Ultra-thin passivation layers in Cu(In,Ga)Se2 thin-film solar cells: full-area passivated front contacts and their impact on bulk doping

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/10832
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10910
dc.contributor.author Werner, Florian
dc.contributor.author Veith-Wolf, Boris
dc.contributor.author Melchiorre, Michele
dc.contributor.author Babbe, Finn
dc.contributor.author Schmidt, Jan
dc.contributor.author Siebentritt, Susanne
dc.date.accessioned 2021-04-30T05:23:10Z
dc.date.available 2021-04-30T05:23:10Z
dc.date.issued 2020
dc.identifier.citation Werner, F.; Veith-Wolf, B.; Melchiorre, M.; Babbe, F.; Schmidt, J. et al.: Ultra-thin passivation layers in Cu(In,Ga)Se2 thin-film solar cells: full-area passivated front contacts and their impact on bulk doping. In: Scientific Reports 10 (2020), Nr. 1, 7530. DOI: https://doi.org/10.1038/s41598-020-64448-9
dc.description.abstract In the search for highly transparent and non-toxic alternative front layers replacing state-of-the-art CdS in Cu(In,Ga)Se2 thin-film solar cells, alternatives rarely exceed reference devices in terms of efficiency. Full-area ultra-thin aluminium oxide tunnelling layers do not require any contact patterning and thus overcome the main drawback of insulating passivation layers. Even a few monolayers of aluminium oxide can be deposited in a controlled manner by atomic layer deposition, they show excellent interface passivation properties, low absorption, and suitable current transport characteristics on test devices. Depositing a ZnO-based transparent front contact, however, results in extremely poor solar cell performance. The issue is not necessarily a low quality of the alternative front layer, but rather the intricate relation between front layer processing and electronic bulk properties in the absorber layer. We identify three challenges critical for the development of novel front passivation approaches: (i) both Cd and Zn impurities beneficially reduce the high native net dopant concentration in the space charge region, (ii) sputter deposition of ZnO damages the passivation layer resulting in increased interface recombination, (iii) thermal treatments of devices with ZnO layer result in substantial Zn diffusion, which can penetrate the full absorber thickness already at moderate temperatures. © 2020, The Author(s). eng
dc.language.iso eng
dc.publisher [London] : Macmillan Publishers Limited, part of Springer Nature
dc.relation.ispartofseries Scientific Reports 10 (2020), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject solar cells eng
dc.subject atomic layer deposition eng
dc.subject photovoltaic eng
dc.subject.ddc 500 | Naturwissenschaften ger
dc.subject.ddc 600 | Technik ger
dc.title Ultra-thin passivation layers in Cu(In,Ga)Se2 thin-film solar cells: full-area passivated front contacts and their impact on bulk doping
dc.type Article
dc.type Text
dc.relation.essn 2045-2322
dc.relation.doi https://doi.org/10.1038/s41598-020-64448-9
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 10
dc.bibliographicCitation.firstPage 7530
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken