Heisenberg uncertainty for qubit measurements

Download statistics - Document (COUNTER):

Busch, P.; Lahti, P.; Werner, R.F.: Heisenberg uncertainty for qubit measurements. In: Physical Review A 89 (2014), Nr. 1, 012129. DOI: https://doi.org/10.1103/PhysRevA.89.012129

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/8777

Selected time period:

year: 
month: 

Sum total of downloads: 28




Thumbnail
Abstract: 
Reports on experiments recently performed in Vienna [Erhard et al., Nature Phys. 8, 185 (2012)] and Toronto [Rozema et al., Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenberg's error-disturbance relation. In contrast, we have presented and proven a Heisenberg-type relation for joint measurements of position and momentum [Phys. Rev. Lett. 111, 160405 (2013)]. To resolve the apparent conflict, we formulate here a general trade-off relation for errors in qubit measurements, using the same concepts as we did in the position-momentum case. We show that the combined errors in an approximate joint measurement of a pair of ±1-valued observables A,B are tightly bounded from below by a quantity that measures the degree of incompatibility of A and B. The claim of a violation of Heisenberg is shown to fail because it is based on unsuitable measures of error and disturbance. Finally we show how the experiments mentioned may directly be used to test our error inequality.Reports on experiments recently performed in Vienna [Erhard et al., Nature Phys. 8, 185 (2012)] and Toronto [Rozema et al., Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenberg's error-disturbance relation. In contrast, we have presented and proven a Heisenberg-type relation for joint measurements of position and momentum [Phys. Rev. Lett. 111, 160405 (2013)]. To resolve the apparent conflict, we formulate here a general trade-off relation for errors in qubit measurements, using the same concepts as we did in the position-momentum case. We show that the combined errors in an approximate joint measurement of a pair of ±1-valued observables A,B are tightly bounded from below by a quantity that measures the degree of incompatibility of A and B. The claim of a violation of Heisenberg is shown to fail because it is based on unsuitable measures of error and disturbance. Finally we show how the experiments mentioned may directly be used to test our error inequality.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: article
Publishing status: publishedVersion
Issue Date: 2014
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of No geo information available No geo information available 8 28.57%
2 image of flag of Germany Germany 6 21.43%
3 image of flag of United States United States 4 14.29%
4 image of flag of Italy Italy 3 10.71%
5 image of flag of Cyprus Cyprus 2 7.14%
6 image of flag of Korea, Republic of Korea, Republic of 1 3.57%
7 image of flag of India India 1 3.57%
8 image of flag of Ireland Ireland 1 3.57%
9 image of flag of United Kingdom United Kingdom 1 3.57%
10 image of flag of Australia Australia 1 3.57%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse