Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers

Show simple item record

dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10301
dc.identifier.uri https://doi.org/10.15488/10229
dc.contributor.author Bühler, Melanie
dc.contributor.author Hegge, Friedemann
dc.contributor.author Holzapfel, Peter
dc.contributor.author Bierling, Markus
dc.contributor.author Suermann, Míchel.
dc.contributor.author Vierrath, Severin
dc.contributor.author Thiele, Simon
dc.date.accessioned 2020-12-02T13:04:26Z
dc.date.available 2020-12-02T13:04:26Z
dc.date.issued 2019
dc.identifier.citation Bühler, M.; Hegge, F.; Holzapfel, P.; Bierling, M.; Suermann, Míchel. et al.: Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers. In: Journal of Materials Chemistry A 7 (2019), Nr. 47, S. 26984-26995. DOI: https://doi.org/10.1039/c9ta08396k
dc.description.abstract In this study we investigate the potential of porous transport electrode (PTE) based membrane electrode assemblies (MEAs) for proton exchange membrane water electrolysis. The focus is on the overpotential determining anodic PTE for the oxygen evolution reaction. The influences of catalyst loading, ionomer content and porous titanium substrate on the polarization behavior are analyzed. The comparison of a porous fiber-sintered substrate with a powder-sintered substrate shows no significant differences in the kinetic and mass transport regions. Ohmic losses, however, are lower for fiber PTEs above a catalyst loading of 1.0 mgIrO2 cm-2. Variations of the Nafion content in the catalyst layer reveal changes of mass transport and ohmic losses and have an influence on the reproducibility. Varying the noble metal loading and therefore the thickness of the applied catalyst layer influences the kinetic region and ohmic resistance of the MEAs. The best compromise between reproducibility and performance is found for a loading of 1.4 mgIrO2 cm-2 and 9 wt% Nafion. The stable operation of the aforementioned PTE is shown in a 200 h durability test at 2 A cm-2. eng
dc.language.iso eng
dc.publisher Cambridge : Royal Society of Chemistry
dc.relation.ispartofseries Journal of Materials Chemistry A 7 (2019), Nr. 47
dc.rights CC BY 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/3.0/
dc.subject Durability eng
dc.subject Electrodes eng
dc.subject Ohmic contacts eng
dc.subject Precious metals eng
dc.subject Sintering eng
dc.subject Catalyst loadings eng
dc.subject Membrane electrode assemblies eng
dc.subject Noble metal loading eng
dc.subject Oxygen evolution reaction eng
dc.subject Polarization behavior eng
dc.subject Proton exchange membranes eng
dc.subject Reproducibilities eng
dc.subject Water electrolysis eng
dc.subject Catalysts eng
dc.subject.ddc 540 | Chemie ger
dc.title Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers
dc.type article
dc.type Text
dc.relation.issn 2050-7488
dc.relation.doi https://doi.org/10.1039/c9ta08396k
dc.bibliographicCitation.issue 47
dc.bibliographicCitation.volume 7
dc.bibliographicCitation.firstPage 26984
dc.bibliographicCitation.lastPage 26995
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics