A van Benthem theorem for modal team semantics

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/857
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/881
dc.contributor.author Kontinen, Juha
dc.contributor.author Müller, Julian-Steffen
dc.contributor.author Schnoor, Henning
dc.contributor.author Vollmer, Heribert
dc.date.accessioned 2016-12-16T09:39:05Z
dc.date.available 2016-12-16T09:39:05Z
dc.date.issued 2015
dc.identifier.citation Kontinen, J.; Müller, J.-S.; Schnoor, H.; Vollmer, H.: A van Benthem theorem for modal team semantics. In: Leibniz International Proceedings in Informatics, LIPIcs 41 (2015), S. 277-291. DOI: https://doi.org/10.4230/LIPIcs.CSL.2015.277
dc.description.abstract The famous van Benthem theorem states that modal logic corresponds exactly to the fragment of first-order logic that is invariant under bisimulation. In this article we prove an exact analogue of this theorem in the framework of modal dependence logic MDL and team semantics. We show that modal team logic MTL, extending MDL by classical negation, captures exactly the FO-definable bisimulation invariant properties of Kripke structures and teams. We also compare the expressive power of MTL to most of the variants and extensions of MDL recently studied in the area. eng
dc.language.iso eng
dc.publisher Wadern : Schloss Dagstuhl- Leibniz-Zentrum für Informatik GmbH
dc.relation.ispartof 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, 7-10 September 2015
dc.relation.ispartofseries Leibniz International Proceedings in Informatics, LIPIcs 41 (2015)
dc.rights CC BY 4.0
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Bisimulation eng
dc.subject Expressivity eng
dc.subject Generalized dependence atom eng
dc.subject Inclusion eng
dc.subject Team semantics eng
dc.subject Formal logic eng
dc.subject Inclusions eng
dc.subject Linearization eng
dc.subject Reconfigurable hardware eng
dc.subject Semantics eng
dc.subject Dependence logic eng
dc.subject Independence eng
dc.subject Modal logic eng
dc.subject Computer circuits eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.subject.ddc 510 | Mathematik ger
dc.title A van Benthem theorem for modal team semantics
dc.type article
dc.type conferenceObject
dc.type Text
dc.relation.issn 18688969
dc.relation.doi https://doi.org/10.4230/LIPIcs.CSL.2015.277
dc.bibliographicCitation.volume 41
dc.bibliographicCitation.firstPage 277
dc.bibliographicCitation.lastPage 291
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics