Inertial noise post-correction in atom interferometers measuring the local gravitational acceleration

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Richardson, Logan Latham: Inertial noise post-correction in atom interferometers measuring the local gravitational acceleration. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2019, 107 S. DOI: https://doi.org/10.15488/4434

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 0




Kleine Vorschau
Zusammenfassung: 
Exploiting the quantum nature of atoms through the use of matter-wave interferometry haslead to the development of devices sensitive to, among other things, the local gravitational acceleration.Measurements of the gravitational acceleration have applications ranging from detectionof subterranean density di erences to observation of general relativistic e ects. Light-pulse atominterferometers provide an absolute measurement of the gravitational acceleration with a sensitivitycompetitive and even surpassing the performance of classical sensors. The advantages of atominterferometers as inertial measurement devices have lead to e orts in increasing sensitivity and decreasingthe physical dimensions of the measurement head, allowing them to be more transportablefor eld use applications. With increasing sensitivity, it becomes more critical to address the noisesource limitations a ecting the measurement, speci cally the inuence of ground motion on measurements.Vibrations coupling into the inertial reference add a time varying phase shift uncommonto the paths of the interferometer. This limitation is especially pertinent to transportable atomgravimeters measuring in the eld where inertial noise is typically far higher than in relatively quietlaboratory environments.Within this work, implementation and demonstration of inertial noise post-correction in an atominterferometer is shown within low inertial noise environments and simulated strong motion environments.For a high pulse separation time atom interferometer (T = 78 ms) post-correction yieldedan increase in the short term stability from 4.4 x 10 ̄6 m/s2/√Hz to 9.2 x 10 ̄7 m/s2/√Hz. Thismethod was reproduced with a di erent motion sensor to perform post-correction in a high motionenvironment, generated by introducing additional movement onto the inertial reference. Byperforming post-correction in the high motion environment, we were able to show an increase ofshort term stability of γ = 73.8. Current limitations to the post-correction resulted from self noiseresolution limitations and spectral resolutions limitations. Beyond corrections with commerciallyavailable sensors, this work demonstrates the rst post-correction with a next generation compactoptomechanical sensor. This optomechanical sensor is formed from monolithic fused silica capableof sensitively measuring accelerations of a harmonic oscillator test mass, which can be read-outoptically. This novel motion sensor has the advantage to any previously shown sensor used forpost-correction in the capacity that it is vacuum compatible, insensitive to magnetic elds and hasthe potential to be implemented directly into the inertial reference. In this work, inertial noisepost-correction in a simulated high motion environment is shown, correcting from a short term stabilityof 8 x 10 ̄3 m/s2/√Hz to 5 x 10 ̄4 m/s2/√Hz. Post-correction was limited by the parasiticcavities within the ber required for optical read-out of the harmonic oscillator displacement andintensity noise uctuations of the source laser. The results shown within this work are congruentwith previous works on atom chip gravimeters, both of which help move towards portable hand-heldgravimeter measurement heads capable of sensitive inertial measurement.
Lizenzbestimmungen: CC BY-NC 3.0 DE
Publikationstyp: doctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2019
Die Publikation erscheint in Sammlung(en):Dissertationen

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Suche im Repositorium


Durchblättern