A Virtual Element Method for Contact Modeling and Dynamics

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/14600
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/14718
dc.contributor.author Cihan, Mertcan eng
dc.contributor.editor Wriggers, Peter
dc.date.accessioned 2023-09-05T07:19:43Z
dc.date.available 2023-09-05T07:19:43Z
dc.date.issued 2023
dc.identifier.citation Cihan, Mertcan: A virtual element method for contact modeling and dynamics. Hannover : Institut für Kontinuumsmechanik, Leibniz Universität Hannover, 2023 (Leibniz Universität Hannover, Institut für Kontinuumsmechanik ; B 23/3), x, 136 S. ISBN 978-3-941302-51-8 eng
dc.description.abstract Decreasing resources and limited energy results in a greater demand for virtual development processes and efficient product development. This trend points out the importance of digitalization and the subsequent need for efficient and accurate numerical prediction methods for product development. Due to their flexibility, numerical methods are gradually and steadily replacing physical tests in industrial product developments. The finite element method is perhaps the most well-known and widely used numerical method in industry and science. Increasing computer capabilities and further developments of these methods in recent years have increased the amount of application fields, including civil, automotive, naval, space and geo-technical engineering. However, along with complex geometries the spatial discretization of the domain emerges as a very time consuming step. Due to the fact that the classical finite element method is restricted to basic regular shaped element topologies, a more general choice of element shapes would give more flexibility. Within mesh-based methods, polygonal methods are a helpful alternative and showed great performance in engineering and science. However, most of these methods seem to need more computational effort and beside the aforementioned advantage of flexible element shapes, disadvantages appear as well. A relatively new method, the virtual element method, promises great numerical properties and can be seen as a generalization of the classical finite element method. All new methods need to be investigated for different applications in engineering and science before they can be applied commercially. This work deals with the application of the virtual element method to dynamic and elastoplastic material behavior. To deal with elastic and plastic incompressibility, a mixed virtual element formulation is presented as well. As a further development, the virtual element method is used to model three dimensional contact with different contact discretizations. A new projection algorithm is developed to manipulate the mesh at the contact interface, such that a very simple and efficient node-to-node contact formulation can be used. Various numerical examples for all aforementioned applications are performed, including benchmark problems such as the classical patch test. For comparison purposes, different finite element formulations are also adopted. As a final example, all models, including plasticity, dynamics and contact, are coupled to model mechanical impact. eng
dc.description.abstract Eine Verringerung von Ressourcen und die damit einhergehende Energieknappheit f ¨uhren zu einem erh¨ohten Bedarf an virtuellen Entwicklungsprozessen und effizienter Produktentwicklung. Dieser Trend verdeutlicht die Bedeutung der Digitalisierung und den daraus resultierenden Bedarf an effizienten und hoch genauen numerischen Vorhersagemethoden f ¨ur die Produktentwicklung. Aufgrund ihrer Flexibilit¨at und mit steigenden Rechnerkapazit¨aten ersetzen numerische Methoden allm¨ahlich und stetig physikalische Tests in der industriellen Produktentwicklung. Die Finite Elemente Methode ist vielleicht die bekannteste und am weitesten verbreitete numerische Methode in Industrie und Wissenschaft. Durch die zunehmenden Rechnerkapazit ¨aten und die Weiterentwicklung dieser Methoden in den letzten Jahren hat sich die Zahl der Anwendungsbereiche vergr¨oßert. Numerische Methoden werden unter anderem im Bauwesen, im Automobilbau, in der Schifffahrt, in der Luft- und Raumfahrt und in der Geotechnik eingesetzt. Bei komplexen Geometrien erweist sich jedoch die r¨aumliche Diskretisierung des Gebiets als ein sehr zeitaufw¨andiger Prozess. Da die klassische Finite Elemente Methode auf einfache, regelm¨aßig geformte Elementgeometrien beschr¨ankt ist, w¨urde eine allgemeinere Auswahl von Elementgeometrien mehr Flexibilit¨at bieten. Innerhalb der netzbasierten Methoden sind polygonale Methoden eine hilfreiche Alternative und haben sich bereits in Industrie und Wissenschaft bew¨ahrt. Allerdings scheinen die meisten dieser Methoden einen h¨oheren Rechenaufwand zu erfordern, und neben dem bereits erw¨ahnten Vorteil der flexiblen Elementgeometrien treten auch gewisse Nachteile auf. Eine relativ neue Methode, die Virtuelle Elemente Methode, verspricht gute numerische Eigenschaften und kann als eine Verallgemeinerung der klassischen Finite Elemente Methode angesehen werden. Wie bei allen neuen Methoden m¨ussen auch hier verschiedene Anwendungen in der Industrie und Wissenschaft untersucht werden, bevor die Methode kommerziell eingesetzt werden kann. Diese Arbeit befasst sich mit der Anwendung der Methode der virtuellen Elemente auf dynamisches und elasto-plastisches Materialverhalten. Um elastische und plastische Inkompressibilit¨at zu behandeln, wird auch eine gemischte virtuelle Elementformulierung vorgestellt. In einem weiteren Schritt wird die Virtuelle Elemente Methode zur Modellierung dreidimensionaler Kontaktprobleme mit verschiedenen Kontaktdiskretisierungen verwendet. Es wird ein neuer Projektionsalgorithmus vorgestellt, welcher das Netz an der Kontaktschnittstelle so manipuliert, dass eine sehr einfache und effiziente Knoten-zu-Knoten Kontaktformulierung verwendet werden kann. Es werden verschiedene numerische Beispiele f ¨ur alle oben genannten Anwendungen behandelt, darunter auch Benchmark-Probleme wie der klassische Patch-Test. Um einen geeigneten Vergleich durchzuf¨uhren, werden die entwickelten Formulierungen mit verschiedene Finite Elemente Formulierungen verglichen. Als letztes Beispiel werden alle Modelle, einschließlich Plastizit¨at, Dynamik und Kontakt, gekoppelt, um einen mechanischen Stoß zu modellieren. eng
dc.language.iso eng eng
dc.publisher Hannover : Institut für Kontinuumsmechanik
dc.relation.ispartofseries B23;3
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. eng
dc.subject Virtual element method eng
dc.subject Polygonal methods eng
dc.subject Dynamic eng
dc.subject mixed methods eng
dc.subject contact mechanics eng
dc.subject Impact eng
dc.subject Stabilized methods eng
dc.subject Virtuelle Elemente Methode ger
dc.subject Stabilisierte Methoden ger
dc.subject Mechanischer Stoß ger
dc.subject Kontaktmechanik ger
dc.subject Gemischte Methoden ger
dc.subject Dynamik ger
dc.subject Polygonale Methoden ger
dc.subject.ddc 500 | Naturwissenschaften eng
dc.subject.ddc 600 | Technik eng
dc.title A Virtual Element Method for Contact Modeling and Dynamics eng
dc.type DoctoralThesis eng
dc.type Text eng
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich eng


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken