Ultra-thin passivation layers in Cu(In,Ga)Se2 thin-film solar cells: full-area passivated front contacts and their impact on bulk doping

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Werner, F.; Veith-Wolf, B.; Melchiorre, M.; Babbe, F.; Schmidt, J. et al.: Ultra-thin passivation layers in Cu(In,Ga)Se2 thin-film solar cells: full-area passivated front contacts and their impact on bulk doping. In: Scientific Reports 10 (2020), Nr. 1, 7530. DOI: https://doi.org/10.1038/s41598-020-64448-9

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/10832

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 73




Kleine Vorschau
Zusammenfassung: 
In the search for highly transparent and non-toxic alternative front layers replacing state-of-the-art CdS in Cu(In,Ga)Se2 thin-film solar cells, alternatives rarely exceed reference devices in terms of efficiency. Full-area ultra-thin aluminium oxide tunnelling layers do not require any contact patterning and thus overcome the main drawback of insulating passivation layers. Even a few monolayers of aluminium oxide can be deposited in a controlled manner by atomic layer deposition, they show excellent interface passivation properties, low absorption, and suitable current transport characteristics on test devices. Depositing a ZnO-based transparent front contact, however, results in extremely poor solar cell performance. The issue is not necessarily a low quality of the alternative front layer, but rather the intricate relation between front layer processing and electronic bulk properties in the absorber layer. We identify three challenges critical for the development of novel front passivation approaches: (i) both Cd and Zn impurities beneficially reduce the high native net dopant concentration in the space charge region, (ii) sputter deposition of ZnO damages the passivation layer resulting in increased interface recombination, (iii) thermal treatments of devices with ZnO layer result in substantial Zn diffusion, which can penetrate the full absorber thickness already at moderate temperatures. © 2020, The Author(s).
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2020
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of United States United States 28 38,36%
2 image of flag of Germany Germany 16 21,92%
3 image of flag of China China 7 9,59%
4 image of flag of Indonesia Indonesia 3 4,11%
5 image of flag of United Kingdom United Kingdom 3 4,11%
6 image of flag of France France 3 4,11%
7 image of flag of Vietnam Vietnam 2 2,74%
8 image of flag of No geo information available No geo information available 2 2,74%
9 image of flag of Taiwan Taiwan 2 2,74%
10 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 1 1,37%
    andere 6 8,22%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.