Euler equations on a semi-direct product of the diffeomorphisms group by itself

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/1675
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/1700
dc.contributor.author Escher, Joachim
dc.contributor.author Ivanov, Rossen
dc.contributor.author Kolev, Boris
dc.date.accessioned 2017-07-04T10:06:07Z
dc.date.available 2017-07-04T10:06:07Z
dc.date.issued 2011
dc.identifier.citation Escher, J.; Ivanov, R.; Kolev, B.: Euler equations on a semi-direct product of the diffeomorphisms group by itself. In: Journal of Geometric Mechanics 3 (2011), Nr. 3, S. 313-322. DOI: https://doi.org/10.3934/jgm.2011.3.313
dc.description.abstract The geodesic equations of a class of right invariant metrics on the semi-direct product Diff(S 1)sDiff(S 1) are studied. The equations are explicitly described, they have the form of a system of coupled equations of Camassa-Holm type and possess singular (peakon) solutions. Their integrability is further investigated, however no compatible bi-Hamiltonian structures on the corresponding dual Lie algebra (Vect(S 1) sVect(S 1))* are found. eng
dc.description.sponsorship Science Foundation Ireland (SFI)/09/RFP/MTH2144
dc.description.sponsorship Science Foundation Ireland (SFI)/09/RFP/MTH2144
dc.language.iso eng
dc.publisher Springfield, MO : American Institute of Mathematical Sciences
dc.relation.ispartofseries Journal of Geometric Mechanics 3 (2011), Nr. 3
dc.rights CC BY-NC-SA 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/3.0/
dc.subject Dieomorphism group of the circle eng
dc.subject Euler equation eng
dc.subject Integrable systems eng
dc.subject Peakons eng
dc.subject.ddc 510 | Mathematik ger
dc.title Euler equations on a semi-direct product of the diffeomorphisms group by itself
dc.type article
dc.type Text
dc.relation.issn 1941-4889
dc.relation.doi https://doi.org/10.3934/jgm.2011.3.313
dc.bibliographicCitation.issue 3
dc.bibliographicCitation.volume 3
dc.bibliographicCitation.firstPage 313
dc.bibliographicCitation.lastPage 322
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics