steps, we see that

$$
\left|w_{1}(t, \theta)-f_{0}(t)\right| \leq C e^{-\beta_{1} t},
$$

where $\beta_{1}=\min \left\{2 \operatorname{Re}\left(a_{01}\right), \operatorname{Re}\left(a_{12}\right)\right\}$. We also have that w_{1} satisfies

$$
L_{\varphi} w_{1}+\frac{(p-1)}{a} e^{-\frac{(p-1)}{a} \varphi^{\prime}} w_{1}=\frac{(p-1)^{2}}{a^{2}} e^{-\frac{(p-1)}{a} \varphi} w_{1}^{2}+E_{1}\left(w_{1}\right),
$$

where $E_{1}\left(w_{1}\right)=O\left(w_{1}^{3}\right)$.
There exists a constant $m_{1} \geq 2$ such that $m_{1} \operatorname{Re}\left(a_{01}\right) \leq \operatorname{Re}\left(a_{12}\right)<\left(m_{1}+1\right) \operatorname{Re}\left(a_{01}\right)$. Let $w_{2}(t, \theta):=w_{1}(t, \theta)-f_{0}(t)$. It follows that

$$
\left|w_{2}(t, \theta)\right| \leq C e^{-2 \operatorname{Re}\left(a_{01}\right) t}
$$

and

$$
L_{\varphi} w_{2}+\frac{(p-1)}{a} e^{-\frac{(p-1)}{a} \varphi_{w_{2}}}=\frac{(p-1)^{2}}{a^{2}} e^{-\frac{(p-1)}{a} \varphi}\left(w_{2}^{2}+2 w_{2} f_{0}+f_{0}^{2}\right)+E_{1}\left(w_{2}+f_{0}\right) .
$$

By Proposition 4.3.3, there exists a solution $\varphi_{1}(t, \theta)$ to $L_{\varphi} \varphi_{1}+\frac{(p-1)}{a} e^{-\frac{(p-1)}{a} \varphi} \varphi_{1}=\frac{(p-1)^{2}}{a^{2}} e^{-\frac{(p-1)}{a} \varphi} f_{0}^{2}$ such that $\left|\varphi_{1}(t, \theta)\right| \leq C e^{-2 R e\left(a_{01}\right) t}$. Then we obtain that

$$
L_{\varphi}\left(w_{2}-\varphi_{1}\right)+\frac{(p-1)}{a} e^{-\frac{(p-1)}{a} \varphi}\left(w_{2}-\varphi_{1}\right)=\frac{(p-1)^{2}}{a^{2}} e^{-\frac{(p-1)}{a} \varphi}\left(w_{2}^{2}+2 w_{2} f_{0}\right)+E_{1}\left(w_{2}+f_{0}\right),
$$

where $\left|\frac{(p-1)^{2}}{a^{2}} e^{-\frac{(p-1)}{a} \varphi}\left(w_{2}^{2}+2 w_{2} f_{0}\right)+E_{1}\left(w_{2}+f_{0}\right)\right| \leq C e^{-3 \operatorname{Re}\left(a_{01}\right) t}$. It follows that

$$
\left|w_{3}(t, \theta):=w_{2}(t, \theta)-\varphi_{1}(t, \theta)\right| \leq C e^{-3 \operatorname{Re}\left(a_{01}\right) t},
$$

and

$$
L_{\varphi} w_{3}+\frac{(p-1)}{a} e^{-\frac{(p-1)}{a} \varphi} w_{3}=E_{21}\left(w_{2}, f_{0}\right)+E_{22}\left(w_{2}, f_{0}\right),
$$

where $\left|E_{21}\left(w_{2}, f_{0}\right)\right| \leq C e^{-3 R e\left(a_{01}\right) t}$ and $\left|E_{22}\left(w_{2}, f_{0}\right)\right| \leq C e^{-4 R e\left(a_{01}\right) t}$. Let $\varphi_{2}(t, \theta)$ be a solution to

$$
L_{\varphi} \varphi_{2}+\frac{(p-1)}{a} e^{-\frac{(p-1)}{a} \varphi} \varphi_{2}=E_{21}\left(w_{2}, f_{0}\right) .
$$

Then we obtain

$$
\left|\varphi_{2}(t, \theta)\right| \leq C e^{-3 R e\left(a_{01}\right) t}
$$

It follows that

$$
\left|w_{3}(t, \theta)-\varphi_{2}(t, \theta)\right| \leq C e^{-4 R e\left(a_{01}\right) t} .
$$

Similarly, we have

$$
\left|w_{1}(t, \theta)-f_{0}(t)-\sum_{j=1}^{m_{1}-1} \varphi_{j}(t, \theta)-c_{12} e^{-a_{12} t} Y_{1}(\theta)\right| \leq C e^{-\left(m_{1}+1\right) R e\left(a_{01}\right) t} .
$$

For any $\operatorname{Re}\left(a_{N 2}\right)$, there exists a constant m_{N} such that $m_{N} \operatorname{Re}\left(a_{01}\right) \leq \operatorname{Re}\left(a_{N 2}\right)<\left(m_{N}+1\right) \operatorname{Re}\left(a_{01}\right)$. Employing the same procedure as above, we get

$$
\left|w_{1}(t, \theta)-f_{0}(t)-\sum_{j=1}^{m_{N}-1} \varphi_{j}(t, \theta)-\sum_{j=1}^{N} c_{j 2} e^{-a_{j 2} t} Y_{j}(\theta)\right| \leq C e^{-\left(m_{N}+1\right) R e\left(a_{01}\right) t},
$$

where $c_{j 2}, j=1, \ldots, N$, are constants and

$$
a_{j 2}=\frac{(a b-1)(n-2)+\sqrt{(a b-1)^{2}(n-2)^{2}-4\left((2-a b)(n-2)-\lambda_{j}\right)}}{2} .
$$

Case 2: $k \geq 2$.
We have that w_{1} satisfies

$$
L_{\varphi} w_{1}+\frac{(p-1)}{a} e^{-\frac{(p-1)}{a} \varphi} w_{1}=E_{11}\left(w_{1}, \partial w_{1}, \partial^{2} w_{1}\right)+E_{12}\left(w_{1}, \partial w_{1}, \partial^{2} w_{2}\right),
$$

where $\left|E_{11}\left(w_{1}, \partial w_{1}, \partial^{2} w_{2}\right)\right| \leq C e^{-2\left(R e\left(a_{01}\right)-\varepsilon\right) t}, E_{12}\left(w_{1}, \partial w_{1}, \partial^{2} w_{2}\right) \leq C e^{-3\left(R e\left(a_{01}\right)-\varepsilon\right) t}$ for any small constant $\varepsilon>0$.

For any $\operatorname{Re}\left(a_{N 2}\right)$, there exists a constant m_{N} such that $m_{N}\left(\operatorname{Re}\left(a_{01}\right)-\varepsilon\right) \leq \operatorname{Re}\left(a_{N 2}\right)<\left(m_{N}+\right.$ $1)\left(\operatorname{Re}\left(a_{01}\right)-\varepsilon\right)$. Following the same line of the proof of Case 1 , we obtain

$$
\left|w_{1}(t, \theta)-f_{0}(t)-\sum_{j=1}^{m_{N}-1} \varphi_{j}(t, \theta)-\sum_{j=1}^{N} c_{j 2} e^{-a_{j 2} t} Y_{j}(\theta)\right| \leq C e^{-\left(m_{N}+1\right)\left(R e\left(a_{01}\right)-\varepsilon\right) t},
$$

where $c_{j 2}, j=1, \ldots, N$, are constants and

$$
a_{j 2}=\frac{(a b-1)(n-2 k)+\sqrt{(a b-1)^{2}(n-2 k)^{2}-4\left((2-a b)(n-2 k)-\lambda_{j}\right)}}{2} .
$$

Remark 4.4.2. The much higher order expansion of solutions to σ_{k} Yamabe equation is also available, once we have the same estimate in Lemma 4.3 .1 for second order elliptic equations with periodical coefficients. It is not difficult to get the similar estimate by integration by part and some Hardy type inequality.

Chapter 5

Harnack type inequality and Liouville type theorem

In this chapter, we apply the method of moving spheres to obtain Harnack type inequality in Euclidean balls, asymptotic behavior of an entire solution. Based on the asymptotic behavior, we are able to give another proof of the remarkable Liouville type theorem obtained by Li and Li [49]. For the method of moving spheres, there are, roughly speaking, three steps: one is to get started with the procedure, second is to prove that the function and the reflected one coincide if the procedure stops, and the third is to handle the case when the procedure never stops.

5.1 Harnack type inequality for Euclidean balls

In this section, we will establish Harnack type inequality for Euclidean balls. Our proof makes use of ideas in the proof of Theorem 1.5 in [56].

Proof of Theorem 1.4.4 We argue by contradiction. Suppose the contrary, then there would exist solutions u_{j} to 1.4.10, $j=1,2, \ldots$, such that

$$
\begin{equation*}
u_{j}\left(\bar{x}_{j}\right)\left(\frac{\min }{B_{2 R_{j}}(0)} u_{j}\right)^{\alpha}>\frac{j}{R_{j}^{(n-2) \alpha}}, \tag{5.1.1}
\end{equation*}
$$

where $u_{j}\left(\bar{x}_{j}\right)=\max \overline{B_{R_{j}}(0)} u_{j}$.
Consider

$$
v_{j}(x):=\left(R_{j}-\left|x-\bar{x}_{j}\right|\right)^{\frac{2}{p-1}} u_{j}(x), \quad x \in B_{R_{j}}\left(\bar{x}_{j}\right) .
$$

Let $\left|x_{j}-\bar{x}_{j}\right|<R_{j}$ satisfy

$$
v_{j}\left(x_{j}\right)=\frac{\max }{B_{R_{j}}\left(\bar{x}_{j}\right)} v_{j}(x),
$$

and let

$$
\sigma_{j}=\frac{1}{2}\left(R_{j}-\left|x_{j}-\bar{x}_{j}\right|\right) \leq \frac{R_{j}}{2}
$$

Then we have

$$
R_{j}-\left|x-\bar{x}_{j}\right| \geq \sigma_{j}, \quad x \in \overline{B_{\sigma_{j}}\left(x_{j}\right)}
$$

By the definition of v_{j}, we get

$$
\left(2 \sigma_{j}\right)^{\frac{2}{p-1}} u_{j}\left(x_{j}\right)=v_{j}\left(x_{j}\right) \geq v_{j}(x) \geq\left(\sigma_{j}\right)^{\frac{2}{p-1}} u_{j}(x), \quad x \in \overline{B_{\sigma_{j}}\left(x_{j}\right)}
$$

It follows that

$$
2^{\frac{2}{p-1}} u_{j}\left(x_{j}\right) \geq \frac{\max }{B_{\sigma_{j}}\left(x_{j}\right)} u_{j}
$$

We also obtain

$$
\left(2 \sigma_{j}\right)^{\frac{2}{p-1}} u_{j}\left(x_{j}\right)=v_{j}\left(x_{j}\right) \geq v_{j}\left(\bar{x}_{j}\right)=R_{j}^{\frac{2}{p-1}} u_{j}\left(\bar{x}_{j}\right)
$$

that is,

$$
\left(\sigma_{j}\right)^{\frac{2}{p-1}} u_{j}\left(x_{j}\right) \geq\left(\frac{R_{j}}{2}\right)^{\frac{2}{p-1}} u_{j}\left(\bar{x}_{j}\right)
$$

It follows that

$$
\begin{equation*}
u_{j}\left(x_{j}\right) \geq u_{j}\left(\bar{x}_{j}\right) \tag{5.1.2}
\end{equation*}
$$

and from (5.1.1),

$$
\begin{equation*}
\gamma_{j}:=u_{j}\left(x_{j}\right)^{\frac{p-1}{2}} \sigma_{j} \geq \frac{R_{j}}{2}\left(u_{j}\left(\bar{x}_{j}\right)\right)^{\frac{p-1}{2}} \geq \frac{R_{j}}{2}\left[u_{j}\left(\bar{x}_{j}\right)\left(\frac{\min }{B_{2 R_{j}}(0)} u_{j}\right)^{\alpha}\right]^{\frac{1}{(n-2) \alpha}} \geq \frac{j^{\frac{1}{(n-2) \alpha}}}{2} \rightarrow \infty \tag{5.1.3}
\end{equation*}
$$

Set

$$
w_{j}(y)=\frac{1}{u_{j}\left(x_{j}\right)} u_{j}\left(x_{j}+\frac{y}{u_{j}\left(x_{j}\right)^{\frac{p-1}{2}}}\right), \quad|y|<\Gamma_{j}
$$

where $\Gamma_{j}=u_{j}\left(x_{j}\right)^{\frac{p-1}{2}} R_{j}$. Then we see that

$$
\begin{equation*}
\sigma_{k}^{1 / k}\left(A^{w_{j}}\right)=w_{j}^{p-\frac{n+2}{n-2}}, w_{j}>0, \text { in } B_{\Gamma_{j}}(0) \tag{5.1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
1=w_{j}(0) \geq 2^{\frac{2}{1-p}} \frac{\max }{B_{\gamma_{j}}(0)} w_{j} \tag{5.1.5}
\end{equation*}
$$

Since w_{j} is superharmonic function, we have, by 5.1.1) and 5.1.2,

$$
\begin{equation*}
\min _{\partial B_{\Gamma_{j}}(0)} w_{j}=\frac{\min }{B_{\Gamma_{j}(0)}} w_{j} \geq \frac{\min \overline{\overline{B_{2 R_{j}}(0)}} u_{j}}{u_{j}\left(x_{j}\right)}=\frac{u_{j}\left(\bar{x}_{j}\right)^{1 / \alpha} \min \overline{\overline{B_{2 R_{j}}(0)}} u_{j}}{u_{j}\left(x_{j}\right) u_{j}\left(\bar{x}_{j}\right)^{1 / \alpha}}>\frac{j^{1 / \alpha}}{\Gamma_{j}^{n-2}} \tag{5.1.6}
\end{equation*}
$$

For every $x \in \mathbb{R}^{n}$ satisfying $|x|<\frac{1}{2} \gamma_{j}$, we can find, as in [56], $0<\lambda_{x, j}<1$ such that for all $0<\lambda<\lambda_{x, j}$ and $y \in B_{\Gamma_{j}}(0) \backslash B_{\lambda}(x)$, we have

$$
\begin{equation*}
w_{j, x, \lambda}(y):=\left(\frac{\lambda}{|y-x|}\right)^{n-2} w_{j}\left(x+\frac{\lambda^{2}(y-x)}{|y-x|^{2}}\right) \leq w_{j}(y) \tag{5.1.7}
\end{equation*}
$$

Because of (5.1.7), we can define

$$
\bar{\lambda}_{j}(x)=\sup \left\{0<\mu<\Gamma_{j}-|x|, w_{j, x, \lambda}(y) \leq w_{j}(y), \quad y \in B_{\Gamma_{j}}(0) \backslash B_{\lambda}(x), \quad 0<\lambda<\mu\right\} .
$$

Now we claim that for every $m>0$,

$$
\lim _{j \rightarrow \infty} \inf _{|x| \leq m} \bar{\lambda}_{j}(x)=\infty .
$$

The proof of this claim is almost the same to the proof of Lemma 5.1 in [48]. For the reader's convenience, we include the proof. For simplicity, we only prove that $\bar{\lambda}_{j}:=\bar{\lambda}_{j}(0) \rightarrow \infty$, since the general case is essentially the same. Suppose the contrary, then (along a subsequence),

$$
\begin{equation*}
\bar{\lambda}_{j} \leq C<\gamma_{j} \tag{5.1.8}
\end{equation*}
$$

for some constant C independent of j. Here we have used the fact that $\gamma_{j} \rightarrow \infty$. By the definition of $\bar{\lambda}_{j}$,

$$
w_{j}-w_{j, \bar{\lambda}_{j}} \geq 0 \text { in } \Sigma_{j}:=\left\{y: \bar{\lambda}_{j}<|y|<\Gamma_{j}\right\} .
$$

From (5.1.5), (5.1.6) and (5.1.8), we get

$$
\max _{\partial B_{\Gamma_{j}}(0)} w_{j, \bar{\lambda}_{j}} \leq C \Gamma_{j}^{2-n}<j^{1 / \alpha} \Gamma_{j}^{2-n}<\min _{\partial \bar{\Gamma}_{j}(0)} w_{j},
$$

that is,

$$
\min _{\partial B_{\Gamma_{j}}(0)}\left(w_{j}-w_{j, \bar{\lambda}_{j}}\right)>0 .
$$

Recall that

$$
w_{j}-w_{j, \bar{\lambda}_{j}}=0 \text { on } \partial B_{\bar{\lambda}_{j}}(0),
$$

and

$$
\sigma_{k}^{1 / k}\left(A^{w_{j, \bar{\lambda}}}\right)-\sigma_{k}^{1 / k}\left(A^{w_{j}}\right)-w_{j, \bar{\lambda}_{j}}^{p-\frac{n+2}{n-2}}+w_{j}^{p-\frac{n+2}{n-2}}<0 \text { in } \Sigma_{j} .
$$

An application of the Hopf lemma and the strong maximum principle yields

$$
\left(w_{j}-w_{j, \bar{\lambda}_{j}}\right)(y)>0, \quad \bar{\lambda}_{j}<|y| \leq \Gamma_{j}
$$

and

$$
\left.\frac{\partial\left(w_{j}-w_{j, \bar{\lambda}_{j}}\right)}{\partial r}\right|_{\partial B_{\bar{\lambda}_{j}}(0)}>0
$$

Then, for some ε_{j}, we have

$$
w_{j, \lambda}(y) \leq w_{j}(y), \text { for } \bar{\lambda}_{j} \leq \lambda \leq \bar{\lambda}_{j}+\varepsilon_{j}, \quad \lambda \leq|y| \leq \Gamma_{j} .
$$

This violates the definition of $\bar{\lambda}_{j}$.
Since $\gamma_{j} \rightarrow \infty, w_{j}(0)=1$ and $\left\{w_{j}\right\}$ is bounded on any compact subset of \mathbb{R}^{n}, we have that (along a subsequence),

$$
w_{j} \rightarrow w \text { in } C_{l o c}^{2}\left(\mathbb{R}^{n}\right)
$$

for some positive solution to

$$
\begin{equation*}
\sigma_{k}^{1 / k}\left(A^{w}\right)=w^{p-\frac{n+2}{n-2}} \text { in } \mathbb{R}^{n}, w>0 . \tag{5.1.9}
\end{equation*}
$$

By above claim and the convergence of w_{j} to w, we obtain

$$
w_{x, \lambda}(y) \leq w(y), \quad \forall|y-x| \geq \lambda>0 .
$$

It follows that $w \equiv$ constant, which violates (5.1.9). Theorem 1.4 .4 is established.

The Harnack-type inequality yields the following consequence as established by Schoen in [76] for $k=1$ and $p=\frac{n+2}{n-2}$. See also an alternative proof of Chen and Lin [25], which we adapt for our case.

Proof of Corollary 1.4.5 By scaling, we only need prove for the case $R=1$. Let $u(y)=\min _{\overline{B_{2}(0)}} u$ for some $y \in B_{2}(0)$, and let $G(x, y)$ be the Green's function of $-\Delta$ in $B_{\frac{5}{2}}(0)$. Then, from

$$
\begin{equation*}
-\Delta u \geq u^{p}, \tag{5.1.10}
\end{equation*}
$$

we see

$$
\begin{aligned}
u(y) & =\int_{B_{5 / 2}(0)} G(y, z)(-\Delta u(z)) d z-\int_{\partial B_{5 / 2}(0)} \frac{\partial G(y, s)}{\partial v} u(s) d s \\
& \geq \int_{B_{5 / 2}(0)} G(y, z) u(z)^{p} \geq \frac{1}{C} \int_{B_{1}(0)} u^{p} .
\end{aligned}
$$

By Theorem 1.4.4 and the above inequality, we have

$$
\int_{B_{1}(0)} u^{\frac{n(p-1)}{2}}=\int_{B_{1}(0)} u^{\frac{1}{\alpha}+p} \leq\left(\max _{\bar{B}_{1}(0)} u\right)^{\frac{1}{\alpha}} \int_{B_{1}(0)} u^{p} \leq C\left(\max _{\bar{B}_{1}(0)} u\right)^{\frac{1}{\alpha}}\left(\min _{\bar{B}_{2}(0)} u\right) \leq C .
$$

5.2 Asymptotics for entire solutions

A consequence of local estimates in [36] is the following lemma:
Lemma 5.2.1. Let $u \in C^{2}\left(B_{3}(0)\right)$ be a positive solution to (1.4.10), and

$$
\int_{B_{3}(0)} u^{\frac{n(p-1)}{2}} \leq \delta_{0} .
$$

Then

$$
\sup _{B_{2}(0)} u \leq \frac{1}{\delta_{0}} .
$$

Proof. Our proof is an adaption of the proof of Proposition 2.1 in [50]. Suppose the contrary, there exists a sequence of solutions $\left\{u_{j}\right\}$ such that

$$
\int_{B_{3}(0)} u_{j}^{\frac{n(p-1)}{2}} \rightarrow 0
$$

and

$$
d\left(y_{j}\right)^{\frac{2}{p-1}} u_{j}\left(u_{j}\right)=\max _{y \in B_{2.8}(0)} d(y)^{\frac{2}{p-1}} u_{j}(y) \rightarrow \infty,
$$

where $d(y):=\operatorname{dist}\left(y, \partial B_{2.8}(0)\right)=(2.8-|y|)$. Let $\sigma_{j}=\frac{1}{2} d\left(y_{j}\right)>0$, and set

$$
v_{j}(z)=\frac{1}{u_{j}\left(y_{j}\right)} u_{j}\left(y_{j}+\frac{z}{u_{j}\left(y_{j}\right)^{\frac{p-1}{2}}}\right),
$$

where $|z| \leq r_{j}:=u_{j}\left(y_{j}\right)^{\frac{p-1}{2}} \sigma_{j} \rightarrow \infty$. Then we obtain

$$
\sigma_{k}^{1 / k}\left(A^{v_{j}}\right)=v_{j}^{p-\frac{n+2}{n-2}} \text { in } B_{r_{j}}(0)
$$

and

$$
\begin{equation*}
\int_{B_{r_{j}}(0)} v_{j}^{\frac{n(p-1)}{2}} \rightarrow 0 \tag{5.2.1}
\end{equation*}
$$

It is easy to see that $v_{j}(0)=1$ and $\sup _{B_{r_{j}(0)}} v_{j} \leq 2^{\frac{2}{p-1}}$. Therefore, from the estimates in [36], v_{j} converges uniformly in B_{1} along a subsequence, violating (5.2.1).

Now we will show the asymptotic behavior of an entire solution. Our proof follows the line of the proof of Theorem 1.28 in [48].

Proof of Theorem 1.4.6 By the maximum principle, using the positivity and the superharmonicity of u, we have

$$
u(x) \geq \frac{\min _{\partial B_{1}(0)} u}{|x|^{n-2}} \quad \forall|x| \geq 1 .
$$

By Theorem 1.4 .4 and the above inequality, for some positive universal constant C, we see

$$
\begin{equation*}
R^{2-n} \min _{\partial B_{1}(0)} u \leq \min _{\partial B_{R}(0)} u \leq C u(0)^{-\frac{1}{\alpha}} R^{2-n} . \tag{5.2.2}
\end{equation*}
$$

For $R>1$, let

$$
u_{R}(x):=R^{\frac{2}{p-1}} u(R x), \quad 1 \leq|x| \leq 9 .
$$

Then we get

$$
\sigma_{k}^{1 / k}\left(A^{u_{R}}\right)=u_{R}^{p-\frac{n+2}{n-2}}, \quad 1 \leq|x| \leq 9 .
$$

By above lemma,

$$
\max _{|x|=4} \int_{B_{3}(x)}\left(u_{R}\right)^{\frac{n(p-1)}{2}} \leq \int_{|y| \geq R} u^{\frac{n(p-1)}{2}} \rightarrow 0 \text { as } R \rightarrow \infty .
$$

Fix some positive number $R_{0} \geq 1$ such that

$$
\max _{|x|=4} \int_{B_{3}(x)}\left(u_{R}\right)^{\frac{n(p-1)}{2}} \leq \int_{|y| \geq R_{0}} u^{\frac{n(p-1)}{2}} \leq \delta_{0}, \quad \forall R \geq R_{0} .
$$

Thus, from the above lemma, we see

$$
\max _{\bar{B}_{2}(x)} u_{R} \leq \frac{1}{\delta_{0}}, \quad \forall|x|=4 .
$$

By Harnack inequality,

$$
\max _{\bar{B}_{1}(x)} u_{R} \leq C \min _{\bar{B}_{1}(x)} u_{R}, \quad \forall|x|=4 .
$$

It follows from (5.2.2) and the above inequality that

$$
C^{-1}\left(\min _{\partial B_{1}(0)} u\right) R^{-\frac{2}{\alpha(p-1)}} \leq \min _{\bar{B}_{1 / 2}(x)} u_{R} \leq \max _{\bar{B}_{1 / 2}(x)} u_{R} \leq C u(0)^{-\frac{1}{\alpha}} R^{-\frac{2}{\alpha(p-1)}} \quad \forall|x|=4 .
$$

For $R \geq \max \left\{R_{0}, u(0)^{-\frac{p-1}{2}}\right\}$,

$$
\sigma_{k}^{1 / k}\left(A^{R^{\frac{2}{\alpha(p-1)}} u_{R}}\right)=R^{-((n-2) p-n)}\left(R^{\frac{2}{\alpha(p-1)}} u_{R}\right)^{p-\frac{n+2}{n-2}} .
$$

Now we have

$$
C^{-1} \leq R^{\frac{2}{\alpha(p-1)}} u_{R} \leq C \text { in } B_{\frac{1}{2}}(x) .
$$

Applying local estimates in [36] to $R^{\frac{2}{\alpha(p-1)}} u_{R}$, we see

$$
\sum_{i=0}^{2}\left|\nabla^{i}\left(R^{\frac{2}{\alpha(p-1)}} u_{R}\right)(x)\right| \leq C, \quad \forall|x| \geq R_{0}
$$

where C is some positive constant independent of R. Therefore we have

$$
0<\liminf _{|x| \rightarrow \infty}\left(|x|^{n-2} u(x)\right) \leq \limsup _{|x| \rightarrow \infty}\left(|x|^{n-2} u(x)\right)<\infty
$$

and

$$
\underset{|x| \rightarrow \infty}{\lim \sup }\left(|x|^{n-1}|\nabla u(x)|+|x|^{n}\left|\nabla^{2} u(x)\right|\right)<\infty .
$$

Integrating equation $-\Delta u \geq u^{p}$ on $B_{r}(0)(r>1)$ leads to

$$
\int_{B_{r}(0)} u^{p} d x \leq\left|\int_{\partial B_{r}(0)} \frac{\partial u}{\partial v}\right| \leq\left(\max _{|x|=r}|\nabla u(x)|\right)\left(\left|\partial B_{r}(0)\right|\right) .
$$

From the above inequality, we see

$$
\int_{B_{R}(0)} u^{p} \leq C, \forall R>0 .
$$

5.3 A Liouville type theorem

In this section, we will give another proof of the Liouville type theorem obtained by Li and Li [49].

First, we need a lemma:
Lemma 5.3.1. If u is a positive solution to $\sigma_{k}^{1 / k}\left(A^{u}\right)=u^{p-\frac{n+2}{n-2}}$ in \mathbb{R}^{n} in the Γ_{k}^{+}class and $\lim _{x \rightarrow \infty}|x|^{n-2} u(x) \leq C_{1}$, where $\frac{n}{n-2}<p<\frac{n+2}{n-2}$, then

$$
\max _{\bar{B}_{R}(0)} u \leq c_{0} \min _{\bar{B}_{R}(0)} u
$$

where c_{0} is a positive constant independent of R.

Proof. Let

$$
v(x)=R^{\frac{2}{p-1}} u(R x), \quad x \in B_{1}(0)
$$

We see that v is a solution to $\sigma_{k}^{1 / k}\left(A^{v}\right)=v^{\left(p-\frac{n+2}{n-2}\right)}$ in $B_{1}(0)$. Since $\lim _{x \rightarrow \infty}|x|^{n-2} u(x) \leq C_{1}$, there exists a constant $M>1$ such that

$$
u(x) \leq \frac{C_{1}}{|x|^{n-2}}, \quad \forall|x| \geq M
$$

It follows that

$$
v(x)=R^{\frac{2}{p-1}} u(R x) \leq C_{2}:=\max \left\{M^{\frac{2}{p-1}} \max _{B_{M}(0)} u, C_{1}\right\} .
$$

By Harnack inequality in [36], we see that

$$
\max _{\bar{B}_{1 / 2}(0)} v \leq c_{0} \min _{\bar{B}_{1 / 2}(0)} v
$$

where c_{0} is independent of R. Then we get

$$
\max _{\bar{B}_{R / 2}(0)} u \leq c_{0} \min _{\bar{B}_{R / 2}(0)} u
$$

Proof of Corollary 1.4.8. We will prove this corollary by the method of moving spheres.
For $x \in \mathbb{R}^{n}$ and $\lambda>0$, consider the Kelvin transformation of u :

$$
u_{x, \lambda}(y)=\frac{\lambda^{n-2}}{|y-x|^{n-2}} u\left(x+\frac{\lambda^{2}(y-x)}{|y-x|^{2}}\right), \quad y \in \mathbb{R}^{n} \backslash\{x\}
$$

We will show that

$$
u_{x, \lambda}(y) \leq u(y), \quad \forall \lambda>0, \quad x \in \mathbb{R}^{n}, \quad|y-x| \geq \lambda
$$

Then by a calculus lemma [56], we get the conclusion

$$
u \equiv \text { constant }
$$

Without loss of generality, take $x=0$, and use u_{λ} to denote $u_{0, \lambda}$. From Lemma 2.1 in [56], there exists $\lambda_{0}>0$ such that

$$
u_{\lambda}(y) \leq u(y),|y| \geq \lambda, \quad \forall \lambda \in\left(0, \lambda_{0}\right]
$$

Then we define

$$
\bar{\lambda}:=\sup \left\{\mu>0 \mid u_{\lambda} \leq u \text { in } \mathbb{R}^{n} \backslash B_{\lambda}(0), \quad \forall 0<\lambda<\mu\right\}
$$

We claim that $\bar{\lambda}=\infty$. We prove it by contradiction. Suppose $\bar{\lambda}<\infty$, we will get that there exists $\varepsilon_{0} \in(0,1)$ such that

$$
u_{\lambda}(y) \leq u(y), \quad|y| \geq \lambda, \quad \forall \lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right]
$$

This is a contradiction to the definition of $\bar{\lambda}$. By the maximum principle, we see that

$$
u_{\bar{\lambda}}(y)<u(y), \quad|y|>\bar{\lambda}
$$

In particular, we have

$$
u_{\bar{\lambda}}(y)<u(y), \quad R_{0} \geq|y|>\bar{\lambda}
$$

where $R_{0}=c_{0}^{\frac{1}{n-2}}(\bar{\lambda}+1)$ (c_{0} is the same one in the above lemma). By the uniform continuity of u, there exists a small constant $\varepsilon_{0} \in(0,1)$ such that

$$
\begin{equation*}
u_{\lambda}(y) \leq u(y), \quad R_{0} \geq|y|>\lambda, \lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right] \tag{5.3.1}
\end{equation*}
$$

By the superharmonicity of u, we see that

$$
u(y) \geq \frac{R_{0}^{n-2}}{|y|^{n-2}} \min _{\partial B_{R_{0}}(0)} u, \quad|y| \geq R_{0}
$$

Meanwhile we have

$$
u_{\lambda}(y)=\frac{\lambda^{n-2}}{|y|^{n-2}} u\left(\frac{\lambda^{2} y}{|y|^{2}}\right) \leq \frac{(\bar{\lambda}+1)^{n-2}}{|y|^{n-2}} \max _{\bar{B}_{R_{0}}(0)} u \leq \frac{(\bar{\lambda}+1)^{n-2}}{|y|^{n-2}} c_{0} \min _{\bar{B}_{R_{0}}(0)} u \leq \frac{R_{0}^{n-2}}{|y|^{n-2}} \min _{\partial B_{R_{0}}(0)} u
$$

for $|y| \geq R_{0}$ and $\lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right]$. Combining the above inequalities, we see

$$
\begin{equation*}
u_{\lambda}(y) \leq u(y), \quad|y| \geq R_{0}, \quad \lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right] \tag{5.3.2}
\end{equation*}
$$

From (5.3.1) and 5.3.2, we get

$$
u_{\lambda}(y) \leq u(y), \quad|y| \geq \lambda, \quad \lambda \in\left[\bar{\lambda}, \bar{\lambda}+\varepsilon_{0}\right]
$$

REFERENCES

[1] A. D. Alexandrov, Uniqueness theorems for surfaces in the large I, Vestn. Leningr. Univ. 11 (1956), 5-17. English transl. in Am. Math. Soc. Transl. 21 (1962), 341-354.
[2] A. D. Alexandrov, Uniqueness theorems for surfaces in the large II, Vestn. Leningr. Univ. 12 (1957), 15-44. English transl. in Am. Math. Soc. Transl. 21 (1962), 354-388.
[3] A. D. Alexandrov, Uniqueness theorems for surfaces in the large III, Vestn. Leningr. Univ. 13 (1958), 14-26. English transl. in Am. Math. Soc. Transl. 21 (1962), 389-403.
[4] A. D. Alexandrov, Uniqueness theorems for surfaces in the large IV, Vestn. Leningr. Univ. 13 (1958), 27-34. English transl. in Am. Math. Soc. Transl. 21 (1962), 403-411.
[5] A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Vestn. Leningr. Univ. 13 (1958), 5-8. English transl. in Am. Math. Soc. Transl. 21 (1962), 412-416.
[6] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55 (1976), 269-296.
[7] P. Aviles, A study of the singularities of solutions of a class of nonlinear elliptic partial differential equations. Commun. Partial Differ. Equ. 7 (1982), 609-643.
[8] P. Aviles, Local behavior of solutions of some elliptic equations. Comm. Math. Phys. 108 (1987), 177-192.
[9] A. Bahri, "Proof of the Yamabe conjecture without the positive mass conjecture for locally conformally flat manifolds" in Nonlinear Variational Problems and Partial Differential Equations (Isola d'Elba, 1990), Pitman Res. Notes Math. Ser. 320, Longman Sci. Tech., Harlow, 1995, 13-43.
[10] A. Bahri and H. Brezis, "Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent" in Topics in Geometry. Progr. Nonlinear Differential Equations Appl. 20, Birkhäuser, Boston, 1996, 1-100.
[11] R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 34 (1986), 661-693.
[12] A. L. Besse, Einstein Manifolds. Springer-Verlag, Berlin, 1987
[13] T. Branson and A. Gover, Variational status of a class of fully nonlinear curvature prescription problems. Calc. Var. Part. Diff. Eq. 32 (2008), 253-262.
[14] S. Brendle, Blow-up phenomena for the Yamabe equation I. J. Amer. Math. Soc. 21 (2008), 951-979.
[15] S. Brendle and F. C. Marques, Blow-up phenomena for the Yamabe equation II. J. Differ. Geom. 81 (2009), 225-250.
[16] S. Brendle and J. Viaclovsky, A variational characterization for $\sigma_{n / 2}$. Calc. Var. Partial Differential Equations 20 (2004), 399-402.
[17] L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42 (1989), 271-297.
[18] M. Cantor, Elliptic operators and the decomposition of tensor fields, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 235-262.
[19] G. Catino and L. Mazzieri, Connected sum construction for σ_{k}-Yamabe metrics. J. Geom. Anal. 23 (2013), 812-854.
[20] S.-Y. A. Chang, M. Gursky and P. C. Yang, An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann. of Math. (2) 155 (2002), 709-787.
[21] S.-Y. A. Chang, M. Gursky and P. C. Yang, An a prior estimate for a fully nonlinear equation on four-manifolds. J. D’Analyse Math. 87 (2002), 151-186.
[22] S.-Y. A. Chang, M. Gursky and P. C. Yang, Entire solutions of a fully nonlinear equation, in Lectures on Partial Differential Equations, pp. 43-60. New Stud. Adv. Math., 2. Int. Press, Sommerville, MA, 2003.
[23] S.-Y. A. Chang, Z. Han and P. C. Yang, Classification of singular radial solutions to the σ_{k} Yamabe equation on annular domains. J. Differ. Equ. 216 (2005), 482-501.
[24] S.-Y. A. Chang, F. Hang and P. C. Yang, On a class of locally conformally flat manifolds. Int. Math. Res. Not. 3 (2004), 185-209.
[25] C. C. Chen and C. S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes. Comm. Pure Appl. Math. 50 (1997), 971-1017.
[26] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63 (1991), 615-622.
[27] G. C. Evans, Potentials and positively infinite singularities of harmonic functions. Monatsh. Math. 43 (1936) 419-424.
[28] D. Finn, Positive solutions to nonlinear elliptic equations with prescribed singularities. Ph.D. thesis, Northeastern University, 1995.
[29] Y. Ge and G. Wang, On a fully nonlinear Yamabe problem. Ann. Sci. École Norm. Sup. (4) 39 (2006), 569-598.
[30] B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (1979), 209-243.
[31] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34 (1981), 525-598.
[32] M. González, Singular sets of a class of locally conformally flat manifolds. Duke Math. J. 129 (2005), 551-572.
[33] M. González, Removability of singularities for a class of fully non-linear elliptic equations. Calc. Var. Partial Differential Equations. 27 (2006), 439-466.
[34] M. González, Classification of singularities for a subcritical fully nonlinear problem. Pacific J. Math. 226 (2006), 83-102.
[35] P. Guan, C. S. Lin and G. Wang, Schouten tensor and some topological properties. Commun. Anal. Geom. 13 (2005), 887-902.
[36] P. Guan and G. Wang, Local estimates for a class of fully nonlinear equations arising from conformal geometry. Int. Math. Res. Not. 2003, 1413-1432.
[37] P. Guan and G. Wang, A fully nonlinear conformal flow on locally conformally flat manifolds. J. Reine Angew. Math. 557 (2003) 219-238.
[38] P. Guan and G. Wang, Geometric inequalities on locally conformally flat manifolds. Duke Math. J. 124 (2004), 177-212.
[39] P. Guan, J. Viaclovsky and G. Wang, Some properties of the Schouten tensor and applications to conformal geometry. Trans. Amer. Math. Soc. 355 (2003), 925-933.
[40] M. Gursky and J. Viaclovsky, Volume comparison and the σ_{k}-Yamabe problem. Adv. Math. 187 (2004), 447-487.
[41] M. Gursky and J. Viaclovsky, Prescribing symmetric functions of the eigenvalues of the Ricci tensor. Ann. of Math. (2) 166 (2007), 475-531.
[42] Z. Han, Y. Y. Li and E. Teixeira, Asymptotic behavior of solutions to the σ_{k}-Yamabe equation near isolated singularities. Invent math. 182 (2010), 635-684.
[43] P. Hartman, Ordinary differential equations. Reprint of the second edition. Birkhuser, Boston, Mass., 1982.
[44] N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities. Invent. Math. 135 (1999), 233-272.
[45] M. Khuri, F. C. Marques and R. Schoen, A compactness theorem for the Yamabe problem. J. Differ., Geom. 81 (2009) 143-196.
[46] D. Labutin, Wiener regularity for large solutions of nonlinear equations. Ark. Mat. 41 (2003), 307-339.
[47] J. Lee and T. Parker, The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91.
[48] A. Li and Y. Y. Li, On some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math. 56 (2003), 1414-1464.
[49] A. Li and Y. Y. Li, On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe. Acta Math. 195 (2005), 117-154.
[50] Y. Y. Li, $O n-\Delta u=K(x) u^{5}$ in \mathbb{R}^{3}. Comm. Pure Appl. Math. 46 (1993), 303-340.
[51] Y. Y. Li, Conformally invariant fully nonlinear elliptic equations and isolated singularities. Journal of Functional Analysis 233 (2006), 380-425.
[52] Y. Y. Li, Local gradient estimates of solutions to some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math., 62 (2009), 1293-1326.
[53] Y. Y. Li and L. Nguyen, A compactness theorem for a fully nonlinear Yamabe problem under a lower Ricci curvature bound. Journal of Functional Analysis 266 (2014), 3741-3771.
[54] Y. Y. Li and L. Nguyen, Harnack inequalities and Bôcher-type theorems for conformally invariant fully nonlinear degenerate elliptic equations. Comm. Pure Appl. Math. 67 (2014), 1843-1876.
[55] Y. Y. Li and L. Nguyen, Symmetry, quantitative Liouville theorems and analysis of large solutions of conformally invariant fully nonlinear elliptic equations. arXiv:1604.06039v1. To appear in Calc. Var. Partial Differential Equations.
[56] Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d'Analyse Mathematique, 90 (2003), 27-87.
[57] Y. Y. Li and L. Zhang, Compactness of solutions to the Yamabe problem. II. Calc. Var. Partial Differential Equations 24 (2005), 185-237.
[58] Y. Y. Li and L. Zhang, Compactness of solutions to the Yamabe problem. III. Journal of Functional Analysis 245 (2007), 478-474.
[59] C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal and projective transformation. In: Contributions to Analysis. Academic Press, New York, 1995, 245-275.
[60] R. Lockhart and R. McOwen, Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 409-447.
[61] M. Marcus and L. Veron, Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 501-542.
[62] F. C. Marques, A priori estimates for the Yamabe problem in the nonlocally conformally flat cases. J. Differ. Geom. 71 (2005), 315-346.
[63] R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differ. Geom. 44 (1996), 331-370.
[64] R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities. Duke Math. J. 99 (1999), 353-418.
[65] L. Mazzieri and C. Ndiaye, Existence of solutions for the singular σ_{k} Yamabe problem. Preprint.
[66] L. Mazzieri and A. Segatti, Constant σ_{k}-curvature metrics with Delaunay type ends. Adv. Math. 229 (2012), 3147-3191,
[67] R. McOwen, "Singularities and the conformal scalar curvature equation". In: Geometric Analysis and Nonlinear Partial Differential Equations, Denton, TX, 1990. Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993, 221-233.
[68] M. Obata, The conjectures on conformal transformations of Riemannian manifolds. J. Differential Geom., 6 (1971), 247-258.
[69] F. Pacard, The Yamabe problem on subdomains of even-dimensional spheres. Topol. Methods Nonlinear Anal. 6 (1995), 137-150.
[70] N. Roidos and E. Schrohe, Bounded imaginary powers of cone differential operators on higher order Mellin-Sobolev spaces and applications to the Cahn-Hilliard equation. J. Differential Equations 257 (2014), 611-637.
[71] N. Roidos and E. Schrohe, Existence and maximal L^{p}-regularity of solutions for the porous medium equation on manifolds with conical singularities. Comm. Partial Differential Equations 41 (2016), 1441-1471.
[72] N. Roidos and E. Schrohe, Smoothness and long time existence for solutions of the porous medium equation on manifolds with conical singularities. arXiv:1708.07542.
[73] J. Serrin, A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43 (1971), 304-318.
[74] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differential Geom. 20 (1984), 479-495.
[75] R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Commun. Pure Appl. Math. 41 (1988), 317-392.
[76] R. Schoen, Courses at Stanford University, 1988, and New York University, 1989.
[77] R. Schoen, "On the number of constant scalar curvature metrics in a conformal class" in Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math. 52, Longman Sci. Tech., Harlow, 1991, 311-320.
[78] R. Schoen and S. T. Yau, On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65 (1979), 45-76.
[79] R. Schoen and S. T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92 (1988), 47-71.
[80] S. D. Taliaferro and L. Zhang, Asymptotic symmetries for conformal scalar curvature equations with singularity. Calc. Var. Partial Differ. Equ. 26 (2006), 401-428.
[81] W. Sheng, N. Trudinger and X. J. Wang, The Yamabe problem for higher order curvatures. J. Differ. Geom. 77 (2007), 515-553.
[82] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274.
[83] J. Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J. 101 (2000), 283-316.
[84] J. Viaclovsky, Conformally invariant Monge-Ampère equations: global solutions. Trans. Amer. Math. Soc., 352 (2000), 4371-4379.
[85] L. Veron, Singularités éliminables d'équations elliptiques non linéaires. J. Differ. Equ. 41 (1981), 225-242.
[86] Y. P. Wang, Asymptotic behavior of solutions to the conformal quotient equation. Thesis (Ph.D.) - Rutgers The State University of New Jersey - New Brunswick. 2013. 78 pp.
[87] H. Yamabe, On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12 (1960), 21-37.
[88] W. Zhang and J. Bao, Regularity of very weak solutions for nonhomogeneous elliptic equation. Commun. Contemp. Math. 15 (2013), 19 pp.

VITA

Wei Zhang

2015- Postdoc, Leibniz Universität Hannover, Germany.
2011-2014 Ph. D. in Mathematics, Beijing Normal University, China.
2008-2011 M. Sc. in Mathematics, Beijing Normal University, China.
2004-2008 B. Sc. in Mathematics, Beijing Technology and Business University, China.

