Modelling Water Transport Limitations and Ionic Voltage Losses in Bipolar Membrane Water Electrolysis

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16422
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16549
dc.contributor.author Weiland, Oskar
dc.contributor.author Trinke, Patrick
dc.contributor.author Bensmann, Boris
dc.contributor.author Hanke-Rauschenbach, Richard
dc.date.accessioned 2024-02-27T11:45:26Z
dc.date.available 2024-02-27T11:45:26Z
dc.date.issued 2023
dc.identifier.citation Weiland, O.; Trinke, P.; Bensmann, B.; Hanke-Rauschenbach, R.: Modelling Water Transport Limitations and Ionic Voltage Losses in Bipolar Membrane Water Electrolysis. In: Journal of The Electrochemical Society 170 (2023), 054505. DOI: https://doi.org/10.1149/1945-7111/acd02c
dc.description.abstract This work analyses the water transport and ionic losses in bipolar membranes at water electrolysis cells conditions. In common bipolar setups, water is split at the bipolar interface between the anion exchange membrane (AEM) and the cation exchange membrane (CEM). Accordingly, ions (protons and hydroxide ions) are transported to the electrodes, carrying the water out of both membranes via electro-osmotic drag. These outfluxes plus the required water amount for the splitting process have to be compensated by water diffusion towards the bipolar interface. The effect of water transport on the polarisation behaviour is additionally shown. Mayerhöfer et al. [ACS Appl. Energy Mater., 3, 9635 (2020)] and Oener et al.[ACS Energy Lett., 6, 1 (2021)] decreased polarization losses and increased the current density range by reducing either the AEM or the CEM thickness, respectively. Our model validates these improvements by calculating the limiting current density caused by dehydration of the membranes. Further analysis shows that thinner AEM thicknesses decrease membrane voltage losses more than thinner CEM due to lower ionic conductivities and faster dehydration of AEMs. Thin CEMs on the other hand, are more efficient at increasing the limiting current density. eng
dc.language.iso eng
dc.publisher Bristol : IOP Publishing
dc.relation.ispartofseries Journal of The Electrochemical Society 170 (2023)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Computational electromagnetics eng
dc.subject Current density eng
dc.subject Electrolysis eng
dc.subject Electrolytic cells eng
dc.subject Ion exchange membranes eng
dc.subject Ions eng
dc.subject Polarization eng
dc.subject Anion exchange eng
dc.subject Bipolar membranes eng
dc.subject Cation exchange membranes eng
dc.subject Energy eng
dc.subject Exchange membranes eng
dc.subject Limiting current density eng
dc.subject Membrane thickness eng
dc.subject Voltage loss eng
dc.subject Water electrolysis eng
dc.subject Water transport eng
dc.subject Dehydration eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc 540 | Chemie
dc.subject.ddc 530 | Physik
dc.title Modelling Water Transport Limitations and Ionic Voltage Losses in Bipolar Membrane Water Electrolysis eng
dc.type Article
dc.type Text
dc.relation.essn 1945-7111
dc.relation.issn 0013-4651
dc.relation.doi https://doi.org/10.1149/1945-7111/acd02c
dc.bibliographicCitation.volume 170
dc.bibliographicCitation.firstPage 054505
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber 054505


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken