Show simple item record

dc.identifier.uri Mader, W. 2017-07-04T10:06:03Z 2018-02-07T23:05:15Z 2017
dc.identifier.citation Mader, W.: Critical vertices in k-connected digraphs. In: Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 87 (2017), S. 409–419. DOI:
dc.description.abstract It is proved that every non-complete, finite digraph of connectivity number k has a fragment F containing at most k critical vertices. The following result is a direct consequence: every k-connected, finite digraph D of minimum out- and indegree at least 2k+m−1 for positive integers k, m has a subdigraph H of minimum outdegree or minimum indegree at least m−1 such that D−x is k-connected for all x∈V(H). For m=1, this implies immediately the existence of a vertex of indegree or outdegree less than 2k in a k-critical, finite digraph, which was proved in Mader (J Comb Theory (B) 53:260–272, 1991). The final publication is available at Springer via eng
dc.language.iso eng
dc.publisher Heidelberg : Springer Verlag
dc.relation.ispartofseries Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg (2017)
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.subject Connectivity-critical vertices eng
dc.subject k-connected digraphs eng
dc.subject Survey on k-critical graphs eng
dc.subject.ddc 510 | Mathematik ger
dc.title Critical vertices in k-connected digraphs eng
dc.type article
dc.type Text
dc.relation.issn 0025-5858
dc.bibliographicCitation.issue 2
dc.bibliographicCitation.volume 87
dc.bibliographicCitation.firstPage 409
dc.bibliographicCitation.lastPage 419
dc.description.version acceptedVersion
tib.accessRights frei zug�nglich

Files in this item

This item appears in the following Collection(s):

Show simple item record


Search the repository


My Account

Usage Statistics