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Abstract

Exploiting the quantum nature of atoms through the use of matter-wave interferometry has

lead to the development of devices sensitive to, among other things, the local gravitational accel-

eration. Measurements of the gravitational acceleration have applications ranging from detection

of subterranean density differences to observation of general relativistic effects. Light-pulse atom

interferometers provide an absolute measurement of the gravitational acceleration with a sensitiv-

ity competitive and even surpassing the performance of classical sensors. The advantages of atom

interferometers as inertial measurement devices have lead to efforts in increasing sensitivity and de-

creasing the physical dimensions of the measurement head, allowing them to be more transportable

for field use applications. With increasing sensitivity, it becomes more critical to address the noise

source limitations affecting the measurement, specifically the influence of ground motion on mea-

surements. Vibrations coupling into the inertial reference add a time varying phase shift uncommon

to the paths of the interferometer. This limitation is especially pertinent to transportable atom

gravimeters measuring in the field where inertial noise is typically far higher than in relatively quiet

laboratory environments.

Within this work, implementation and demonstration of inertial noise post-correction in an atom

interferometer is shown within low inertial noise environments and simulated strong motion envi-

ronments. For a high pulse separation time atom interferometer (T = 78 ms) post-correction yielded

an increase in the short term stability from 4.4× 10−6 m/s2/
√

Hz to 9.2× 10−7 m/s2/
√

Hz. This

method was reproduced with a different motion sensor to perform post-correction in a high mo-

tion environment, generated by introducing additional movement onto the inertial reference. By

performing post-correction in the high motion environment, we were able to show an increase of

short term stability of γ = 73.8. Current limitations to the post-correction resulted from self noise

resolution limitations and spectral resolutions limitations. Beyond corrections with commercially

available sensors, this work demonstrates the first post-correction with a next generation compact

optomechanical sensor. This optomechanical sensor is formed from monolithic fused silica capable

of sensitively measuring accelerations of a harmonic oscillator test mass, which can be read-out

optically. This novel motion sensor has the advantage to any previously shown sensor used for

post-correction in the capacity that it is vacuum compatible, insensitive to magnetic fields and has

the potential to be implemented directly into the inertial reference. In this work, inertial noise

post-correction in a simulated high motion environment is shown, correcting from a short term sta-

bility of 8× 10−3 m/s2/
√

Hz to 5× 10−4 m/s2/
√

Hz. Post-correction was limited by the parasitic

cavities within the fiber required for optical read-out of the harmonic oscillator displacement and

intensity noise fluctuations of the source laser. The results shown within this work are congruent

with previous works on atom chip gravimeters, both of which help move towards portable hand-held

gravimeter measurement heads capable of sensitive inertial measurement.
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Zusammenfassung

DDas Ausnutzen der Quantennatur von Atomen durch die Verwendung von Materiewelleninter-

ferometrie hat zur Entwicklung von Geräten geführt, die empfindlich auf die lokale Gravitations-

beschleunigung reagieren. Messungen der Gravitationsbeschleunigung sind anwendbar in Bereichen

von der Detektion unterirdischer Dichteunterschiede bis hin zur Beobachtung allgemeinrelativistis-

cher Effekte. Lichtpulsatominterferometer liefern eine absolute Messung der Gravitationsbeschle-

unigung mit einer Sensitivität, die der Leistung klassischer Sensoren Konkurrenz macht und diese

sogar übertrifft. Die Vorteile von Atominterferometern als inertiale Messgeräte haben zu Bestre-

bungen geführt, die Sensitivität der Messköpfe zu erhöhen und ihre räumlichen Abmessungen zu

verringern, wodurch sie im Feldeinsatz einfacher zu transportieren sind. Mit steigender Sensitivität

wird es anspruchsvoller, die Beschränkungen durch Rauschquellen in der Messung zu berücksichtigen,

insbesondere den Einfluss der Bodenbewegung auf Messungen. Vibrationen, die an die Inertialref-

erenz koppeln, verursachen eine in den Interferometerpfaden unterschiedliche, zeitlich veränderliche

Phasenverschiebung. Diese Einschränkung ist besonders in transportablen Atomgravimetern im

Feldeinsatz relevant, da dort das Inertialrauschen üblicherweise weitaus höher ist als in relativ ruhi-

gen Laborumgebungen.

Im Rahmen dieser Arbeit wird die Implementierung und Demonstration der Nachkorrektur von

Inertialrauschen in einem Atominterferometer in Umgebungen mit geringem Inertialrauschen und

simulierten stark bewegten Umgebungen gezeigt. Für ein Atominterferometer mit hoher Pulssepa-

rationszeit (T = 78 ms) ergab die Nachkorrektur eine Erhöhung der Kurzzeitstabilität von

4.4× 10−6 m/s2/
√

Hz auf 9.2× 10−7 m/s squared/
√

Hz. Diese Methode wurde mit einem anderen

Bewegungssensor reproduziert, um die Nachkorrektur in einer stark bewegten Umgebung durchzuführen,

die durch zusätzliche Bewegung der Inertialreferenz erzeugt wurde. In der Durchführung der Nachko-

rrektur in dieser stark bewegten Umgebung konnten wir einen Anstieg der Kurzzeitstabilität von

γ = 73, 8 zeigen. Die derzeitigen Limitierungen der Nachkorrektur resultierten aus der beschränkten

Auflösung des Eigenrauschens und des Spektrums. Über die Korrekturen mit kommerziell verfügbaren

Sensoren hinaus, demonstriert diese Arbeit zum ersten Mal die Nachkorrektur mit einem kompak-

ten optomechanischen Sensor der nächsten Generation. Dieser optomechanische Sensor besteht

aus monolithischem Quarzglas, das empfindlich Beschleunigungen einer harmonisch oszillierenden

Testmasse messen kann, indem es optisch ausgelesen wird. Dieser neuartige Bewegungssensor hat

gegenüber allen zuvor gezeigten Sensoren den Vorteil, dass es vakuumkompatibel und insensitiv auf

Magnetfelder ist und das Potential besitzt, direkt in der inertialen Referenz implementiert zu werden.

In dieser Arbeit wird die Nachkorrektur von Inertialrauschen in einer simulierten stark bewegten

Umgebung demonstriert, die die Kurzzeitstabilität von 8 × 10−3 m/s2/
√

Hz auf 5× 10−4 m/s2/
√

bringt. Die Nachkorrektur war beschränkt durch parasitäre Resonatoren innerhalb der Faser, die für

das optische Auslesen der Auslenkung des harmonischen Oszillators benötigt wird, und durch Fluk-

tuation im Intensitätsrauschen der Laserquelle. Die in dieser Arbeit gezeigten Ergebnisse sind kon-

gruent mit vorigen Arbeiten an Atomchipgravimetern, da beide auf portable, tragbare Gravimeter-

Messköpfe hinarbeiten, die empfindliche Inertialmessungen durchführen können.

Stichworte: Gravimetrie, Atominterferometry, Optomechanische Sensoren
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Chapter 1

Introduction

The property of inertia inherent to matter-waves paired with available optical tools capable of

addressing their quantum states have made atom interferometers some of the most sensitive and

versatile inertial measurement devices built to date [1]. Ultra-cold atoms provide a repeatable test

mass that allows measurement of a variety of phenomena such as accelerations [2, 3, 4], rotations

[5, 6, 7], gravitational gradients [8, 9] and, potentially, gravitational waves [10]. Atom interferometry

has been used for fundamental tests such as the universality of free fall [11, 12, 13], measurements of

the Newtonian gravitational constant [14], and the fine structure constant [15, 16]. The techniques

required to reach sensitivities capable of testing fundamental physics have many applications outside

of fundamental physics, and have the capability to make a large impacts on modern issues facing

society.

An example of a potential application of atom interferometery is seen in the water scarcity

crisis in developing nations. The United Nations Development Programme estimates that 1.2 billion

people in the world do not have access to clean drinking water [17]. In the developing world, access

and monitoring of groundwater resources has remained un-utilized [18]. The amount of water in

a given water table is dynamic and has a different density than it’s surrounding soil, rock and

limestone. These changes would correspond to a minute difference in the gravitational acceleration

above the surface, creating a geoid that varies spatially and temporally. Tracking and measuring

these small changes of the gravitational acceleration could help determine the location of water,

map the geography of a water table to prevent pollutants from entering an aquifer, and monitor the

current amount of water in a given region over time for water resource management. The process

of measuring the gravitational acceleration in this manner is known as gravimetry. Outside of

water resource detection the act of measuring the local gravitational acceleration has applications

in geology, vulcanology [19], archaeology [20, 21], resource detection [22], navigation [23] and civil

engineering [24].

1.1 Measuring the Local Gravitational Acceleration

Gravitational acceleration can be described from a general relativistic perspective as an attribute of

space time curvature [25, 26]. However, for measurements within the local inertial reference frame
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1.1. MEASURING THE LOCAL GRAVITATIONAL ACCELERATION

of the Earth, we can reduce the complexity of the full gravitational acceleration to a Newtonian

frame [27]. In this perspective we can describe the local gravitational acceleration at a given point

on the Earth’s surface as equation 1.1.

~g = −GM⊕
r2

r̂ (1.1)

Where, ~g is the local gravitational acceleration, G is the Newtonian gravitational constant,

M⊕ is the mass of the Earth, and r is the distance between the center of mass of the Earth and the

measurement point.

Gravimeters

A gravimeter is a device capable of measuring the gravitational acceleration at a given point.

Gravimeters can be divided into two types of sensor, absolute gravimeters and relative gravime-

ters:

• Relative gravimeters - These devices employ a test mass with a restoring force device, such

as a spring or electromagnetic field. The force of gravity is in equilibrium with the restoring

force, and therefore small test mass displacement corresponds to a small change in acceleration.

However, these restoring force devices are prone to temperature changes and other effects, and

therefore the signal measured corresponding to the same acceleration will change over time,

leading to measurement drifts. This is the operating principle behind devices such as the super

conducting gravimeter, spring gravimeters; or used within this work the Titan and OMIS.

• Absolute gravimeters - These devices observe the local gravitational acceleration by mea-

suring the acceleration of a test mass in free fall. This type of measurement may not be as

sensitive as relative gravimeters, but in general is stable over long periods of time. Absolute

gravimeters require device ‘dead-time’: time between measurements where the test mass is

prepared, enters free fall and detection is performed; however this can be addressed through

the use of interleaved measurements, or use of multiple sensors. Atom interferometers and the

FG-5 are absolute gravimeters.

Table 1.1: List of gravimeters presently operating. *Atom interferometers have been grouped to-

gether in this table, a full list of current atom gravimeters can be found in table 1.2.

Sensor Sensor Type Sensitivity Drift

FG5 [28] Absolute 150 nm/s2/
√

Hz —

Atom Interferometers* Absolute 42 nm/s2/
√

Hz —

Spring Gravimeter [29] Relative 50 nm/s2/
√

Hz 2000 nm s−2 d−1

MEMS [30] Relative 400 nm/s2/
√

Hz 1500 nm s−2 d−1

Super Conducting Gravimeter [31] Relative 1 nm/s2/
√

Hz 0.1 nm s−2 d−1

OMIS [32] Relative 98.1 nm/s2/
√

Hz System Dependent1

1The drift of the OMIS is primarily determined by the optical read-out system. This will be discussed further in

section 5B.6.

9



1.2. ATOM INTERFEROMETRY FOR MEASURING ACCELERATIONS

The drift and calibration requirements of relative gravimeters are not suitable for measurements

occurring over large timescales, such as long period oscillation measurements. Additionally appli-

cations these sensors are not suitable for environments where calibration is not easily achieved, for

example a deep borehole gravimeter with remote access.

For these types of applications, long-term stable absolute gravimeters present a better option;

however, not all absolute gravimeters present an acceptable solution. For example, the FG-5[28, 33],

utilizes a falling corner cube to measure test mass position using a Michelson-Morley optical

interferometer. The FG-5’s test mass is a moving mechanical part and prone to fatigue, requiring

calibration after a given number of measurements. Additionally sensitive mechanical components

within the device have low clipping levels and are not suitable for high-noise environments such

as a sounding rocket, sea-faring vessel or aircraft. However, atom interferometry stemming from

the wider field of matter-wave interferometry presents a robust and dynamic solution for absolute

gravimetry.

1.2 Atom Interferometry for Measuring Accelerations

The first measurement [34, 35] of gravitational effects using matter-wave interferometry was per-

formed with thermal neutrons which were spatially separated paths into two distinct paths. The

relative height and therefore gravitational potential between the two paths could be varied. By

interfering these two paths, one could measure the gravitationally induced phase shift at the output

of the interferometer as a function of relative gravitational potential between the two paths.

With the development of techniques for cooling and

optical manipulation of the quantum state2 of atoms the

ability to measure gravitational effects was extended to

atoms [38, 39, 40]. Measurements of the gravitational

acceleration are obtained by cooling and trapping cold

atoms, allowing them to enter free fall and manipulating

their quantum state in an interferometer configuration.

By detecting the phase difference between the two paths

of the interferometer, we can obtain the acceleration ex-

perienced by the atoms.

At the heart of measurement is the light-pulse atom in-

teferometer. In a broad sense, we can think of a light-pulse

atom interferometer as the analog to a classical light inter-

ferometer, but with the role of light and atoms reversed.

By controlling the pulse duration, beam intensity, and detuning from resonance, we can realize the

atom optics equivalent of beam-splitters (π2 pulses) and mirrors (π pulses). One major difference in

this analogy is that atoms couple much stronger to gravitation than light does, something that is

exploited in inertial measurements.

In principle, atom interferometers are sensitive to any acceleration experienced by the atoms

which act as the test mass. We can design the experiment to measure the effect that we are

2Atom interferometry is also possible with gratings [36, 37], but due to the flexibility optical pulses provide, this

work will focus solely on light-pulse atom interferometry.
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1.2. ATOM INTERFEROMETRY FOR MEASURING ACCELERATIONS

interested in. For example, in the case of an atom gravimeter, we reduce transverse motion and

align the interferometry axis to the axis of gravitational acceleration ĝ.

The field of measuring gravitational acceleration with atom interferometers is actively under

development and atom gravimeters have been demonstrated with a variety of sensitivities, cycle

times and physical dimensions (see table 1.2); a fact that determines the applicability to a given

measurement scenario. Various methods for improving the sensitivity of atom interferometers in-

cludes increasing the baseline [41], increasing the momentum transfer [42], and exploiting quantum

properties of the atoms, such as squeezing [43].

Outside of increasing the sensitivity of atom interferometers, there is an an active push towards

reducing the physical dimensions of atom interferometers making these devices more portable. Ex-

periments such as GAIN [4], the Cold Atom Gravimeter [2], Muquan’s Absolute Quantum Gravime-

ter [3], and the currently in development QG-1 are transportable, yet still possess physical dimensions

that may limit the location of measurements the bounds of modern infrastructure. To address this,

an ultimate goal to reach would be a ‘gravity in hand sensor’, a sensor-head that can be held within

a hand, with a backpack size optical system. Such a device would be capable of performing sensi-

tive measurements of the gravitational acceleration in spaces currently not reachable with current

devices, yielding applications for ground water detection in remote locations not accessible by truck,

or in space-borne craft where the size of a measurement device is critical. To reach this goal, we

need to address the current limitations to gravimetry with cold atoms.

Group Sensitivity Tc T Comments

Wuhan [44] 42 nm/s2/
√

Hz 1 s 300 ms Active vibration stabilzation (Guralp CMG3ESP).

SYRTE [2] 54 nm/s2/
√

Hz 500 ms 80 ms Correlation with Guralp CMG-3T.

GAIN [4] 96 nm/s2/
√

Hz 1.2 s 260 ms Active Stabilization and post-correction.

MuQuans [3, 45] 500 nm/s2/
√

Hz 500 ms 58 ms Post-correction - sensor not officially stated.

ANU [46] 600 nm/s2/
√

Hz Not Stated 60 ms GAS vibration isolation.

This Work 923 nm/s2/
√

Hz 2.3 s 78 ms Post-correction with sensors.

Berkeley [47] 6 µm/s2/
√

Hz 2 s 78 ms Multi-axis, no seismic post-correction published

VLBAI* [41] 0.33 nm/s2/
√

Hz 11 s 1 s GAS vibration isolation, post-correction with Trillium 240

QG-1* 14 nm/s2/
√

Hz 2 second 300 ms Post-correction with Titan

Table 1.2: Where Tc is the cycle time and T is the pulse separation time. * Under development,

projected number.

As with any measurement device, atom interferometers are sensitive to a device specific set of

parameters that contribute to measurement uncertainty. For atom interferometers this can be gen-

erated from, for example, time varying magnetic field gradients, optical power fluctuations, or ground

motion.
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1.3. OPTO-MECHANICALLY ENHANCED ATOM INTERFEROMETRY

Figure 1.1: In this experiment accelerations of

the retro-reflection mirror used for interferometry

pulses present a frequency dependent acceleration

noise that enters as noise in the measurement of

the DC gravitational acceleration.

Ground motion when compared to other

noise sources, is a major limitation to improv-

ing the sensitivity of atom gravimetry measure-

ments, especially for field deployable gravime-

ters. This motion couples into the atom inter-

ferometer inertial reference and affects the rela-

tive phase difference between the incoming and

retro-reflected light required for addressing the

atoms. This phase shift cannot be discerned

from the gravitational acceleration of the test

mass. The effect generated from these vibra-

tions is given the name inertial noise, also

known as parasitic vibration noise, figure 1.1.

By measuring the frequency dependent mo-

tion of the inertial reference over the course of

a measurement cycle using a motion sensor, it

is possible to calculate the inertial noise expe-

rienced by the atom interferometer and distin-

guish the DC gravitational acceleration signal from the AC ground motion. This method can be

applied over multiple measurement cycles to extract the gravitational acceleration in a noisy environ-

ment. If the effectiveness of the post-correction surpasses the intrinsic measurement limitations of

the atom interferometer (such as the detection noise), then it is possible to eliminate the contribution

from inertial noise in an arbitrarily noisy environment. This would allow for atom interferometers

that could be placed directly at points of interest without the need for vibration isolation, which

is large and hinders miniaturization efforts. Extending this principle, this would allow for place-

ment of sensors on drones for aerial gravimetry, use in pipe detection for street construction, or on

submersible craft for use of measurements of water density.

1.3 Opto-mechanically Enhanced Atom Interferometry

Inertial noise post-correction has been demonstrated with commercially available sensors [48, 49, 50].

However, these sensors are highly sensitive to magnetic fields, pressure and temperature changes.

These traits limit the ability of commercial motion sensors to accurately measure the motion occur-

ring during a measurement cycle. Additionally the large physical dimension of commercial motion

sensors relative to the inertial reference creates a dynamic transfer function between the motion

occurring on the inertial reference, and the signal measured by the motion sensor; further limiting

the ability of these sensors to post-correct inertial noise.

12
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Figure 1.2: The optomechanical inertial sensor

(OMIS). The advantages of this device surpass

the applicability of commercial sensors to post-

correction.

Recent developments in optomechanics have

lead to the creation of a small sensor capable of

accurately measuring motion [51, 32, 52]. The

optomechanical inertial sensor (OMIS) (figure

1.2) is comprised of a harmonic oscillator test

mass supported by two flexures connected to a

rigid body, where small displacements of the test

mass can be optically read out. The entire sen-

sor is constructed from one monolithic piece of

fused silica. The device is much smaller in com-

parison to traditional accelerometers, magnetic

field insensitive, and suitable for measurements

within vacuum. Additionally these devices have

the prospect to be placed directly into the iner-

tial reference, such as retro-reflection mirror or

atom chip, reducing the effect of dynamic transfer functions. These properties make the optome-

chanical sensor an ideal candidate as a replacement to traditional commercially available motion

sensors for use in inertial noise post-correction.

1.4 The Goal of this Work

Inertial noise post-correction is an integral part of performing measurements of the gravitational

acceleration with light-pulse atom interferometers, especially in high-inertial noise environments.

For that reason the work of this thesis has set out to address two primary objectives:

1. To implement vibration post-correction, determining which factors impact the ability to re-

duce the contribution from inertial noise, effectively reducing the short term uncertainty in

measurements of the gravitational acceleration that can be obtained with atom interferome-

tery. This includes evaluating different sensor types, with various self noises and sensitivity to

environmental effects in different inertial noise environments, something not fully addressed in

previous works on the subject [48, 49, 53].

2. To evaluate the applicability, performance and limitations of the OMIS as a replacement for

commercially available motion sensors for use in inertial noise post-correction. To increase the

number of environments where atom gravimetry can be performed it is not enough to simply

reduce the effects of inertial noise, but also reduce the size of the systems required to do so.

Additional benefits such as magnetic field insensitivity, vacuum compatibility and the prospect

to directly integrate into the inertial reference make the OMIS an ideal candidate for motion

sensing. This is especially critical when considering ongoing developments in transportable

atom interferometers, or space-borne missions such as BECCAL.

To achieve these goals, an operating atom interferometer was used. The experiment used in this

work was designed for quantum tests of the universality of free fall between 39K and 87Rb [11]. This

experiment makes an ideal test-bed for inertial noise post-correction, as atom gravimetry with 87Rb

13
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is established and the reference mirror is easily accessible, allowing for easy integration of different

motion sensors.

1.5 Organization of this Thesis

The initial chapters of this thesis work will focus on how measurements of the gravitational accel-

eration are possible with atom interferometers. Chapter 2- Atom Interferometry outlines the

theoretical framework used within this thesis, establishing the light-matter interactions that allow

for atom interferometry to be possible. Chapter 3 - Gravimetry focuses on the specific experi-

mental apparatus used for measurements within this work, as well as the method for obtaining the

local gravitational acceleration with a light-pulse atom interferometer.

From here, the work will begin to focus on how vibrations creates a noise source limitation

to gravimetry, what can be done to address it, and the results from doing so. Chapter 4 In-

ertial Noise Post-Correction discusses how vibrations enter into a measurement of the gravi-

tational acceleration, what strategies can be employed to mitigate this noise source. Chapter 5

- Post-Correction Results is prefaced by the inertial noise post-correction method used within

this experiment, then broken into two sub-chapters: Chapter 5A focuses on post-correction with

commercially available sensors as well as the limitations, and Chapter 5B focuses on how the op-

tomechanical resonator can obtain inertial reference motion, perform inertial noise post-correction

and the current limitations of the device.

Lastly Chapter 6 - Outlook will discuss the results obtained within this thesis work, what is

required for improved results, and extrapolation of what is possible in future experiments.

:
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Chapter 2

Atom Interferometry

2.1 Atom Interferometry

By utilizing the matter-wave nature of cold atoms we can experimentally measure inertial phenom-

ena such as acceleration and rotations. In this work, we use alkali atoms, specifically 87Rb. Alkali

atoms have the benefit of having one free valence electron, which allows us to work in a hydrogen-like

system with minimal interactions with the other shell electrons. Here, we will focus on measurements

of gravitational acceleration, ~g. This is performed by using timed optical pulses to perform atom

interferometry which measure the acceleration of our test mass atoms in free fall. In our experiment,

we realize these pulses with stimulated Raman transitions between the states |F = 1,mf = 0〉 and

|F = 2,mf = 0〉. By addressing the inertially sensitive transitions of the accelerating test mass, we

can create a Mach-Zehnder atom interferometer where the phase shift at the output of the inter-

ferometer is dependent on the local gravitational acceleration. This section will cover the underlying

principles of atom interferometry that are required to perform these inertial measurements.

2.1.1 The Two Level System

Figure 2.1: The Two level system: A

ground state with energy E1 = ~ω1 and

an excited state with energy E2 = ~ω2 .

An external electromagnetic field with

frequency ω0 detuned by ∆ interacts

with the 2 level system.

Manipulation of the ensemble of atoms requires the use

of coherent light. To model how coherent light affects our

atomic ensemble, we can model our atomic system as a 2

level system with a ground and excited state, interacting

with an electromagnetic field. In this two state picture,

we have our two states: a ground state |1〉 with energy

E1 = ~ω1 = 0 and excited state |2〉 with E2 = ~ω2. The

complete unperturbed two level system can be described

by the state vector, equation 2.1.

Ψ(r, t) = C1 |1〉 e−iω1t + C2 |2〉 e−iω2t (2.1)

Under the condition |C1|2 + |C2|2 = 1 and dCn

dt = 0.

The Hamiltonian of this system can be written as, equation 2.2.
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2.1. ATOM INTERFEROMETRY

Ĥ0 = − ~2

2m
P̂0

2
+ V (r) (2.2)

Where m is the particle mass, V (r) is the external potential and P̂ = i ∂∂r |r〉 the momentum

operator, both of which are in the position representation.

In the presence of a dynamic external field the Hamiltonian is, equation 2.3.

Ĥ(r, t) = − ~2

2m
= [P̂0 + eA(r, t)]2 − eΦ(r, t) + V (r) (2.3)

Here, A(r, t) is the vector potential and Φ(r, t) is the scalar potential of the external field. Under

the assumption that the external field is light with wavelength in the optical region, we can reduce

the Hamiltonian using the dipole approximation [54], equation 2.4.

Ĥ = − ~2

2m
P̂ 2 + V (r) + er̂ · ~E(t) (2.4)

Where e is the electric charge, ~d ≡ er̂ and ~E(t) is the time dependent electric field, equation 2.5.

~E(t) = E0 cos (ω0t)ε̂ (2.5)

ε̂ is the polarization vector, and ω0 is the angular frequency of the driving electromagnetic field.

The Hamiltonian can be recast in terms a time dependent perturbation, equation 2.6.

Ĥ = Ĥ0 +W (t) (2.6)

Where W (t) = −~d · ~E(t).

To describe how this system evolves in time, we can use the time dependent Schrödinger

equation, equation 2.7.

i~
∂ |Ψ〉
∂t

= Ĥ |Ψ〉 (2.7)

Which in the matrix representation gives us equation 2.8.

ı~
[
Ċ1(t)

Ċ2(t)

]
= ~

[
0 −Ω0

2 (e−iω0t + eiω0t)

−Ω0

2 (eiω0t + e−iω0t) ω2

] [
C1(t)

C2(t)

]
(2.8)

Where

Ω0 ≡
~d · ε̂E0

~
.

From equation 2.8, we get the coupled equations 2.10.

iĊ1(t) = −1

2
Ω0

(
e−iω0t + eiω0t)C2(t) (2.9)

iĊ2(t) = ω2C2 −
1

2
Ω0(e−iω0t + eiω0t)C1(t) (2.10)

Trying the solution C1(t) = C1(t) and C2(t) = C2(t)e−iω0t and using the rotating wave approxi-

mation (terms e±2iω0t terms average to 0), we get equations 2.11 and 2.12.
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2.1. ATOM INTERFEROMETRY

iĊ1 = −Ω0

2
C2 (2.11)

iĊ2 = −∆C2 −
Ω0

2
C1 (2.12)

Where ∆ = ω2 − ω0. For the two–level system, this can be solved exactly, equations 2.13 and

2.14.

C1(t) =

[
cos

Ωt

2
− i∆

Ω
sin

(
Ωt

2

)]
e

i∆t
2 (2.13)

C2(t) =

[
iΩ0

Ω
sin

(
Ωt

2

)]
e

i∆t
2 (2.14)

Where Ω =
√
|Ω0|2 + ∆2 known as the Rabi frequency.

If we start in the ground state, C1(0) = 1, the probability of finding the system in state |2〉 as a

function of time is given by equation 2.15.

|C2(t)2| = P1→2(t) =
|Ω0|2

Ω2
sin

(
Ωt

2

)
(2.15)

From eq. 2.15 it is clear that for a given detuning, ∆, optical power Ω0, and pulse time τ , we can

transfer atoms between states |1〉 and |2〉. In practice this is performed by utilizing pulses of light

with a detuning that can be approximated 1 as fixed. With these pulses, we can vary the temporal

length to transfer atoms from one state to another. For shorthand, we can abbreviate pulses as:

π Pulse: For an atom starting in the state |1〉, a pulse with length τ = π/Ω will transfer the

atom completely to state |2〉. In a two level system, the π pulse will flip or ’reflect’ the initial

atomic state.

π/2 Pulse: For an atom starting in |1〉, a pulse with length τ = π/2Ω will transfer the atom

into an a superposition of internal states Ψ(t) = 1√
2
[|1〉+ |2〉].

1In our experiment we linearly sweep the Raman detuning to address the Doppler shifted ensemble as it accelerates

in free fall. This change in frequency is minor relative to the total detuning.
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2.1. ATOM INTERFEROMETRY

2.1.2 Stimulated Raman Transitions

To build an atom interferometer, we are interested in performing interferometry between long-lived

magnetically insensitive states of alkali atoms. In theory, single photon transitions are possible, but

in accordance with selection rules, optical transitions from one magnetically insensitive (mf = 0)

state to another are highly suppressed.

Figure 2.2: For a 2 photon process, 1

photon with driving frequency ω12 cou-

ples states |1〉 to |2〉 with detuning ∆,

a second photon with driving frequency

ω23 couples state |2〉 to |3〉 with detun-

ing δ.

To circumvent this, we can use 2-photon transitions,

such as stimulated Raman transitions. Stimulated Ra-

man transitions allow us to coherently transition between

long lived hyperfine ground states of an alkali atom by

using 2 detuned optical beams.

To model stimulated Raman transitions, we can ex-

tend the above two level single photon calculations to a

3-level 2 photon process. To start, we can model the 2

photon driving field as equation 2.16.

E(t) = E1 cos(ω12t+ φ)ε̂1 + E2 cos(ω23t+ φ)ε̂2 (2.16)

with driving frequencies, ω13 and ω23. The pertur-

bation term of the Hamiltonian then becomes equation

2.17.

H ′(t) = ~ω12 |1〉 〈3|+ ~ω23 |3〉 〈2| (2.17)

The total equation can be reduced to the same form

as 2.15, equation 2.18.

|C2(t)2| = P1→2(t) =
|Ω0|2

Ω2
eff

sin

(
Ωefft

2

)
(2.18)

Where,

Ωeff =
Ω1Ω2∗
2∆~

=
〈1| ~E(t) · d̂|3〉 〈3| ~E(t) · d̂|2〉

2∆~
(2.19)

This two-photon process couples not only the internal states, but also external momentum states

as well. The change in momentum For such a system is: |1, p0〉 to the intermediate state |3〉, and a

second photon with ω23 couples |3〉 to |2, p0 + ~~keff〉. For a pair of counter-propogating beams, the

momentum transfer is given by equation 2.20.

∆~p = ~~keff =
ω12 + ω23

c
(2.20)

Where c is the speed of light. With stimulated Raman transitions it is possible to change the

frequency of either ω12 or ω23 to perform spectroscopy. To take a practical example, in the case of

the 87Rb we fix ω12 and scan the |F = 1〉 → |F = 2〉 transition by changing the frequency of ω23.

This process can be applied to accelerating ensembles of atoms in free fall. As the cloud accelerates

relative to the inertial reference, the cloud’s transitions frequencies will Doppler shift.
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2.2. THE MACH-ZEHNDER ATOM INTERFEROMETER

2.2 The Mach-Zehnder Atom Interferometer

By utilizing Raman transitions we can use π and π/2 pulse

to create an inertially sensitive Mach-Zehnder atom in-

terferometer. In such an interferometer, an ensemble of

atoms enters in a pure state |F = 1,mf = 0〉, is split into

a superposition of ground and excited state with a π/2

pulse, the internal states are then exchanged with a π

pulse and then recombined with a final π/2 pulse. Phase

differences accumulated between the two paths will result

in a phase dependent population of the excited (or ground)

state, equation 2.21.

P|F=2〉 =
C0

2

[
1 + cos(∆Φ)

]
(2.21)

Where P is the normalized population, and C is the contrast of the interferometer, and ∆Φ is

the phase difference between the two paths. In practice the final atomic state population is read out

by state selective fluorescence detection.

The phase difference ∆Φ between the two paths at the output of the interferometer for an

ensemble of free falling atoms in a gravitational potential can be calculated using a path integral

formulation [55] or by calculating the phase contribution of the pulses [38]. From either method,

the phase difference is given by equation 2.22.

∆Φ = ~keff · ~g T 2︸ ︷︷ ︸
Accelerations

+ 2Ωrot(~v0 × ~keff)T 2︸ ︷︷ ︸
Rotations

+ ∆φHO︸ ︷︷ ︸
Higher order terms

(2.22)

By aligning the Raman interferometry beams parallel to the gravitational acceleration axis and

reducing the velocity v0 along the axis perpendicular to the gravitational acceleration, we can min-

imize the effect from the rotation term. The higher order terms will be addressed in section 4.

By introducing a frequency sweep on one of the two Raman beams, we can scan the output of

the atom interferometer, giving us equation 2.23.

∆φ = ~keff ·

(
~g − α

~keff

)
T 2 (2.23)

When a value of the sweep rate α/~keff that matches the gravitational acceleration ~g, the phase

difference of ∆φ = 0 for all values of the pulse separation time T .
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2.2.1 Sensitivity Formalism

The sensitivity formalism [49, 56] is a tool for understanding how spatial and temporal phase ef-

fects change the output of the atom interferometer, something that will be useful when exploring

how vibrations affect the atom interferometer. The sensitivity function is defined as the change in

transition probability for a phase jump δφ occurring at a time t, equation 2.24.

g(t) = 2 lim
δφ→0

δP (δφ, t)

δφ
(2.24)

To calculate the sensitivity function for a Mach-Zehnder interferometer we can continue to use

the two-state picture, equation 2.25. [
C1(tf)

C2(tf)

]
= M

[
C1(t0)

C2(t0)

]
(2.25)

Where M is our total evolution matrix comprised of π/2− π − π/2 pulses, with pulse duration τ

and pulse separation time T , equation 2.26.

M =

[
e−iω1(t−t0) cos(ΩR

2 (t− t0)) −e−ω1(t−t0)ei(ωt0+φ) sin (ΩR

2 (t− t0))

−e−ω2(t−t0)ei(ωt0+φ) sin (ΩR

2 (t− t0)) e−iω2(t−t0) cos(ΩR

2 (t− t0))

]
(2.26)

We can then use this evolution matrix to calculate the probability of a transition into the C2

state at a given time t for our atom interferometer. Giving us our sensitivity function g(t). Where

g(t) is the velocity representation of the sensitivity function, given as equation 2.27.

g(t) =



− sin(Ωeff

2 t) if 0 < t ≤ τ
−1 if τ < t ≤ τ + T

− sin(Ωeff

2 (t− T )) if T + τ < t ≤ 3τ + T

−1 if τ < t ≤ 3τ + T < t ≤ 3τ + 2T

− sin(Ωeff

2 (t− 2T )) if 3τ + 2T < t ≤ 4τ + 2T

0 Otherwise.

(2.27)

By integrating the phase shifts occurring at a specific time during the atom interferometer, we

can obtain the total phase shift that occurred, equation 2.28.

∆Φ =

∫ ∞
−∞

g(t)dφ =

∫ ∞
−∞

g(t)
dφ

dt
dt (2.28)

In the case mirror motion, a phase shift (Chapter 4) is given by δφ = keffδz, where is the ẑ axis

displacement of the mirror. From equation 2.28, it is clear that g(t) can be used to describe the

velocity of mirror motion. To obtain the acceleration sensitivity function ga(t) we can integrate g(t)

giving us equation 2.29.
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ga(t) =



2
Ωeff

(1− cos(Ωeff

2 t)) if 0 < t ≤ τ
t+ 2

Ωeff
− τ if τ < t ≤ τ + T

T + 2
Ωeff

(1− cos(Ωeff

2 (t− T ))) if T + τ < t ≤ 3τ + T

2T + 2
Ωeff

+ 3τ − t if T + 3τ < t ≤ 3τ + 2T
2

Ωeff
(1− cos(Ωeff

2 (t− 2T )) if 3τ + 2T < t ≤ 4τ + 2T

0 Otherwise.

(2.29)

Figure 2.3: (left) The sensitivity functions g(t) of the Mach-Zehnder atom interferometer. (right)

The acceleration sensitivity function ga(t).

22





Chapter 3

Gravimetry with the 22 cm

Prototype

In this section we will discuss how measurements of the gravitational acceleration are possible with

this specific experiment. As mentioned in the introduction, this experiment is designed to test the

universality of free fall with test masses 87Rb and 39K1, however this work will focus solely on

measurements of the gravitational acceleration performed with 87Rb.

Gravimetry with 87Rb in this experiment starts by heating a sample of rubidium to sublima-

tion. From vapor the atoms are cooled and trapped using a 2D-3D magneto-optical trap (MOT)

system [58]. The use of a 2D MOT [59, 60] lowers the time between measurements by reducing the

loading time of the 3D MOT. All coherent light used for cooling and interferometery is generated

from ECDLs. This light is amplified by tapered amplifiers and coupled into fibers that connect to

collimators used to facilitate the magneto-optical trap. After cooling and trapping, the atoms are

released and enter free fall. The 87Rb atoms then are cooled below the Doppler limit [54], and

prepared into the |F = 1,mf = 0〉 sub-state. Three stimulated two-photon Raman pulses coherently

transfer atoms between the |F = 1〉 and |F = 2〉 states of the ensemble in a π/2−π−π/2 configuration.

The final state of the atom is read out using state-selective fluorescence detection. This process is

repeated and the data is evaluated, from which a measurement of the gravitational acceleration is

obtained.

In this chapter we will cover a basic overview of the experimental methods required to perform

gravimetry with this experiment. This chapter is broken in to three sections, firstly the experimen-

tal setup which covers the optical and mechanical elements that comprise this experiment. The

second section will cover the experiment sequence and the last section covers interferometry.

3.1 Experimental Setup

Atom interferometry is performed in a vacuum chamber, referred to as the ‘main science chamber’.

The mechanical structure of the science chamber can be broken into three interconnected parts: the

1Although the total experiment shares optics with 39K, for the purposes of simplicity the potassium system will

be excluded from this work. For a detailed overview of the potassium system see [57]
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3.1. EXPERIMENTAL SETUP

2D MOT chamber (with attached oven), the 3D MOT chamber and the free-fall tube with attached

detection region; all three of which are supported by an optical table.

A second optical table contains all lasers, amplifiers and locking systems required to perform

interferometer. This optical table is connected to the main science chamber via fiber-optics.

3.1.1 Vacuum chamber

Figure 3.1: An overview of the experiment.

The main structure of the 2D and 3D chambers are constructed from milled aluminum. Across all

chambers, viewports are indium sealed to the aluminum body to allow optical access to the atoms.

The entire apparatus is sealed and pumped to vacuum with a residual pressure of ≈ 4× 10−11 mbar.

This is achieved with an ion getter pump (IGP) [Gamma Vacuum, TiTan-IGP, 401/s] and a tita-

nium sublimation pump [VG-Scienta, ZST23], and monitored by a cold cathode gauge [Vacuum

Generators, ZCR40R].

The 2D MOT chamber is used to collect atoms, cool them along 2 dimensions with the un-

cooled axis aimed towards the 3D MOT chamber via a differential pumping stage. The chamber is

a glass cell which is a rectangular cuboid in shape with a connection to the atomic source ovens.

Surrounding the glass cell is a metal structure with optical access to the glass cell. Housed within

the metal structure are magnetic field coils, arranged in a quadrupole configuration. Attached to

the metal structure on two of the lateral faces (orthogonal relative to each other) are collimators

which connect to an optical fiber which links to the 2D MOT light distribution module (discussed

later). Counter to each of the collimators are retro-reflection mirrors aligned to the collimator.
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3.1. EXPERIMENTAL SETUP

Figure 3.2: A model of the 3D MOT chamber. Not

all components and viewports are shown. This

model is not to scale.

Within the 3D MOT chamber, atoms are

cooled, trapped, prepared and, released; where

they enter the free fall tube. Geometrically the

chamber is comprised of two hexagonal prisms

bisected by an octagonal prism2. Along each

edge face of the hexagonal prisms is a 1.5 cm

viewport [Heraeus INFRASIL 301] for optical

access. Each viewport is custom coated with an

anti-reflective coating [Laseroptik Garbsen,

B-01196] for light with wavelengths 767 nm,

780 nm, 1064 nm and 1960 nm. Of the total 12

hexagonal edge view ports 4 are currently used

for dipole trap beam access, 2 are used for ab-

sorption imaging, and 1 is used for basic MOT

monitoring. Both base faces are capped with

a 7 cm view ports used for 2 MOT beams (one

along each direction) as well access for an in-

house built microwave horn capable of performing microwave transitions and optical access for a

CCD imaging device [ALLIED vision technologies Guppy GF 033B].

Two coils are used to generate the quadruple field for the 3D MOT, placed on either side of the

octagonal prism. Five 1.5 cm viewports adorn the faces of the aluminum octagonal prism, 4 of which

are used for 3D MOT collimators which are attached and the top viewport is used for Raman and

detection light access. Attached to one edge face is a tube which is used for vacuum monitoring and

the IGP. Counter the IGP pump tube is the 2D MOT connection. The bottom octagonal edge face

is connected to the free fall tube with a lead seal. The tube connects the 3D MOT chamber to the

detection region.

2Prism here refers to the geometric shape and not an optical component.
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The center of the detection region is 228 mm below the center of the 3D MOT chamber, corre-

sponding to a free fall time of 213 ms.

Figure 3.3: Detection system and corresponding

optics.

On the bottom of the detection chamber is a

viewport angled with a 5◦ tilt relative to the ver-

tical axis to avoid parasitic cavities between it

and the top viewport. This bottom viewport is

where the Raman light exits the vacuum cham-

ber, and is then retro-reflected back from a mir-

ror below which is outside of vacuum.

On one edge face of the detection cham-

ber a positioned 100 mm away from the cen-

ter of the detection region is lens with focal

length f = 50 mm. 80 mm behind the lens is

a photo detector [OSI Opto Electronics PIN

10D] which is connected to a low noise amplifier

[Femto DLPCA-2000] and connected to the input

into an ADC. Opposite to the lens detection side

of the detection chamber is a viewport with a

f = 50 mm concave mirror placed 100 mm from

the center of the detection zone. This mirror

is designed to enhance the fluorescence signal

measured on the photo-diode.

Quantization Field Coils

Figure 3.4: Two coils with radius R gen-

erate a uniform magnetic field over the

free fall tube. This field can be used to

shift the hyperfine energy levels, allow-

ing us to optically address these states.

Cooling, interferometry and detection, requires the ability

address the hyperfine structure of 87Rb. In this experi-

ment, this is achieved through the use of a magnetic field

generated from two coils in a Helmholtz configuration,

which are centered around the free fall trajectory of the

atoms over the entire free fall distance. The two coils are

separated by a distance of 20 cm with a large radius which

ensures for a uniform field over the the trajectory of the

atoms.

The magnetic field can be calculated from the Biot-

Savart law for a single coil. For our coil configuration,

where the coil radius is equal to the coil separation, R =

D = 20 cm, the field at the center is given by equation

3.1.

~B =
8

5
√

5

µ0nI

R
(3.1)

Where B is the magnetic field, µ0 is the free-space permeability constant and n is the number of

windings and I is the coil current. The coils within this experiment have 8 windings each, a radius
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3.1. EXPERIMENTAL SETUP

of R = 20 cm and current I = 1.2 A, generating a magnetic field B = 43 µT in the center of our coils.

To reduce the influence of background magnetic fields, including those generated from the Earth,

we utilize a magnetic field isolation.

3.1.2 Laser System

Light generation, amplification, frequency control, switching and distribution are all performed on

an optical table separate from the optical table housing the science chamber and connected via

optical fibers, which are fiber-coupled from the source optical table.

On the source optical table, light is generated from 5 external cavity diode lasers (ECDL) [61, 62]

lasers which utilized for 4 distinct subsystems: reference, 3D MOT light, 2D MOT light and Raman

Light.

Stable 87Rb reference light is generated by locking to the |F = 2〉− |F = 3〉 cross-over line of the

D2 transition using frequency modulation spectroscopy. This light is then fiber coupled for use with

the other laser systems required for cooling and interferometry. 3

Figure 3.5: A simplified model of the light distribution paths in the experiment. The potassium

system, and alignment optics are excluded from this model for clarity. The Raman system is shown

in figure 3.6

Cooling and repump light for the 2D and 3D MOT systems for rubidium is common and is

generated from two ECDLs with an output of roughly ≈ 30 mW per laser. An optical isolator

3A thorough discussion of the 87Rb reference system can be found in [63].
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3.1. EXPERIMENTAL SETUP

placed after each ECDL prevents back reflections from interfering with the diode within the ECDL.

Approximately ≈ 3 mW is diverted from the main path for locking to the reference using a λ/2 wave

plate and polarizing beam-splitter (PBS). After the reference laser lock path, a portion is separated

for the cooling laser lock. The remaining light passes through a λ/2 wave plate and fiber coupled

into a polarization maintaining fiber and sent to the 3D distribution module.

The repump light diverted from the first PBS is overlayed with light from the reference laser and

collected on an ultra-fast photodiode [Hamamatsu - G4176-03]; which is shared with the Raman

Master Laser. From a Bias-tee connected to the photodiode we obtain the RF signal, which is

high-pass filtered to separate it from the Raman Master beat note. We amplify the signal and mix

down the signal with a 6.9 GHz oscillator [Rupptronik GMU69124LN]. The signal is low-pass filtered

and compared to a reference 331.5 MHz oscillator [Rhode Schwarz SMY02] on a phase detector

[MCH12140]. This signal is fed to a PID controller and the error signal which is fed back to the laser

ring-piezo of the ECDL. A ’fast-path’ output is from the phase detector and sent through a bias tee,

which we couple directly to the current of the laser.

Cooling light is sent into a 1 W tapered amplifier [Eagleyard EYP-TPA-0780]. The amplified

light passes through an additional optical isolator, λ/2 waveplate and PBS. Approximately ≈ 3 mW

are diverted offset locked to the RP light. The combined repump cooler beat-note is measured on an

ultra-fast photodiode [Hamamatsu - G4176-03], amplified and mixed down with a 6.9 GHz oscillator

[Rupptronik GMU69124LN]. The signal is then low-pass filtered and sent as the signal input to a phase

detector[MCH12140]. We require the ability to change the cooling detuning for sub-Doppler cooling,

so the reference is an in-house built Direct digital synthesis (DDS) for low detunings (δCool = 0−14Γ)

and can switched to a [Spectra Dynamics LNFS-100] for large detunings (δCool ≥ 15Γ). The signal

is sent to the laser diode and PID controller. The remainder of the cooling light passes through a
λ/2 wave plate, fiber coupled into a PM fiber and sent to the 3D distribution module.

Within the 3D distribution module light, ≈ 20 mW of rubidium 3D cooling light is picked off

for the 2D MOT system. The remainder of the light passes through an 80 MHz AOM, used for

switching.

Approximately ≈ 6 mW of the rubidium cooling light is diverted from the post-AOM path for

detection. The light passes through a mechanical shutter and sent to a series of polarizing beam-

splitters that distribute the light into 6 distinct paths optical paths, 1 for each MOT collimator.

Each MOT light path is set to a linear polarization using a wave plate to match the slow axis of a

polarization maintaining (PM) fiber. The light is coupled into a polarization maintaining fiber and

sent to the 3D MOT collimator.

Within each MOT collimator light from the fiber is outcoupled to free space, collimated and

polarized to either σ+ or σ− to match the MOT configuration [58]. Approximately ≈ 8 mW are

fiber coupled into each 3D MOT collimator, and the ratio of powers between the 6 paths can be

altered by changing the angle of the distribution λ/2 wave plates. The fiber coupled RP light is also

sent to the 3D distribution module. A portion is diverted and overlayed with the 2D MOT cooling

light. The remainder of the repump light is overlayed with detection and 3D MOT cooling light and

also distributed amongst the MOT collimator fibers.

The overlayed cooling and repump light for the 2D module passes through a λ/2 wave plate and

fiber coupled into a PM fiber. This light is then sent to the 2D distribution module. Within

the 2D module the combined repump cooling light seeds a 2 W tapered amplifier [Eagleyard

EYP-TPA-0780]. The output light passes through an optical isolator and is split to two fiber cou-
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pled paths for the 2D MOT collimators. Light within the 2D MOT collimator passes through a λ/4

waveplate to give the light σ+ or σ− in accordance with the 2D MOT configuration [60].

Interferometry Light

Figure 3.6: The Raman laser system as outlined below.

Interferometry light is generated from two source lasers, which we will refer to as the Raman

Master and Raman Slave. Raman Master light is generated from an ECDL, a portion of this

light is sent to the lock path, where it is overlayed with reference and picked up by an ultra-fast

photodiode; the one shared with the repump laser. From the bias tee the Raman signal is separated

through the use of a low-pass filter, amplified and mixed with a 1.6 GHz synthesizer. The signal is

referenced to a 100 MHz stable reference [spectra dynamics 100] on a phase detector [MCH12140].

The phase output is sent via fast path to the laser current, and the error signal is sent to a PID

which sends feedback signal to the laser piezo.

Raman Slave light is generated using an ECDL, a portion is diverted for locking. This light

is overlayed with the Raman Master, and collected on an ultra-fast photo-diode [Hamamatsu -

G4176-03]. From the bias tee, the signal is amplified and mixed down with a stable 6.9 GHz oscillator

[Rupptronik GMU69124LN]. Interferometry in this experiment requires precise control of the Raman

Slave detuning. The mixed down signal is referenced to signal from a DDS [Spectra Dynamics

LNFS-100]. By phase-locking to a DDS we generate the frequency sweeps required for inertially

sensitive interferometry. The phase-detector signal is sent to a PID controller. The remainder of

the Slave light is fiber coupled and sent to the Raman module.

Within the Raman module, fiber coupled Raman Master and Slave light are sent through

collimators, through optical isolators and then into 1 W tapered amplifiers. The Raman Master

and Slave are overlayed, and the ratio of optical power between the Master and Slave can be tuned
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by using a λ/2 waveplate and a PBS. This allows us to set the ratio that compensates the AC stark

shift[57]. This light is then sent through an 80 MHz AOM [Crystal Technology 3200-124]. The

combined light is coupled into the 1rst order of the AOM and coupled into a fiber which is sent to

the Raman collimator. By having light from the 1rst order coupled into the fiber, we can switch the

AOM to allow for short pulses.

Raman and Detection Beam Path

Linearly polarized Raman light from the distribution module is sent to a collimator via PM fiber

which collimates the light with a beam 1/e2 radius of 2 cm. Similarly linearly polarized light from the

detection path of the distribution module is sent to a different collimator 4. Light from the Raman

and detection is overlayed on a polarizing beam-splitter (figure 3.7). The detection and Raman

light are sent through an iris with manually controlled aperture, followed by a λ/4 wave plate,

which generates for σ-polarized light required for stimulated Raman transitions. The detection

and Raman light are then reflected off two mirrors which which divert the beam into a vertical

alignment.

Figure 3.7: A top-down view of the fiber bridge

located directly over the 3D MOT chamber.

The light passes through the top edge win-

dow of the octagonal prism through the 3D

MOT chamber, the free fall tube, and through

the bottom window of the detection chamber.

This combined light is retro-reflected off of a

mirror with surface flatness λ/20 [Fichou] 5.

The retro-reflection mirror is placed upon a vi-

bration isolation platform [Minus K 150BM-1],

which is housed in an acoustic isolation box.

The retro-reflected light is aligned to match the

path of the incoming light, both of which are

aligned to the axis of gravitational acceleration
6. Retro-reflected light passes back through the
λ/4 plate, giving orthogonal polarization to the

incoming light. The light is reflected from the

polarizing beam cube and is sent to a photo-

detector which can be used for detection light

optical power monitoring.

4Although the detection and Raman beams share the same path, they can be independently switched on or off

relative to each other
5In the case of the OMIS, this retro-reflection mirror was replaced with a 1 in square mirror with the OMIS

attached, (section 5B.3).
6To align the incoming Raman beam, we place a container with oil large enough to minimize meniscus effects

directly under the Raman beam. The oil’s surface will settle perpendicular to the gravitational acceleration. Light

from above is aligned match the retro-reflected light from the oil. The retro-reflection mirror is then replaced and

aligned to match the incoming beam, at which point the Raman beam is aligned parallel to the axis of gravitational

acceleration.
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3.2 Experimental Sequence

All experiment controlled elements such as AOM switching, DDS triggering, shutter switches, coil

current, changes in detuning, etc. are individually programmed to occur at a specific time in

the experimental sequence. Before each measurement cycle, this sequence is sent to a National

Instruments Real-time computer, which executes the program by outputting the appropriate

Transistor-Transistor Logic (TTL) signals and analog voltage outputs to each individual experi-

mental element at the proper time during the measurement. The interface between experimental

elements and control computer is facilitated through the use of input-output cards [NI PCI 6723]

and [NI PCI 6229].

3.2.1 Cooling and Trapping

Figure 3.8: Cooling and repump light. Cooling

light is red-detuned from the |F = 2〉 → |F ′ = 3〉
transition by δcool. Repump light is resonantly

tuned to the |F = 1〉 → |F ′ = 2〉 transition.

Loading of the 3D MOT trap begins when ovens

heat a sample of rubidium containing 87Rb,

causing sublimation to vapor. This atomic va-

por diffuses into the 2D MOT chamber where

light generated on the optical table, and the

magnetic field coils confine the 87Rb vapor into a

cold atomic beam. Atoms pass through the dif-

ferential pumping stage and into the 3D MOT

chamber.

Light along 3 orthogonal axes is generated

from the 6 MOT collimators, which are fiber

coupled to the 3D distribution module. Mag-

netic field coils arranged in a anti-Helmholtz

configuration create a magnetic field minimum

at the center of the 3D MOT chamber. The

cooling light is δcool = 2.6Γ (14.9 MHz) red

detuned from the |F = 2〉 → |F ′ = 3〉 transi-

tion. Atoms that decay into the |F = 1〉 state

are dark to the cooling cycle transition, and

therefore repump light tuned to the |F = 1〉 →
|F ′ = 2〉 transition is used. Atoms in the

|F ′ = 2〉 state will decay, into the |F = 2〉 state,

among others, and hence are reintroduced into the cooling cycle. Once loading is complete, the

magnetic field is switched off and the atoms enter free fall.

The sample can be cooled below the Doppler limit cooling through polarization gradient cooling

[64, 65], which brings the temperature of the atoms to 6.4 µK. This is achieved by switching off the

repump light, and further red detuning the cooling light to 8 Γ (45.9 MHz) . After sub-Doppler

cooling, the ensemble is ready for state-preparation.
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Figure 3.9: The state preparation method as outlined below.

3.2.2 State Preparation

Preparation into the |F = 1,mf = 0〉 sub-state reduces magnetic field sensitivity and provides a pure

state to perform interferometry with. The process is outlined in detail here [57, 66]. The primary

steps of state-preparation process are as follows:

1. Cooling light from the polarization gradient cooling has optically pumped atoms into the

|F = 1〉 state.

2. A microwave π pulse transfers atoms from the |F = 1,mF = 0〉 → |F = 2,mF = 0〉 state.

Transferring 1/3 of the total atoms in the |F = 1〉 state to the |F = 2〉 state.

3. Resonant repump light is turned on and atoms in the |F = 1〉 manifold are driven to the

|F ′ = 2〉 state, from which they decay into the |F = 2〉 manifold.

4. A two photon Raman transition performs velocity selection [67], transferring atoms within a

velocity slice back to the |F = 1,mF = 0〉 state.

5. Cooling light is tuned to the resonance of the |F = 2〉 → |F = 3〉 transition and atoms are

blown away from the |F = 2〉 state ejecting atoms from the ensemble.
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3.2.3 Raman Transitions

Figure 3.10: Two photon transitions transfer the

atoms from the |F = 1〉 |F = 2〉 state. The overall

detuning to the 52P3/2

Atom interferometry is performed on the

|F = 1,mf = 0〉 → |F = 2,mf = 0〉 states of the

52S1/2 level of 87Rb. The driving frequency of

the transition is determined by performing a

frequency scan on the prepared |F = 1,mf = 0〉
state atoms. A measurement with a Raman

pulse with length τπ and a detuning δ (figure

3.10) is performed on the prepared atoms, and

the P|F=2〉 population is recorded. With the

DDS as a reference on the Slave phase detector,

we can change the frequency of δ by changing

the frequency of the DDS. This measurement is

repeated scanning the |F = 2〉 population as a

function of Raman Slave detuning (figure 3.11).

The quantization field lifts degeneracy of the

|F = 1〉 → |F = 2〉 transition, allowing for sub-

state transitions. However, due to the two-

photon selection rules [68] for the polarization

vectors of the driving fields within this experi-

ment, we can only drive transitions between be-

tween sub-states where ∆mf = 0. In our spec-

troscopy measurement, the splitting of the hyperfine states is given by the weak field Zeeman effect,

equation 3.2.

∆ωZeeman
mF

= mf
µ0

~
gF

~B; (3.2)

Where ~B is the magnetic field, µ0 is the Bohr magneton, and gf is the Landé-g factor for the

sub-states of 87Rb [69].

Once the 3D MOT field coils are switched off, the atoms are no longer trapped and will undergo

gravitational acceleration. This acceleration will Doppler shift the transition frequency of the

atoms relative to the laboratory frame as ω(t)Doppler = 2π~keff · ~vCOM(t). Where ~vCOM(t) is the

center of mass velocity of the ensemble over time.

The standing wave configuration of the interferometry light generates two pairs of counter-

propagating beams capable of addressing the atoms, as well as two pairs of co-propagating beams.

The counter-propagating Raman beams which are sensitive to the ensemble acceleration are referred

to Doppler sensitive, and the co-propagating beams which are not shifted by the ensemble acceler-

ation are referred to Doppler insensitive transitions. Under gravitational acceleration, the velocity

of the ensemble will linearly increase, and therefore to stay resonant with an atomic transition, we

can provide a linear ramp of the Slave laser from the initial transition frequency, equation 3.3.

α =
dω

dt
(3.3)
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By sweeping the frequency negatively or positively over time, we can address the atoms with a

specific pair of counter-propagating beams. The residual momentum given by ~p = ~~keff is dependent

on which pair of counter-propagating beams are used.

Beyond the center of motion Doppler shift, the non-zero temperature of the cloud constitute a

distribution of velocities around the center of mass. This velocity follows a Maxwell–Boltzmann

distribution. The 1/e Doppler broadening-width of the frequency spread is given by equation 3.4.

σ = keff

√
2kBTe

m
(3.4)

Where kB is the Boltzmann constant, m is the mass of a 87Rb particle, and Te is the ensemble

temperature.

Figure 3.11: Spectroscopy of the |F = 1〉 → |F = 2〉 transition. The magnetic field from the quanti-

zation field splits the magnetic sub-states. Gravitational acceleration Doppler shifts the transitions

depending on the direction of momentum transfer from the two-photon transition. Lastly the veloc-

ity spread of the ensemble around the center of mass motion Doppler broadens the transitions.
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3.2.4 Interferometry

A Mach-Zehnder type atom interferometer is constructed from a set of π
2 − π −

π
2 pulses, with

a separation time T between the pulses. As mentioned above, as the ensemble accelerates the

frequency of the inertially sensitive transitions will linearly change in time. This means a Raman

detuning δ resonant to a transition at the start of the interferometer will not be resonant at the last

pulse. To compensate the Doppler shift, we linearly sweep the Raman detuning, equation 3.3.

Additionally the direction of the sweep allow to address a specific direction of momentum transfer.

Once the atoms are prepared into the |F = 1,mf = 0〉 state we begin interferometry. At the ve-

locity selective pulse of the state preparation we begin to sweep the frequency with α ≈ 25.2 MHz s−1

for 200 ms covering the length of the atom interferometer.

We can define an interferometer time which starts at tint = 0 with the first π
2 pulse. The AOM

controlling the fiber coupling into the bridge fiber is switched on for τ = π
2Ω , transferring the atoms

into a superposition of |F = 1, ~p0〉 and |F = 2, ~p0 + ~~keff〉. At tint = τ the AOM is switched and

Raman light is no longer present in the chamber. The ensemble evolves in the superposition for

a free evolution time T . At tint = T + τ , Raman light is again switched on until tint = 3τ + T ,

reflecting the internal and external states the ensemble. After the light is switched off the atoms

enter a free evolution time T . Lastly the atoms undergo one last π
2 pulse at tint = 3τ + 2T . This

recombines the superposition of states, at which point the final atomic state of the atoms can be

read-off with state selective detection.

3.3 Detection and Evaluation of data

After interferometry the phase information can be obtained by reading out the final output popula-

tion of the interferometer. In this experiment, this is achieved by using state selective fluorescence

detection7.

As the atoms enter the detection region, resonant cooling light is switched on for 600 µs, during

which time atoms cycle on this transition fluorescing photons, which are picked up by the detection

photo-diode. From there the cooling light is switched off and repump light is switched on for 200 µs,

resonant with the |F = 1〉 → |F ′ = 2〉 transition, from which the atoms decay into the |F = 2〉. With

atoms in the |F = 2〉 state, the resonant |F = 2〉 → |F ′ = 3〉 light is pulsed again for 600 µs, and

the fluorescence signal is measured again. After 20 ms, long after the atoms have left the detection

region, a final 600 µs pulse occurs, and the background signal is measured. During each pulse the

cooling pulse intensity is monitored to account for changes in optical power during detection. This

is obtained from the reflected detection signal on a photo-detector on the detection bridge.

The fluorescence signal is measured by dividing the first two cooling pulse signals to obtain

population information from the output of the atom interferometer 8, equation 3.5.

Poutput ∝
N|F=2〉

N|F=1〉+|F=2〉
(3.5)

7Absorption imaging or spatial resolution are not applicable to this experimental setup. The cloud density is too

low, and spatial separation is minimal
8In reality the background pulses and normalized photo-diode response are taken into account when measuring

the relative population, but are not shown here for clarity.
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3.3.1 Measuring the Gravitational Acceleration

The population of the |F = 2〉 state of the atom interferometer is dependent on the phase difference

between the two paths, equation 4.3.

P|F=2〉 =
C0

2

[
1 + cos (∆Φ)

]
+B (3.6)

Where C0 is the fringe contrast, and B is the offset. For our experiment, the leading order phase

shift is dependent on the gravitational acceleration. Incorporating the linear sweep of the Raman

detuning α, we get equation, 3.7.

∆Φ = keff

(
g − α

keff

)
T 2 (3.7)

By altering the sweep rate α we can scan the output of the atom interferometer. For a sweep

rate α = keff g, the phase difference between the two paths of the interferometer is zero, ∆Φ = 0

for all pulse separation times T . Experimentally we can measure the value of g by scanning α for

various pulse separation times, and determining where α = keff g.

Figure 3.12: Data (points) and fit for a scan of a T = 9 ms, T = 9 ms and T = 9 ms atom

interferometers.
Once the value of the sweep rate corresponding to the gravitational acceleration is known, since

keff is experimentally determined, we can calculate the gravitational acceleration from equation 3.8.

g =
α

keff
(3.8)
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Gravitational acceleration is a dynamic quantity, and therefore the sweep-rate that matches

the gravitational acceleration will change over time. There are multiple methods for dynamically

tracking the gravitational acceleration over time.

Figure 3.13: The multiple sweep rate measurement. Performing this measurement over time will

allow us to fit, and track changes in the gravitational acceleration.

Method 1: Entails tracking g by scanning α (figure 3.13) with a set number of points around

the fringe minimum (usually 4-10) with equidistant sweep rate increments (figure 3.13). From the

resultant population measurements a sinusoid can be fit. All parameters except the phase of the

sinusoid are determined by experiment, and therefore we can record the phase of the fit, from which

we can extract a value of g.

Figure 3.14: 2 point mid-fringe style

measurement.

Method 2: [53] is to measure the output population

at the sweep rates corresponding to the mid-fringe posi-

tions surrounding the fringe minimum (figure 3.3.1). A

change in the gravitational acceleration will shift the out-

put population relative to each other.

From the difference in population, an adaptive the po-

sitioning of α will maintain mid-fringe as the value of g

changes. The main advantage of this two point measure-

ment technique is a much higher measurement repetition

rate. Instead requiring 4-10 atom interferometer measure-

ments for one measurement of g, the measurement can be

performed with 2 points. This measurement method is

more sensitive to signal, but on the other hand is also more

susceptible to phase-noise, and any phase shift enough to

leave the non-linear regime of the fringe introduces ambi-

guity into the g measurement.

Method 3: A third measurement method will be explored further when analyzing measurements

of the gravitational acceleration that enact vibration post correction (Section 5.1.6). This method

entails sweeping with a fixed sweep rate corresponding to a mid-fringe position. Vibrations will

shift the phase output of the interferometer around the mid-fringe point. We can apply the phase-

corrections from the post-correction method, and fit a sine. By grouping the points into a large

38



3.3. DETECTION AND EVALUATION OF DATA

enough bin to constitute a good sinuosiod fit, we can extract the phase of the fit and obtain the

gravitational acceleration.

Once we have a set of measurements of the gravitational acceleration we can begin analyzing

the time variance of the acceleration. We do this by calculating an Allan Deviation (ADEV) [70],

from which we can obtain short and long term stability of the measurement.

3.3.2 Momentum Reversal

The output population of the atom interferometer is not only sensitive to the leading order phase

shift, but also determined by effects that will shift the phase of our measurement away from the

gravitational acceleration g. Some of these phase shifts are dependent on the direction of momentum

transfer (such as the differential light shift [71, 72]), while others are independent. The phase

difference at the output of the interferometer for a given direction of momentum transfer ∆Φ(+) or

∆Φ(−) we get equation 3.9.

∆Φ(+) = ∆φg + ∆φindependent + ∆φdependent

∆Φ(−) = ∆φg + ∆φindependent −∆φdependent

(3.9)

By changing directions of momentum transfer between measurements of the gravitational accelera-

tion, we can take the differential of the two to reduce the effect from momentum independent shifts,

equation 3.10.

∆Φ =
∆Φ(+) + ∆Φ(−)

2
(3.10)

This experimental technique is known as momentum reversal, or ‘k-flip’ [73, 74]. Experimentally

this is enacted by switching between the direction of momentum transfer between measurements of

the gravitational acceleration.
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Chapter 4

Inertial Noise and Post-Correction

4.1 Introduction

When performing atom interferometry, beam-splitter pulses require a strict phase relation between

the counter-propagating beams. In the case of an atom gravimeter, any change in the phase relation

cannot be discerned from an acceleration signal. Vibrations coupling into the retro-reflection mirror

shift the wave-front phase relative to the incoming beam, adding an additional phase. This phase

contribution is known as inertial noise. In comparison to other noise sources within the experiment,

untreated inertial noise represents a large component, see table 4.1 for the leading phase uncertainties

in our experiment. In this chapter we will discuss how ground motion creates inertial phase noise

and what can be done to correct for it.

Noise Contribution RMS Phase Uncertainty

Inertial Noise 434.0 mrad/
√

Hz

Raman PLL Noise 40.2 mrad/
√

Hz

Quantum Projection Noise 4.4 mrad/
√

Hz

Table 4.1: A demonstration of the current largest noise sources in measurements of the local gravi-

tational acceleration calculated for a T = 78 ms atom interferometer. Values were calculated for an

atom interferometer in a quiet inertial environment with vibration isolation [Minus-K 150 BM-1],

yet still inertial noise represents a large component of the total noise sources present. Calculations

of these values can be found in section 5 A.2.
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4.1.1 Sources of Inertial Noise
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Figure 4.1: The Peterson high and low noise

models. These represent the base level of ground

motion from the Earth. Even in relatively quiet

environments ground motion from the Earth will

couple into a gravimeter.

The Earth is constantly in motion. Even

within a relatively low inertial noise environ-

ment, such as a deep mine-shaft, background

Earth motion persists due to ocean tidal load-

ing and other collective noise known as ‘micro-

seisms’. In 1993 this noise was measured by the

United States Geological Survey (USGS) [75]

using 14 measurement stations located around

the world to characterize Earth’s seismic back-

ground. This was further updated by the Global

Seismographic Network (GSN) in 2014 with

118 measurement stations [76]. This low noise

model describes the acceleration noise floor due

to seismic motion of the Earth. There also

exists a high noise model that describes the

highest magnitude ground motion1 measured

from seismic activity. These noise models are

referred to as the Peterson New Low Noise

Model (PNLNM) and Peterson New High Noise

Model (PNHNM) respectively. The PNLNM

and PNHNM provide useful rubrics for deter-

mining the sensitivity of our sensors, as well as

giving a scale that we know we can measure to.

Vibrations in normal laboratory conditions are several orders of magnitude above the PNHNM

and are attributed to what we will refer to as cultural or anthropogenic noise [77, 78]. This noise

stems from cars, railways, mechanical pumps and even wind turbines. This amalgamation of noise

sources will collectively couple into an interferometer generating inertial noise.

1This does not take into account extreme outliers such as volcanic eruption, earthquakes, or tsunamis.
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4.2 How Vibrations affect the Atom Interferometer

Figure 4.2: Relative to the incoming

wave-front, vibrations of the incoming

beam will distort the phase of the retro-

reflected beam, effectively changing the

phase relation between the two beams.

Any phase noise uncommon to the counter-propagating

beams addressing the atoms will add a phase to the atom

interferometer. In the case of our experiment, motion of

the retro-reflection mirror shifts the phase of the retro-

reflected light for only one direction of momentum trans-

fer. For a displacement of the mirror δz, the induced phase

shift of the reflected wave-front φWF is given by equation

4.1.

δφWF = keffδz (4.1)

Where we define ẑ parallel to ~keff and therefore ~g 3.

For a given atom interferometer sensitivity function

[49] g(t) (section 2.2.1) we can calculate the total atom

interferometer phase shift ∆φvib using equation 4.2.

∆φvib =

∫ ∞
−∞

g(t)dφ(t) =

∫ ∞
−∞

g(t)
dφ

dt
dt (4.2)

This vibration induced phase shift will change the out-

put of the atom interferometer, in our case this will manifest as a change in the normalized population

P|F=2〉 the excited state, equation 4.3.

P|F=2〉 =
C0

2
[1 + cos (∆ΦTot)] +B (4.3)

Where C0 is the atom interferometer contrast, B is the atom interferometer offset, and ∆ΦTot is

defined by equation 4.4.

∆ΦTot =

(
g − α

keff

)
· keffT

2 + ∆φvib + ∆φother (4.4)

In our atom interferometer, which utilizes Raman pulses, our primary mechanism for scanning

the output of the interferometer is changing the sweep rate of the Raman detuning, α. From

equation 4.4, we can see that for a given α, for a non-time varying gravitational acceleration, we

will measure a constant relative population P|F=2〉 at the output of the interferometer. However, a

non-zero contributions from vibrations will change the output of the interferometer for a constant

sweep rate.

3The validity of this statement will be explored in section 5 A.2.2.
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Figure 4.3: The acceleration transfer function Ha(ω) shows the atom interferometer’s sensitivity to

inertial noise with frequency ω. The atom interferometer is less sensitive to inertial noise as the

frequency increases in a manner f−2 above the corner frequency, defined as fcorner = 1/2T . Vibration

noise is sampled by the atom interferometer at the cycle frequency fc. of the atom interferometer.

4.2.1 Frequency Dependence of the Atom Interferometer to Vibrations

To obtain the frequency dependence of the atom interferometer to a inertial phase noise of frequency

[49] ω, we can calculate the transfer function2 Hφ(ω) of the atom interferometer, equation 4.5.

Hφ(ω) = ωG(ω) (4.5)

Where G(ω) is the Fourier transform of the sensitivity function g(t), equation 4.6.

G(ω) =
4Ωi

ω2 − Ω2
sin
(ω

2
(T + 2τ)

)(
cos
(ω

2
(T + 2τ)

)
+

Ω

ω
sin
(ω

2
T
))

(4.6)

For a given power spectral density of vibrations, Sφ(ω), we can calculate the root mean squared

phase spread φRMS of the atom interferometer from equation 4.7.

(φ
∼

RMS)2 =

∫ ∞
−∞
|Hφ(ω)|2Sφ(ω)dω (4.7)

We can calculate the acceleration power spectral density from the phase power spectral density

from the relation defined in equation 4.1, giving us equation 4.8.

Sφ(ω) = k2
effSz(ω) =

k2
eff

ω4
Sa(ω) (4.8)

2The transfer function H(ω) is not to be confused with the mechanical transfer function, which describes how a

vibration propagates through a system (a topic that will be explored in section 5 A.2.5).
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Where Sz(ω) is the displacement power spectral density. We then define the acceleration transfer

function in terms of the phase transfer function, equation 4.9.

(φ
∼

RMS)2 = k2
eff

∫ ∞
0

1

ω4
|Hφ(ω)|2Sa(ω)dω (4.9)

For a set of n Mach-Zehnder measurement sequences with cycle time Tc and cycle frequency

fc = 1/Tc, the short term uncertainty of the atom interferometer will measure this RMS phase noise

according to equation 4.10 [49].

σ2
φ(τ) =

k2
eff

τ

∞∑
n=1

|Hφ(2πnfc)|2

(2πnfc)4
Sa(2πnfc) (4.10)

Any signal with a frequency lower than fcycle will be measured by multiple cycles of the atom

interferometer and is therefore interpreted as atom interferometer signal; e.g, changes in gravitational

acceleration due to the tidal force have a frequency much lower than the the cycle frequency fc of

the atom interferometer, and therefore do not contribute to the short term uncertainty of the atom

interferometer, but rather are a measurable phenomena.

We can define the RMS acceleration noise a∼RMS, which provides a useful metric as an upper

bound to noise sources present in the atom interferometer. By utilizing the scale-factor φ = a keff T
2,

and applying it to equation 4.9, we get equation 4.11.

(a∼RMS)2 =

∫ ∞
0

1

T 2 ω4
|Hφ(ω)|2︸ ︷︷ ︸

≡ Ha
(
ω
) Sa(ω)dω (4.11)

Where Ha(ω) is defined as the acceleration-transfer function. Lastly, we can use Ha(ω) to the

short term uncertainty in terms of acceleration 4.12.

σ2
a(τ) =

k2
eff

τ

∞∑
n=1

|Ha(2πnfc)|2Sa(2πnfc) (4.12)
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4.3 Inertial Noise Mitigation in Atom Interferometers

We can now explore two methods for addressing vibrations: vibration attenuation systems which

reduce the level of mirror motion, and inertial noise post-correction, which uses an external sensor

to record the mirror motion and the weighting function of the atom interferometer to calculate the

inertially induced phase shift.

4.3.1 Vibration Attenuation

One method for reducing noise induced by vibrations is to attempt to attenuate them to reduce

the mirror motion as much as possible. This is also possible by choosing a low noise environment

such as the Cold Atom Gravimeter (CAG) [79] which has performed gravimetry in the Walferdange

Underground Laboratory for Geodynamics. However, restricting measurements of the gravitational

acceleration to low noise environments excludes all but a few environments and therefore applications

of the gravimeter, and one is still limited to micro-seismic noise.

We can however reduce the level of inertial noise in the system through the utilization of vibration

isolation platforms. These systems typically employ a mass-spring system which exploit the property

of harmonic oscillators through which motion above the resonance frequency f0 is attenuated as 1/f2.

These systems benefit greatly from attaining extremely low resonance frequencies, and therefore

typically employ ‘negative spring constant’ mechanisms to achieve this. The mechanical design of

these systems varies widely, but in general utilize compound spring systems that couple multiple

degrees of freedom to keep a mass in equilibrium, however once the mass leaves equilibrium, the

other degrees of freedom couple in to reduce the total spring constant. This allows for the spring

constant to be tuned to a low value, therefore lowering the total resonance of the system. Negative

spring constant systems can be found in the geometric anti-spring filters found in LIGO, VIRGO

[80] and VLBAI [41]; the LaCoste super-spring systems of the FG-5 [28] and spring gravimeters; and

in the Minus K BM-1 vibration isolation platform used within this experiment.

There are however several limitations to these vibration isolation systems, especially for field

use gravimeters in noisy environments. The relatively portable vibration isolation systems can only

attenuate the vibrations by a few orders of magnitude. Larger vibration attenuation systems can

provide higher vibration attenuation, but their large weight of over 1 ton is not suitable for portability.

Additionally, these systems tend to have low dynamic ranges, requiring tuning and consideration

for environmental conditions such as temperature. Lastly at the resonance these systems offer no

attenuation, and can in fact add noise, if not properly dampened.

4.3.2 Vibration Post correction

From equation 4.2, we can calculate the phase shift occurring at the output of the atom interferometer

∆φVib given by the phase shift of the Raman wave-front φWF(t), weighted by the sensitivity function

g(t). Knowing that the phase shift of the retro-reflection beam for a small displacement is given by

δφWF = keffδz. If we record the dynamic motion of the mirror and weight the signal according to

the time dependent sensitivity function g(t), we can calculate the phase shift that occurred during

that measurement cycle. Additionally, by taking the derivative of the sensitivity function g(t), we

can obtain the velocity and acceleration sensitivity function; g(t) and ga(t) respectively.
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Figure 4.4: Inertial noise post-correction is performed by measuring the mirror motion during a

Mach-Zehnder-type interferometer. By convolving the time dependent sensitivity function g(t),

we can calculate the phase shift φPC that occurred during the measurement cycle. We can then

apply the phase shift to the measurement data to reconstruct the fringe.

φPC = keff

∫ 2T+4τ

0

ameas(t)ga(t)dt (4.13)

This is the operating principle behind inertial noise post-correction. The time dependent mirror

motion during the atom interferometer cycle is measured using a motion sensor such as a seismometer

or accelerometer and convolved with the appropriate sensitivity function to obtain the phase shift

φPC. This phase shift is the applied to the output of the interferometer to determine where the

vibrations during the measurement cycle shifted the measurement to. This method is also called

fringe-reconstruction, due to the fact, that for enough post-corrected data points, we can ‘reconstruct’

the fringe pattern from seemingly random noise. From this fringe reconstruction we can extract

the phase of the fit and calculate the value of the gravitational acceleration for a given set of

measurements.

The remainder of this work will discuss how this process is performed within our experiment, eval-

uation of the performance of different sensors and their limitations. Additionally using this concept

we can utilize post-correction using a next generation motion sensor known as an optomechanical

inertial sensor (OMIS).
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Chapter 5

Sensor Post-correction

In this chapter we discuss the post-correction method used within this thesis, as well as measure

and evaluate the performance of this method with various sensors. After the preface, this chapter

has been broken into two separate sub-chapters: post-correction with commercially available sensors

and opto-Mechanical enhanced atom Interferometry.

5.1 Post-correction Algorithm

Figure 5.1: A concept model of the post-correction

algorithm

The process of post-correction is performed by

convolving signal from a motion sensor with the

atom interferometer sensitivity function to pro-

duce a phase shift that corrects for the phase

shift from inertial noise during a measurement

cycle.

The process begins when signal from a mo-

tion sensor is recorded over the time interval of

the atom interferometer. The sensor dependant

amplitude and phase response (section A.1.2)

will mandate the acceleration or velocity from

the voltage measured. From this measured sig-

nal, we can then perform filtering to exclude

non-physical signals generated by the sensors.

Signal for some time from before and after the

atom interferometer is also recorded, which al-

lows us to compensate for any phase delays that

occur between the atom interferometer and mo-

tion sensor. We can then use the signal along

with the sensitivity function g(t) to calculate the

phase shift that occurred during that specific

measurement cycle. Applying this phase shift to the data point corresponding to that measurement

cycle, we can reconstruct the fringe pattern. To evaluate the performance of the post-correction,
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5.1. POST-CORRECTION ALGORITHM

we fit a subset of the total data and extract the phase from the fit. Fit parameters are determined

from the expected atom interferometer response, which is obtained by a histogram of the population

data, or from previous measurement.

5.1.1 Sensor Preparation

The experimental setup for each commercial sensor was performed in a similar manner, only with

minor variations to accommodate each sensor’s individual conditions. For inertial noise post correc-

tion in our experiment, the point of interest for measurement is the surface of the retro-reflection

mirror. This means we need to physically connect the motion sensor to the retro-reflection mirror so

that signal from the sensor reflects the motion of the mirror surface. Each sensor’s physical dimen-

sions required a different method of attachment; for example for the flat surfaces of the Nanometrics

Titan and the Guralp CMG-40T meant we could simply place the mirror atop the sensor. However for

the Nanometrics Trillium 240 and Wilcoxon 731A we required special mounting structures. These

mounting structures contribute to a non-trivial transfer function, the ramifications of which will be

discussed further in section 5 A.2.5. In every case, each sensor’s ẑ axis was aligned to the same axis

as the retro-reflection beam1, which is in turn aligned to the axis of gravitational acceleration.

For a post-correction with a given device, the sensor and retro-reflection mirror mounting struc-

ture were placed onto the vibration Minus-K isolation platform. Depending on the objective of the

given measurement, we could switch between the vibration isolation between isolation mode (free-

floating) or by-passed (strap-down). The sensor and mounting structure were placed in a manner

so that the Raman beam was centered on the retro-reflection mirror. We then aligned the retro-

reflection mirror so that the reflected Raman beam overlapped with the incoming Raman beam.

Alignment was performed by changing the counterweight distribution on the surface of the vibration

isolation platform.

The breakout box gives us access to the output of each axis of the sensor, as well as the ability

to center the masses or change the sensors clipping level. Using shielded cables we connected the

outputs of the breakout box to the pin-out box of the analog to digital converter. To reduce

mechanical coupling of ground motion onto the vibration isolation platform, we utilized a ‘slack’

cable configuration [81].

With the exception of the Wilcoxon 731A, each device required a DC voltage between 12 V−36 V

for operation. To avoid line voltage noise, each sensor was powered by a 12 V deep cycle lead-acid

battery. The Titan required interface with an external computer to set the value for it’s internal

resistance, which determined the sensor’s sensitivity and clipping level. Once powered, the sensors

were given time2 to come to thermal equilibrium. The test masses of the seismometers were centered

according to their user manual before each measurement.

1Quantatative analysis of the alignment can be found in section 5 A.4.
2This time was sensor dependent, for the Titan this could be as little as 10 minutes, or as long as 1 hour for the

Trillium 240
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5.1.2 Acquisition of Ground Motion

Figure 5.2: An example signal taken from a

Trillium 240 measurement. Signal is triggered

to acquire at the time corresponding to the first π/2

of the Mach-Zehnder atom interferometer. Pre-

trigger time before the TTL trigger is recorded

from the memory buffer of the ADC, along with

the sensor signal following the trigger, and is used

for phase delay correction.

The sensor output from the Trillium 240,

Guralp CMG-40T and Titan was directly con-

nected to an analog to digital converter

[National Instrument SCB-68] and was not

amplified. The Wilcoxon 731A signal was am-

plified using its proprietary breakout box. With

the exception of the Wilcoxon 731A, all sensors

must be read out using two pins in a differential

configuration, and not simply as a signal mea-

sured against ground. This differential configu-

ration minimizes electronic pickup. The pin-out

box was read out using a NI PCIe-6353 analog

to digital converter (ADC) card. This acquisi-

tion card was connected to the control computer

through its PCI port.

To interface with the ADC, we utilized the

DAQ MX Python package [82] which was capa-

ble of controlling which channels were acquired,

the measurement timing, the measurement du-

ration, the sampling rate and the number of pre-

trigger samples acquired. The acquisition program initiates recording when it receives a TTL from

the Realtime-control computer. This TTL is implemented into the atom interferometer control pro-

gram and timed to the first π
2 pulse of the Mach-Zehnder interferometer. When acquisition is

triggered, it also records the time before the trigger which is stored in the memory buffer of the

ADC. This data is referred to as pre-trigger samples. Following the last π/2 pulse of the atom inter-

ferometer, we record for an additional length of time. For most measurements, both the pre-trigger

and post-interferometer time was set to 20 ms. After recording the signal from the motion sensor

during the atom interferometer measurement cycle, the data is written to a hard-disk along with a

time-stamp. This process is repeated for every measurement cycle, and when no trigger is received

after a given time interval, 5 s, the program closes and the acquisition is complete.
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5.1.3 Sensor Response

Sensor
Generator

Constant

Trillium 1196 m s−1 V−1

Guralp 400 m s−1 V−1

Titan 8.16 m s−2 V−1

Wilcoxon 9.81 m s−2 V−1

Table 5.1: The generator con-

stants for each sensor as stated

from their respective user man-

uals. The Wilcoxon 731A has a

built-in amplifier in the breakout

box, and the generator constant

is stated for the .25g configura-

tion of the Titan. The Trillium

240 and Guralp CMG-40T out-

put velocity, the Titan and

Wilcoxon 731A output accelera-

tion.

Each individual sensor will have a frequency dependent motion-

to-voltage response as covered in section A.1.2. Since the ampli-

tude and phase response is flat for all frequencies in the region of

interest for atom interferometry, we can use the generator con-

stant for each sensor to calculate the motion from the voltage.

The chosen sensitivity of the Titan and the amplification on the

breakout box of the Wilcoxon 731A need to be taken into ac-

count when converting from voltage to motion. The output volt-

age of the seismometers (Trillium 240 and Guralp CMG-40T)

correspond to a velocity signal, and the accelerometers (Titan

and Wilcoxon 731A) output an acceleration signal.

5.1.4 Filtering

The internal sensor structure determines the frequency response

and the self noise of each motion sensor. This dictates the fre-

quencies the sensor is capable of measuring. However as to be

expected, signal from outside of this region is also output from

the sensor and will influence post-correction. To correct for this,

within the post-correction algorithm we implement digital high

and low pass filters. Digital as opposed to analog filters were

chosen for flexibility, allowing us to tailor the frequency depen-

dent amplitude and phase response of the filter. Individual fil-

ter frequencies were tuned to optimize the post-correction, but

in general low-pass filters were chosen with a frequency several

times above the corner frequency fcorner = 1/2T of the interferometer, but below the upper limit of

the stated sensor frequency range.

Due to the data load requirements to acquire signal from the motion sensor continuously, we

initially opted to record signal from the motion sensor for a finite interval covering the span of the

interferometer. The finite duration of the recorded time signal used for inertial post-correction leads

to a relatively large spectral resolution, and high-passing the low frequency self noise of the sensor

can attenuate valid signal. This phenomena is discussed further in section 5 A.2.1 is known as the

spectral resolution limit and can hinder the efficiency of post-correction.
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5.1.5 Signal Delay Correction

The mechanical transfer function of the mounting structure, as well the motion sensor phase response

will provide a phase delay between when a vibration occurs on the mirror surface and when the signal

is output from the sensor. For all sensors used, the phase response is flat for frequencies between

10 mHz-50 Hz, and therefore the signal delay can be compensated by digitally delaying the recorded

motion sensor signal relative to the timing of the atom interferometer.

We can determine the value of this signal delay by evaluating the short term stability of the

post-corrected data for various delays in signal. In an iterative process, by using the pre-trigger

samples we can shift the sensitivity function relative to the measured signal and calculate the phase

correction. By optimizing for the lowest short term stability, we can correct for any phase delay

of the sensors. The interval step size of the delay was determined analytically based on our data,

it was shown that for our measurements a step-size smaller than ∆t < 10 µs did not make a large

difference in post-correction performance. An example of this phase delay correction can be seen in

figure 5.3.

Figure 5.3: Fringe reconstructions calculated for different values for different phase delays. By

calculating with a different phase delay, we can minimize the short term stability of the post-

corrected phase.
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5.1.6 Fringe Reconstruction

Figure 5.4: We can use the recorded from the motion sensor signal with the the sensitivity function to

determine the phase correction from the inertial noise present during the measurement. By applying

the phase correction, we can reconstruct the fringe pattern.

Once the signal from the sensor is processed, we sequence the signal from classical motion sensor

to match the individual cycle of each measurement. Using the pulse length τ , pulse separation

time T , we can calculate the appropriate sensitivity function (section 2.2.1) that matches the sensor

output type (velocity or acceleration).

We apply the convolution integral of the sensitivity function with the sensor signal to calculate

the phase shift for that atom interferometer cycle. For example, the phase correction using measured

signal from an accelerometer a(t)meas, and an acceleration sensitivity function ga(t), we get equation

5.1.

∆φPC = keff

∫ 2T+4τ

0

ameas(t) ga(t)dt (5.1)

We then apply the phase correction to the normalized population output of the atom interfer-

ometer for each measurement cycle to reconstruct the fringe.
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5.2 Atom Interferometer Response and Fitting

Once we obtain a reconstructed fringe from the phase corrections, we can evaluate the fringe to

gauge the effectiveness of the post-correction in suppressing vibrations. This is measured by fitting

the atom interferometer response to the post-corrected data points to obtain the measured phase.

To fit the reconstructed fringe, we need the atom interferometer response amplitude, frequency,

phase and offset. The amplitude is the the fringe contrast C0, the frequency is given by the pulse

separation time of the atom interferometer. We leave the phase as a free parameter.

Figure 5.5: Histogram of a 300 measurement

cycles of a Mach-Zehnder atom interferome-

ter, with the retro-reflection mirror driven with

piezos. We can then fit the histogram to deter-

mine the offset and fringe contrast, and perform

post-correction.

To determine the fringe contrast and offset,

we could fit the response of the atom interfer-

ometer, although technical noise of the atom

interferometer will be added to the fringe con-

trast of the atom interferometer. In high inertial

noise environments, phase noise generated from

ground motion will span several fringes, mak-

ing it difficult to obtain the atom interferom-

eter response by simply scanning the Raman

detuning sweep-rate α and recording the out-

put population. To obtain a reliable gauge of

the contrast of the atom interferometer, we cre-

ate a histogram of the data normalized |F = 2〉
population. The non-linear susceptibility of the

atom interferometer to inertial noise will gener-

ate a bimodal distribution, from which we can

determine the contrast C0. Driving additional

mirror motion with an oscillator, as is done in

the simulated high inertial noise measurements,

can distort the bimodal distribution, however fringe contrast and offset can still be obtained.

In the case where the inertial noise is not large enough to span a full fringe, as is the case for low

inertial noise measurements taken with the Trillium 240, we first increment the sweep-rate and

measure the atom interferometer response.

5.2.1 Evaluation of Post-Correction

Once the fit parameters are obtained, we can fit subsets of the total reconstructed data set to obtain

phase information about the post-corrected measurement. This is obtained by binning the total

data set set into equal numbers of data points. With the phase as the only free parameter, we then

perform a linear least squares regression fit to obtain the fitted phase from each subset. From the

fitted phase values, we can use the scale factor to obtain the measured acceleration and compute

the ADEV of the total data set.

There are two metrics that we can use to evaluate the performance: the post-corrected short-

term uncertainty, and the suppression factor. The former is ideal for low inertial noise environments,

and the latter is a better rubric for understanding how well the post-correction performed in a high

inertial noise environment. Ideally these two metrics would equally evaluate the post-correction, but
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Figure 5.6: From the total data set, we can break the measurement into subsets, from which we fit

each data subset and obtain the fitted phase value.

sensor dynamic range, clipping level and sensitivity come into play.

• In lower inertial noise environments, the sensitivity of seismometers to low frequency ground

motion is more suited for post-correction.

• In high inertial noise environments, the high dynamic range of accelerometers perform well,

but these sensors are not as sensitive as compared to seismometers. The suppression factor is

defined as the ratio of the uncorrected phase spread to the post-corrected phase. To obtain

the uncorrected phase spread, we calculate the ADEV of the phase corrections calculated from

the post-correction integral for each measurement cycle.

γ =
φUncorrected

φCorrected
(5.2)
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Chapter 5 A

Inertial Noise Post-Correction with

Commercially Available Sensors

5 A.1 Measurements of Post-Correction Performance

As has been mentioned in the previous chapter, the implementation of post-correction grants us

the ability to reduce inertial noise and obtain meaningful data. We performed inertial noise post-

correction with the seismometers Trillium 240 and Guralp CMG-40T; and accelerometers Titan

and Wilcoxon 731A on 3 pulse Mach-Zehnder type atom interferometers of varying pulse sep-

aration times. These measurements were carried out with the aim of determining the individual

advantages or disadvantages of post-correction with different sensors in a given environment.

Tests were performed in two different configurations: low inertial noise environments, where the

vibration isolation was enabled, and driven strong motion environments, where the vibration isola-

tion was disabled or extra noise was added via speaker or piezoelectric transducer (PZT). Different

sensors performed better within these configurations, and since both low and high noise environ-

ments are desirable for atom interferometer post-correction, we will discuss the sensor performance

in each configuration.

5 A.1.1 Post-Correction in Low Inertial Noise Environments

Broadband seismometers such as the Trillium 240 and Guralp CMG-40T offer extremely high sen-

sitivity on the order of ∼ 1× 10−8 m/s2/
√

Hz in the frequency range 10−2 − 50 Hz, but suffer from

a low dynamic range and clipping level, which limits post-correction in high-noise low T interferom-

eters. However, these sensors are ideal for a large T atom interferometers which employ vibration

isolation. As the pulse separation time increases, the corner frequency fcorner decreases, lessening

the effect from higher frequency vibrations. Interferometers with extremely large pulse separation

times, such as will be possible with the VLBAI experiment[41], will benefit the most from performing

post-correction using broadband seismometers.

To determine the effectiveness of broadband seismometers for inertial noise post-correction we

placed these sensors on the Minus-K vibration isolation platform and performed inertial noise post-
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correction on Mach-Zehnder type interferometers with pulse separation times of T = 78 ms.

Between the Trillium 240 and Guralp CMG-40T, the low sensor self noise of the Trillium 240

performed better, so post-correction in a low inertial noise environment will be focused on this

sensor.

Post-correction with the Trillium 240

The lowest short-term uncertainty reached after post-correction was performed with the Trillium

240 on a Mach-Zehnder style atom interferometer with pulse separation time T = 78 ms. For this

measurement, the retro-reflection mirror was connected to the Trillium 240 via a custom mounting

structure1. The measurement was performed with the vibration isolation enabled to accommodate

the low clipping level of the broadband sensor. The linear sweep rate of the Raman detuning was set

to a mid-fringe position. 300 measurement cycles were taken with an average cycle time Tc = 2.3 s.

During each measurement cycle, we recorded the velocity signal for a total of 196.03 ms from the

Trillium 240 with a sampling rate of 105 samples per second.

After the measurement was complete, the voltage signal was converted to velocity using the

1196 m s−1 V−1 generator constant. We implemented a digital IIR low-pass filter of 23 Hz, giving

us signal up to roughly 3 times the corner frequency of the MZI (fcorner = 6.41 Hz), yet well below

the sensors upper frequency range of the sensor fUpperTr = 50 Hz. We used the measured Trillium

240 signal to perform inertial post-correction on the normalized |F = 2〉 population output of each

interferometer cycle. The phase corrections were applied, and the fringe was reconstructed, see

figure 5 A.1a. Ground motion was not large enough to equally distribute points in a manner where

a histogram could be applied to determine fringe contrast, so before the mid-fringe measurement we

scanned the sweep-rate to measure the atom interferometer response. We then binned the total 300

measurement data set into subsets of 5 measurement cycles and fit a sine to the data points; from

which we obtained the phase.

we calculated the short term uncertainty of the uncorrected atom interferometer was σUPC =

4.4× 10−6 m/s2/
√

Hz. From the ADEV of the phase corrections, we reached a short term uncertainty

of σPC = 9.2× 10−7 m/s2/
√

Hz, yielding a suppression factor of γ = 5.4. The post-correction

performance is limited by the self noise of the motion sensor (both electronic and environmental)

below the measurement cycle frequency fcycle = 0.55 Hz. This sensor self noise below the cycle

frequency cut-off corresponds to an acceleration noise of 1.2× 10−6 m/s2/
√

Hz.

5 A.1.2 Post-Correction in a Simulated High Motion Environments

The high sensitivity at low frequencies makes broadband seismometers well suited for post-correction

of Mach-Zehnder type interferometers with large pulse separation time. However, in high inertial

noise environments, the high dynamic range and high clip level of accelerometers is more capa-

ble. Post-correction measurements with the accelerometers were taken with the vibration isolation

disabled in a ‘strap-down’ configuration, further the highest suppression factor was obtained by

1The domed roof of the Trillium 240 was designed to help aid stability in changes of barometric pressure. However,

this domed top made connection to the retro-reflection mirror difficult. The retro-reflection mirror could not simply

be placed onto the top of the Trillium 240, and the sensor cannot be inverted. More details about the mounting

structure will be discussed in section 5 A.2.5
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(a) The Reconstructed Fringe (b) ADEV of Phase

Figure 5 A.1: (Left) The reconstructed fringe calculated from the post correction of a 300 cycle

T= 78 ms atom interferometer. The total data set is split into equal subsets and fit determined

by the atom interferometer response parameters; from which the phase is extracted. (Right) The

ADEV of the obtained phase is compared with the uncorrected acceleration RMS to determine the

suppression factor.

simulating a strong motion environment using the the Titan with additional motion added by

piezoelectric transducer (PZT).

Nanometrics Titan

For this measurement the retro-reflection mirror was attached directly to the top of the Titan using

ceramic glue. The Titan with the attached retro-reflection mirror was placed onto the vibration

isolation platform and aligned to overlap with the incoming Raman beam. The internal sensitivity

setting of the Titan was set to .25g. External noise was introduced from three PZT placed under

the legs of the Titan2. These PZTs were driven at 350 Hz with a driving voltage of 20 V.

A three pulse Mach-Zehnder type interferometer with pulse separation time T = 10 ms was

performed at a fixed sweep-rate α that corresponded to a mid-fringe position. 300 MZI cycles were

measured with an average measurement cycle time Tc = 2.7 s. During each measurement cycle

60.03 ms of signal from the Titan was measured with a sampling rate of 105 samples per second. We

then used the titan generator constant, KTitan = 8.16 m s−2 V−1 to convert the measured voltage

into an acceleration signal. We then implemented a digital high-pass filter3 of 0.3 Hz and performed

a low pass filter of 400 Hz. From this filtered data, we performed the post-correction integral to

obtain the phase correction. We applied the phase correction and reconstructed the fringe pattern,

figure 5 A.2a.

The induced motion, generated phase corrections that spanned several fringes, allowing us to

determine the offset and contrast by taking a histogram of population. The entire data set was

2A full description of PZT placement is shown in section 5B.3
3This is where the high-pass filter was set, but due to the spectral-resolution limit, the filter was actually 16.6 Hz.

The reasoning for this is discussed in section 5 A.2.1.
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split into a subsets of 10 measurements, the phase was extracted from the fringe fit of each subset.

From the extracted phase we calculate the post-corrected short-term uncertainty and suppression

factor. From the spread of the phase corrections, we calculated an uncorrected short term uncer-

tainty of σUPC = 7.4× 10−3 m/s2/
√

Hz. We calculated a post-corrected short term uncertainty

of σPC = 1.0× 10−4 m/s2/
√

Hz, yielding a suppression factor of γ = 73.8. The limitation of the

post-correction in this case was the spectral resolution limit, calculated to be 1.9× 10−4 m/s2/
√

Hz

for this measurement.

(a) Reconstructed Fringe with Titan Data (b) ADEV of Phase and Suppression Factor

Figure 5 A.2: (Left) The point spread function of the population data and the reconstructed fringe

of the entire data set. Since the mirror was driven with piezos, the population distribution does not

follow a bimodal distribution (Right) The ADEV of the post-corrected phase is compared with the

uncorrected phase spread to determine the suppression factor.
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5 A.2 Limitations to Gravimetry

In this section we will cover the current limitations to inertial post-correction, as well as the other

effects that affect post-correction. Post-correction was either limited by the spectral resolution limit

sensor or self noise generated from sensor electronics and environmental effects. Due to the finite

length of motion sensor signal recorded, the frequency resolution of each post-correction measurement

is large. This large spectral resolution limits the placement of high-pass filters used to filter the low

frequency sensor drifts. Depending on the measurement, implementing a high-pass filter could, due

to the large frequency resolution, attenuate valid signal for post-correction along with low frequency

self noise. The self noise and spectral resolution limit was evaluated for each measurement, which

determined whether or not high-pass filtering was implemented.

Table 5 A.1: A table of the current limitations of gravimetry for the T = 10 ms high noise Titan

measurement and the T = 10 ms low inertial noise Trillium 240 measurement . The ‘Total Inertial

Noise’ represents the unpost-corrected inertial noise affecting the atom interferometer, below he

limitation limitation to post-correction is either determined by the spectral resolution limit or the

self noise of the motion sensor. This is determined by whether or not the signal from the sensor was

high-pass filtered, which is determined by the sensor and measurement pulse separation time. The

lower limitation of the two is shown in bold.

Measurement High Noise Titan Low Noise Trillium 240

Total Inertial Noise 8.9 rad/
√

Hz 450 mrad/
√

Hz

- Motion Sensor Self Noise 2.0 rad/
√

Hz 100mrad/
√
Hz

- Spectral Resolution Limit 304mrad/
√
Hz 448 mrad/

√
Hz

Raman PLL Noise 40 mrad/
√

Hz 35 mrad/
√

Hz

Sensor Alignment Noise 24.0 mrad/
√

Hz 1.4 mrad/
√

Hz

Quantum Projection Noise 7.7 mrad/
√

Hz 4.4 mrad/
√

Hz
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Figure 5 A.3: The self noise of each of the 4 motion sensors as either stated by the manufacturer

or published. The Peterson low and high noise is shown for reference. The blue dashed line

represents the cycle frequency for a Tc = 1.8 s atom interferometer. Self noise is plotted for the

frequency operational range stated by the manufacturer, however electronic signal from outside this

region is present.

5 A.2.1 Self Noise and Spectral Noise Limitation

As mentioned previously, the ultimate limit to post-correction with a sensor is the sensor’s self noise.

This self noise has a frequency dependence and is specific to the individual sensor, and is defined

in this work to incorporate not only the electronic noise of the test mass read-out, but also drifts

caused by sensor environmental susceptibility to factors such a pressure and temperature. Sensor self

noise can be measured by grouping multiple sensors of the same type and performing a huddle-test

[83, 84].

Although these sensors are stated to perform for a given frequency range, they are not usually in-

ternally filtered and therefore output signal at frequencies outside of their measurement capabilities.

This signal, if not filtered, will add a non-physical contribution to the post-correction. Signal below

the cycle frequency of the interferometer is interpreted as atom interferometer signal, and should

not be post-corrected. Additionally if not internally filtered, the self noise of the sensor increases

at lower frequencies. This low frequency noise is a result of the aforementioned temperature and

pressure variations that affect the sensor over time.

We calculated the contribution of sensor signal from below the cycle frequency by taking a 30

minute measurement of the Trillium 240 and Titan in their respective measurement setup, from

which we calculate the power spectral density of each of the sensors. From the power spectral density,

we can use equation 4.9 integrating from from DC − ωc (where ωc = 2πfc) to calculate the RMS
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phase contribution from the unfiltered sensor self noise below the cycle frequency φ
∼RMS

Self , giving us

equation 5 A.1.

(φ
∼RMS

SN )2 =

∫ ωC

0

|Hφ(ω)|2Sa(ω)dω (5 A.1)

For the simulated strong motionTitan measurement, the unfiltered sensor contribution is φ
∼RMS

SN Titan =

2.05 rad and for the low inertial noise Trillium 240 measurement, the self noise contribution is

φ
∼RMS

SN Trillium = 100.4 mrad.

Spectral Resolution Limit

Figure 5 A.4: Power spectral density of the Trillium 240 from a 30 minute background measure-

ment. For the low inertial noise measurement the cycle frequency is fc = 0.55 Hz; anything measured

below this limit is atom interferometer signal, and therefore must be filtered from the sensor.

With the post-correction algorithm, we measure a time-series signal to post-correct the noise

occurring during that specific measurement cycle. We can define this finite temporal duration as ,

∆TPC, which for our post-correction measurements, ∆TPC = 2T + 4τ + tpre-trigger + tPost-AI. The

finite temporal duration4 of the recorded signal from the sensor, gives us a frequency resolution,

∆FPC, equation 5 A.2. The temporal-spectral uncertainty relation in signal processing theory is

4As mentioned in section 5.1.4, the limited duration of measurement was a requirement for data acquisition and

processing.
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given the name ’the Gabor Limit’ [85], and follows similar principles as the uncertainty principles

used in physics.

1 ≤ ∆TPC ·∆FPC (5 A.2)

For a T = 78 ms Mach-Zehnder atom interferometer, the total length of the recorded signal is

∆TPC = 196.03 ms yielding a frequency resolution of∆FPC ≥ 5.1 Hz.

As mentioned above, low frequency signal drifts from the motion sensor must be filtered or will

contribute additional noise to the post-correction measurement. However by high-pass filtering the

signal with such a large frequency resolution we cannot discern between the signal and the noise

within this frequency block ∆FPC. In the T = 78 ms atom interferometer, all signal below 5.1 Hz

cannot be spectrally resolved. However, due to the spectral resolution, when high-pass filtering the

data within the frequency band, DC−FPC will be attenuated. For example for the T = 78 ms atom

interferometer, this means that data below spectral resolution limit, ∆FPC = 5.1 Hz is attenuated

along with the self noise. With an average Tc = 1.8 s our cycle frequency fc = 0.55 Hz meaning that

9 cycle-frequency sampled data points are filtered along with the self noise of each sensor.

A longer measurement of the signal from the motion sensor will increase the spectral resolution,

allowing for the ability to more finely place the high-pass filter. However, the maximum TPC limi-

tation would be the cycle time Tc, at which point the frequency resolution ∆FPC would be equal to

fc. This represents a fundamental limitation to the post-correction technique; the segmented nature

of the process restricts spectral resolution. To increase the frequency resolution to below the cycle

frequency, we need to continuously measure signal from the motion sensor.

To determine the effect of this limitation on the measurements taken above, we can simulate

the uncorrected inertial noise from frequencies that are attenuated when high-pass filtering. We

measured Sa
5 for each sensor by taking a 30 min measurement of the ground motion with a sampling

rate of 200 Hz, from which we calculated the inertial noise contribution for using equation 5 A.3.

σ2
φ SLR(τ) =

k2
eff

τ

Nwindow∑
n=1

|Hφ (2πnfc)|2

(2πnfc)4
Sa(2πnfc) (5 A.3)

Where Nwindow is the number of interferometer cycle-frequency data points between fc and FPC.

For the simulated strong motion background measurement, this phase contribution from per-

forming a high-pass filter with the spectral resolution limitation (SRL) was σ Titan
φ SRL = 304.3 mrad;

for the Titan and σ Trillium
φ SRL = 447.7 mrad for the Trillium 240.

High-pass Filtering and Post-Correction

Measurement High Noise Titan Low Noise Trillium 240

Sensor Self Noise 2.0 rad/
√

Hz 100mrad/
√
Hz

Spectral Resolution Limit 304mrad/
√
Hz 448 mrad/

√
Hz

This means for each sensor we need to decide whether or not to implement a high-pass filter. In

the case of the Trillium 240, the spectral resolution limited phase contribution was higher than

5For the Trillium 240, we actually measure the velocity power spectral density, but we can convert from velocity

PSD to acceleration PSD using the relation Sa(ω) = ω2Sv(ω).
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the self noise contribution so we did not implement high-pass filtering. However, in the case of the

Titan, the self noise was higher than the spectral resolution limit, so we implemented high-pass

filtering.

In either case, the limited duration of signal measurement was the underlying contribution to the

limiting the post-correction. This can be addressed in the future by implementing measurements

where signal from the motion sensor would continuously be recorded. High-passed data above the

cycle frequency could be used for post-correction and signal from below the cycle-frequency would

be recorded from the atom interferometer. The continuous measurement from the motion sensor

would allow for much finer frequency resolution, and allow for high-pass filters to be placed directly

at the cycle frequency.

5 A.2.2 Alignment Noise of the Sensor

Figure 5 A.5: It is possible for the retro-reflection

to be aligned, but the sensor not to be.

As discussed in section 3.1.2, the Raman beam

is aligned parallel to the local gravitational ac-

celeration. The retro-reflected beam is aligned

by changing the weight distribution on the vi-

bration isolation platform so that the retro-

reflection beam is aligned to the incoming beam.

It is possible for the retro-reflection mirror to be

aligned to the axis of gravitational acceleration,

but for the sensor not to be. This misalignment

is possible if the underside of the retro-reflection

mirror is not flush with the surface of the sensor,

thus creating an angle.

The motion sensor signal is measured from

the ẑ axis, and misalignment of the sensor rela-

tive to the Raman beam will influence the cor-

relation of the atom interferometer with the mo-

tion sensor. Additionally, misalignment of the

sensor’s ẑ axis relative to the Raman beam will be picked up by the other vertical sensor axes.

To simplify the problem, we will illustrate this in two dimensions. The angle between the sensor’s

ẑ axis and the gravitational acceleration ~g is given by the angle θ, which is constant over time

(dθdt = 0). For a given angle θ we lose signal from the ẑ axis and gain signal from the un-correlated

x̂ axis. We can model the noise of misalignment using equation 5 A.4.(
φ
∼RMS

Alignment

)2
=
(
φ
∼RMS

Vib

)2 − (φ∼RMS
ẑ

)2
cos2

(
θ
)

+
(
φ
∼RMS
x̂

)2
sin2

(
θ
)

(5 A.4)

We can calculate the contribution from alignment by using the spread of interferometer points

to calculate φ
∼RMS

Vib , and measuring the power spectral densities S ẑa(ω) and Sx̂a (ω) to calculate the

φ
∼RMS
ẑ and φ

∼RMS
x̂ using equation 5 A.5.

(
φ
∼RMS
x̂

)2
= k2

eff

∫ ∞
0

1

ω4
|Hφ(ω, T )|2Sx̂a (ω)dω (5 A.5)
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We measured an upper bound of the maximum angular tilt θ < 0.15°. We then calculate an

alignment noise contribution of 1.4 mrad for the Trillium 240 and 24.0 mrad for the Titan. This

noise source is not limiting, although to reduce this contribution we can measure signal from all

three axis and calculate the sensor orientation that maximizes the post-correction.

5 A.2.3 Raman Phase lock loop

As mentioned previously, any uncommon phase shift between the incoming and retro-reflected beams

cannot be discerned from a gravitational acceleration. In our case, light for the Raman Master and

Raman Slave is generated by separate source lasers. Uncommon frequency drifts of the laser, or

differential phase shifts due to index of refraction changes will change the relative phase between

the beams. To address this problem, we implement a phase-lock loop (PLL) which is designed to

keep the phase relative to the two laser constant.

Figure 5 A.6: The phase noise analyzer output

weighted by the interferometer transfer function

for a T = 78 ms atom interferometer.

To measure the contribution from this effect

on our post-correction, we measured the phase

noise of the beat between the Raman Master

and Slave at the point where the beams enter

the Raman collimator. Light from both the

Master and Slave was coupled into a fiber at

the end of which we placed a photo-diode. We

can measure the phase noise of the beat between

the Raman Master and Slave on the photo-

diode using a phase noise oscillator [Rohde &

Schwarz FSWP8] which is internally referenced

to a stable 10 MHz OCXO oscillator. From

which we obtained the phase noise power spec-

tral density. We can then use the atom inter-

ferometer transfer function to calculate the to

calculate the RMS phase contribution from this

lock.

For the low inertial noise measurements with

a T = 78 ms we measure a phase noise of φ
∼

PLL = 40.24 mrad, and φ
∼

PLL = 34.87 mrad for our for

T = 10 ms high inertial motion measurements.

The source of this noise is the large uncommon path between the two lasers after the lock. The

light from each source laser enters independent fibers and passes through independent optics before

being overlayed. Ideally the phase lock between the two beams would be locked as closely as possible

to the Raman collimator. This can be implemented in the future, but currently would require a

major redesign and reconstruction.

5 A.2.4 Synchronous Noise Due to Magnetic Field Sensitivity

Dynamic magnetic fields generated by the switching of the magnetic field coils can affect the test

mass position of the motion sensor. This change in test mass position will simulate motion and

occurs in sync with the atom interferometer [86], causing a constant systematic phase shift for
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all post-corrections. In our experiment a µ-metal magnetic shield separates the field coils from the

post-correction sensors, but nonetheless we can analyze our data to determine if this effect is present.

For an N cycle measurement, with M data points per measurement cycle, we will have a total

measurement array u, with each element unm representing one measured signal voltage from the

sensor.

u =


u11 u12 u13 . . . u1M

u21 u22 u23 . . . u2M

...
...

...
. . .

...

uN1 uN2 uN3 . . . uNM

 (5 A.6)

Each column represents the same temporal location in the measurement sequence, and any

synchronous noise present will be common to each column. We can then calculate the column-

wise mean value of the measurement signal to accumulate any synchronous effect over the entire

measurement into one row vector um.

um =
1

N

N∑
n=1

unm (5 A.7)

We can then calculate the normalized covariance or Pearson coefficient, for each measurement

cycle with the corresponding mean signal, equation 5 A.8.

rn =
Cov(unm, ūm)√
|unm|·|ūm|

(5 A.8)

Figure 5 A.7: A histogram of the Pear-

son coefficents of 300 measurement cy-

cles measured with the Trillium 240

in the low inertial noise configuration.

Each measurement cycle was correlated

with the mean the mean signal u.

Where Cov(unm, um) is the covariance the vectors of

the nth measurement cycle with the mean signal u. This

leaves us a column vector rn of how each measurement

cycle correlates to the mean signal. We can then compute

a histogram of these Pearson coefficients for each mea-

surement cycle. If synchronous noise is present, we will

have high correlation between the mean signal and the

measurement cycle (rn > 0.75).

We then performed this calculation on a 300 point

Trillium 240 measurement taken in the low noise con-

figuration, and saw an even distribution of Pearson co-

efficients (figure 5 A.7), but no occurances of rn > 0.75.

This implies that our measurements are likely not affected

by synchronous noise.

In the future as gravimeters become smaller and mo-

tion sensors become more compact, this effect could play

a larger role. This highlights one advantage of the OMIS

sensor which is optically read-out and insensitive to magnetic field coil switching.
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5 A.2.5 The Mechanical Transfer Function

For each motion sensor we require a mounting structure that connects the retro-reflection mirror

to the sensor. The reference point for post-correction is the mirror’s surface, and any phase delay

or magnitude attenuation that occurs between the mirror’s surface and the sensor’s test mass will

affect the efficiency of post-correction. This change in signal magnitude and phase can be described

by the system’s mechanical transfer function.

Figure 5 A.8: To take the Trillium 240 as an example, the sensor’s top was designed to combat the

effects of changes in atmospheric pressure, however this prevented mounting of the retro-reflection

mirror to the Trillium 240. The reference point of the sensor is the bottom, and the device cannot

be inverted. We attached 15 cm rigid aluminum posts to screws that attached to the base of the

Trillium 240 and place a square aluminum plate on top of these posts. From which, we can place

the retro-reflection mirror.

The effect of the mechanical transfer function on post-correction is difficult to measure due to

the fact it has less of an effect on the post-correction than the spectral resolution limit. As the

spectral resolution problem is resolved, the transfer function is potentially a source of limitations.

This transfer function reflects the general problem of measuring with commercial devices; they are

not designed for use within the context of atom interferometry. The resolution to this problem is

one of the main advantages of the all-optical OMIS sensor, which can be directly integrated into the

center of mass of the inertial reference.
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Chapter 5B

Opto-mechanical resonator

enhanced atom interferometry

5B.1 Inertial Sensing with an opto-mechanical resonator

Recent developments in the design and creation of opto-mechanical resonators [87] show promise

for experiments capable of testing fundamental physics [88, 89, 90], applications in quantum infor-

mation theory [91, 92], and even use in biology [93]. These resonators offer a nascent link between

macroscopic devices and coherent quantum systems.

The techniques and principles developed in these experiments have inspired the development of

a macroscopic opto-mechanical resonator capable of measuring acceleration. The optomechanical

inertial sensor (OMIS) is a compact device [32, 94] capable of measuring displacement and accel-

eration of a harmonic oscillator through the use of optical interferometry. The device’s small form

factor allows for easy integration into inertial references. The OMIS does not contribute a tempera-

ture gradient, and therefore may be placed near atomic sources without contributing a black-body

attraction [95]. The device’s insensitivity to magnetic and electric fields allow placement near field

coils or chip field wires, without fear of said fields affecting the test mass position. The sensor

design and construction is bespoke, and the mechanical resonance and measurable bandwidth can

adapted to the specific environment needed. Lastly the vacuum compatibility and lack of electric or

magnetic field emission means it can be placed in close proximity to an atom chip, making it ideal

for miniaturization efforts (section 6.3).

All of these unique features form an accelerometer that is more capable for use in an atom

interferometer when compared to traditional motion sensors. Yet, these devices have hitherto not

been employed in the post-correction of atom interferometers. The focus of this chapter will be on

the introduction, operating principles and application of these sensors to atom interferometers for

the use of vibration post-correction.
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Figure 5B.1: A Schematic of the OMIS, the full

setup with integration into the atom interferome-

ter is shown in figure 5B.4.

The OMIS is constructed with a base of

monolithic fused silica, with a free moving test

mass connected with two support flexures (Fig.

5B.1) . The flexures allow the test mass to move

along one axis and suppress motion along the

other axes. Parallel to the direction of motion,

a flat-cleaved optical fiber segment is bonded

within V-grooves of the test mass. A second op-

tical fiber known as the lead fiber is flat-cleaved

on one end and attached to the fused silica mass.

The flat-cleave side of the lead fiber is aligned to

face the fiber segment within the test mass; the

other end of the lead fiber allows light to enter

the lead fiber with an APC connector. The lead

fiber is aligned to form an optical cavity between the lead fiber tip and the fiber tip of the segment

contained within the test mass. The cavity length of the fiber tips is sensitive to displacement of

the test mass and may be optically read out by measuring the intensity of the reflected light from

the cavity. We can then use the mechanical transfer function of a harmonic oscillator to convert this

displacement to acceleration.

5B.2 OMIS Theory

A displacement of the OMIS test mass will result in a change of the cavity length formed between

the two fiber tips. As stated above, we can optically interrogate this cavity to determine changes in

displacement of the test mass. The test mass of the OMIS is constrained by the support flexures

can be approximated as a dampened harmonic oscillator and can be modeled by the differential

equation, equation 5B.1 .

d2x

dt2
+Qω0

dx

dt
+ ω2

0x = 0 (5B.1)

Where Q is the mechanical quality factor, and ω0 is the mechanical resonance of the oscillator.

The solution to this differential equation gives us the transfer function, equation 5B.2.

|X(ω)|
|A(ω)|

=
1

ω2
0 − ω2 + iωω0/Q

(5B.2)

This mechanical transfer function gives us a relation between the test mass displacement and an

acceleration. This cavity follows a Fabry-Perot cavity response[96]. We can then calculate the

optical response of the OMIS to motion by calculating how a change in cavity length affects the

reflected response for a cavity with length L, reflectivity R, incoming laser wavelength λ0 and small

test mass displacement Zm, equation 5B.3.

Ir(λ) = Ioffset + Icontrast

(
(1 +R)2

2

[
1− cos( 4π

λ Zm)

1 +R2 − 2R cos( 4π
λ Zm)

])
(5B.3)
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The reflectivity of the uncoated fiber tips in our setup is roughly 4 %, giving us a finesse, F ≈ 2,

and therefore the response can be approximated as sinusoidal with respect to wavelength. By

choosing a wavelength λ that corresponds to a mid-fringe position of the optical response, a linear

change in the cavity length will correspond to a linear change in the reflected response, equation

5B.4.

dZm
Zm

=
dλ

λ
. (5B.4)

To be able to compare the OMIS to the generator constant of the commercial devices (section 5.1)

it will be compared with, we can cast the reflected optical response is given in terms of a measured

voltage from a photo detector Vr. With this and the equation 5B.3 we can calculate how a test mass

displacement corresponds to a change in voltage, equation 5B.5.

∆Vr(z) = ∆Zm
λ0

L

(
dV

dλ

)∣∣∣∣
λmidfringe

(5B.5)

where dV/dλ is change voltage with respect to the wavelength of the light. Lastly we can use equa-

tion 5B.2 to convert our cavity displacement Zm for the general displacement X into an acceleration

as a function of change in voltage, 5B.6.

∆Vr(z) = ∆a
|X(ω)|
|A(ω)|

λ0

L

(
dV

dλ

)∣∣∣∣
λmid-fringe

(5B.6)
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Figure 5B.2: Left. The optical response of a low finesse cavity. At a wavelength corresponding to a

mid-fringe position, a change in length or wavelength is linearly proportional to the reflected light

from the cavity. Right. The voltage response for an acceleration of 1 m s−2 OMIS 2 at port 3 (figure

5B.3 as a function of frequency for our setup. This was calculated for the measured parameters

(section 5B.4) of the setup using eq. 5B.6
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5B.3 Experimental Setup

Optical Setup

To show post-correction with a compact optical system, all components in this setup are fiber

coupled.

The source laser for OMIS post-correction was a low noise narrow line-width [NKT Photonics

Koheras ADJUSTIK] laser. Light generated from the source laser was sent through a fiber isolator,

and then passed into an fiber-based optical circulator. After the fiber isolator, we send the light

into port 1 of the circulator, which is sent out of port 2 where it is coupled into the OMIS cavity.

Light reflected from this cavity then re-enters port 2, which is then transmitted to port 3. We then

measure the optical power at the output of port 3 with a fiber coupled photo detector [Thorlabs

DET10].

Figure 5B.3: The optical circulator has

three ports, labeled: port 1, port 2 and

port 3. Light sent into port 1 will travel

to port 2. Light sent into port 2 will

be transmitted to port 3. Light entering

port 2 will experience an attenuation of

> 50 dB towards port 1. Light sent into

port 1 will similarly be heavily attenu-

ated towards port 3, and light entering

port 3 will also be attenuated towards

port 2 or port 3.

During operation with the NKT laser, roughly ≈
8 mW enter port 1, of which, ≈ 200 µW exit port 3. This

voltage is then bandpass filtered with frequencies: 0.33 Hz

- 10.6 kHz. The filtered voltage is amplified by a fac-

tor of 1000 with a [DLPCA-200] low noise amplifier. This

amplified signal is then sent to a [National Instrument

SCB-68] pin-out box and read off with a [NI PCIe-6353]

16-bit analog to digital converter (ADC). We interface

with the card using the NI-DAQMx Python library. The

acquisition of the signal is synced with the atom interfer-

ometer using a TTL pulse generated by the control matrix,

ensuring that acquisition is started concurrently with the

interferometer. The measured voltage is then recorded

and stored for later processing.

Mechanical Setup

For seismic post-correction, we are interested in the mo-

tion of mirror surface. The small form factor of the OMIS

allows us to attach the OMIS to the side retro-reflection

mirror. This was achieved by attaching the side perpen-

dicular to the measurement axis to one side of a square

2 inch retro-reflection mirror with Torr seal. The lead

fiber of the OMIS is supported using scaffolding, which is offset from the Raman beam. To reduce

mechanical coupling of vibrations on the platform to the fiber, insulating foam was added around the

fiber and the support structure. However, low frequency vibrations still mechanically couple to the

fiber1, causing fluctuations in the response the OMIS measurements. For this reason, with the first

generation OMIS, low frequency vibrations on the lead fiber prevented us from performing strap

down post-correction; where post-correction is performed on the intrinsic background vibrations.

Because of this, all measurements of inertial post-correction with the OMIS were performed on a

1A full discussion of the source and effect of this will be discussed in section 5B.6.3
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vibration isolation platform to attenuate the low frequency component of ground motion, at which

point, inertial noise higher than the mechanical coupling resonance of the lead fiber (measured to

be fdrive > 260 Hz for OMIS 1, Fig. 5B.15) was introduced through the use piezoelectric transducers

(PZT).

To measure the performance of the OMIS in comparison to other sensors, we attached a Titan

beneath the retro-reflection mirror with ceramic glue. The ẑ measurement axis of the Titan was

aligned to be parallel to the measurement axis of the OMIS and the normal vector of the mirror sur-

face. To inject vibrations into the system, beneath the mounting feet of the Titan, three controllable

piezoelectric ceramics (PZT) were installed. The Titan was then bolted to an aluminum base-plate

that sandwiched the PZT between the legs of the Titan and the base-plate. Three equally spaced

support legs were attached beneath the baseplate, and the whole setup was placed on a Minus-K

BM-1 bench top vibration isolation platform, and housed within an acoustic isolation box. We then

aligned the retro-reflection mirror to ensure overlap of the incoming and reflected Raman light.

Alignment was achieved by changing the weight distribution of counterweights on the vibration

isolation platform. The acoustic isolation box was sealed during measurements.

5B.4 Sensor Specifications

Table 5B.1: Physical Specifications of each sensor, from which we can calculate the change in

reflected light as a function of test mass acceleration.

Sensor
Mechanical

Resonance ω0

Mechanical

Q Factor

Cavity

Length
Mid-fringe Point

OMIS 1 7636 Hz 805.8 126 µm 1559.8 nm

OMIS 2 7789 Hz 1116 111 µm 1558.0 nm

OMIS 3 7475 Hz 1318 52 µm 1560.0 nm

To determine mechanical acceleration of the sensor from a reflected optical signal, we need to

determine the physical properties that govern the behavior of our sensors. In the course of the

research performed in this thesis, we worked with three separate OMIS sensors with varying cavity

lengths and mid-fringe points, labeled: OMIS 1, OMIS 2, and OMIS 3. The midfringe point of

OMIS 2 had an ideal midfringe point wavelength for our source laser, unless otherwise stated, all

measurements were taken with OMIS 2. The sensors used in this thesis were optimized for a different

task, and for this reason, these devices have a large mechanical resonance on the order of 7 kHz and

low optical finesse (F ≈ 2). The consequences of these mechanical properties will be discussed

further in section 5B.6. This section will focus on how the measurement of the physical properties

of each sensor was performed.

Measuring the Mechanical Resonance and Quality Factor of the Optical Resonator

The mechanical resonance was determined by measuring the reflected optical signal and operating

the PZTs with a single driving frequency and low amplitude. We could then determine the driving

frequency that maximized the time series amplitude.
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Figure 5B.4: The OMIS setup can be broken into two parts; the optical setup and the mechanical setup.

This figure is not to scale. Within the opto-mechanical resonator enhanced atom interferometer, a source

laser passes through a fiber isolator and fiber circulator. Light at port 2 is sent to the OMIS and reflected

light re-enters port 2 to be sent to port 3. The optical signal is read off using a photo-detector and the

voltage across a load resistor of the photo-detector is measured using an ADC. Within the mechanical setup,

the OMIS is attached to the side of a 2 inch retro-reflection mirror with glue [Torr seal] and the retro-

reflection mirror is then ceramic glued to the top of a Nanometrics Titan. Three piezoelectric stacks are

attached to the base of the Nanometrics Titan to be able to inject vibrations. The whole system sits beneath

our Raman beam, and is aligned to reflect the Raman beam back through the vacuum chamber. The entire

setup lays on top of a vibration isolation platform in an acoustic isolation box.

The mechanical quality factor (Q), can be measured by mechanically exciting the oscillator and

then measuring the ring-down:

Vmeas(t) = V0e
−ω0t/2Q (5B.7)
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Figure 5B.5: After mechanically excit-

ing the OMIS we turned off the excita-

tion and observed the ringdown of the

sensor under atmospheric pressure.

To measure the ring-down, we excited the OMIS with

external piezoelectric transducer (PZT) (Fig. 5B.4) driv-

ing near the OMIS mechanical resonace ω0, then the driv-

ing voltage to the PZT were abruptly turned off. After

the driving oscillation stopped, the signal of the oscillation

were measured on a photod-etector and an envelope was

fit to the oscillations to determine the exponential decay

giving Q.

For each sensor, this was measured in Bremen at the

DLR within vacuum. Due to the fact our sensors are oper-

ate in atmosphere, when we remeasured these parameters

for each sensor, they were much lower (QAir = 193.4) than

what was measured in vacuum (QVaccum = 1116). How-

ever,a decreased mechanical quality factor primarily affects the sensor’s behavior near resonance,

which is well outside the frequency region of interest for atom interferometry.

Measuring the Cavity Response

The voltage response of the OMIS is highly dependant on multiple system-specific parameters, such

as the efficiency of the photo detector, gain of the amplifier, how much light is reflected from the

OMIS, re-coupling of cavity light into the fiber and the output power of the source laser. Due to

these multiple dependencies, it is best to measure dV/dλ for each specific sensor and setup.
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Figure 5B.6: The optical response of OMIS
3 to changes in wavelength. The slope dV/dλ

can be measured by scanning the wavelength

and measuring the reflected response of the

sensor using a photo-detector. However, par-

asitic cavities are also present in the OMIS,

leading to a response from multiple cavities

when scanning the wavelength.

To measure the voltage response, we scan the

source laser wavelength, λ, and measure the output

of the circulator on our photo detector. By recording

the voltages as a function of wavelength, we can then

fit a slope to measure dV/dλ.

However, when measuring this in practice with

our prototype OMIS, it became clear that more cavi-

ties, other than the primary cavity, were present. We

will collectively refer to all cavities formed, that are

not the primary cavity between the lead fiber and

fiber fragment, as ”parasitic cavities”. The effect of

these parasitic cavities will be discussed further in

section 5B.6.3. For our measurement of the cavity re-

sponse, as we scan the wavelength, we will also scan

the response of these parasitic cavities, meaning our

total voltage response is a sum of the primary cavity

response plus the parasitic cavities (equation 5B.13).

To measure the slope of dV/dλ, we average of

the measured voltage. We, for example, were able

to measure a slope of dV/dλ = 1.68× 107 V m−1 for

OMIS 2 and dV/dλ = 2× 107 V m−1 for OMIS 3 (Fig

5B.6).
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5B.4.1 OMIS Generator Constant

Similar to the generator constant of the classical sensors, we can simplify the multiple parameters

that determine the OMIS response to a simple generator constant of the OMIS:

G =
|X(ω)|
|A(ω)|

λ0

L

(
dV

dλ

)
. (5B.8)

With the three sensors used, the mechanical transfer function |X(ω)|
|A(ω)| is approximately constant

for f < 1000 Hz. Therefore, for frequencies of interest to our atom interferometer 2, post-correction

can be performed with a generator constant that is constant with respect to frequency; a = Vr/G

5B.5 Results from Hybridization with the Optical Resonator

In this section we will explore the performance of the optical resonator.

5B.5.1 Optical Resonator post-correction in High motion Environments

To evaluate the post-correction performance of the OMIS, we introduced vibrations of a specific

frequency and used the OMIS and Titan to post-correct the atom interferometer at a mid-fringe

position (section 3.3.1). These measurements provide useful tools for characterizing the OMIS fre-

quency response as well as the performance compared to other classical devices. These measurements

were performed for Mach-Zehnder type interferometers of various pulse separation times, and in-

duced ground motion. The purpose of these measurements was purely diagnostic and therefore the

mid-fringe sweep rate value was chosen near the standard null fringe value, but otherwise arbitrary.

Furthermore, we performed these measurements for only one direction of momentum transfer.

The induced ground motion is generated from three piezoelectric transducer (PZT) driven by

an external function generator. We can then excite vibrations of the retro-reflector, which can

be measured with the Titan and resonator, allowing us to determine the frequency response of

our ground motion devices. Due to low frequency ground motion mechanically coupling into the

OMIS lead fiber (section 5B.6.3), we cannot perform strap-down measurements which are sensitive

to environmental ground motion. Additionally low frequency mechanical coupling to the fiber and

intensity noise from the source laser limit the maximum pulse separation time T we can use for

a measurement. As T is increased the atom interferometer is less sensitive to higher frequency

vibrations. For this reason, measurements were restricted to roughly 10 ms, where we could create

enough motion on the inertial reference, while minimally coupling to the fiber. By recording the

induced motion with the OMIS and Titan, we can correlate it in time to the atom interferometer

and post-correct the phase ∆φPC. With the phase correction applied to each data point we can

reconstruct the fringe pattern, and fit a sine to our data.
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Figure 5B.7: The post-corrected data with a histogram of the distribution. Since the mirror was

driven with piezos, the histogram will not follow a bi-modal distribution, however from the histogram

the contrast and offset can still be obtained, from which we can fit the post-corrected data.

.

Results of Hybridization in High Motion Environments

For characterization of the short term performance of the OMIS, we took a 300 cycle atom inter-

ferometric measurement with a T = 10 ms pulse separation time and cycle time of 1.6 s. During

this measurement,the PZTs were driven sinusoidally with a frequency of 350 Hz and a peak-to-peak

amplitude of 20 V. During each atom interferometer cycle, data from the OMIS and Titan were

simultaneously acquired and then recorded and after the measurement was complete, we applied

the post-correction algorithm (ref. 3.3.1). The recorded signal from the optical resonator was digi-

tally filtered with a band-pass filter from [300 Hz-400 Hz] to attenuate non-physical electronic noise

(section 5.1.4) from outside of the measurement bandwidth of each sensor 3.

By binning the normalized P|F=2〉 population data from each measurement of the atom inter-

ferometer, we can form a histogram of the population to determine the AI contrast offset and

technical noise. The period of the fringe is determined by the pulse separation time. With

these parameters, we bin the 300 point measurement into subsets of 10 points each and fit a

sine function with only the phase as a free parameter. From the phase of the fit of the post-

corrected data points we calculate the ADEV of the post-corrected data points. By using the

suppression factor method outlined in section 5.2 we can quantify the performance of our post-

correction. In this case we were able to reduce from the weighted acceleration for the OMIS of

σOMIS
weighted = 4.69× 10−3 m/s2/

√
Hz to σOMIS

PC = 1.0× 10−4 m/s2/
√

Hz giving us a suppression factor

of γOMIS = 46.8. For the Titan we were able to post-correct from the weighted uncorrected acceler-

ation σTitan
weighted = 4.57× 10−3 m/s2/

√
Hz to σTitan

PC = 6.52× 10−5 m/s2/
√

Hz yielding a suppression

factor of γTitan = 70.1. The disparity in suppression factor between the OMIS and Titan will be

addressed in section 5B.6.

2For a T = 10 ms atom interferometer, the corner frequency is 50 Hz. Frequencies above 1 × 103 Hz will be strongly

attenuated by the low pass behavior of the atom interferometer.
3For the OMIS this represents the need to suppress intensity noise of the source laser (subsection 5B.6.2).
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5B.5.2 Long Term Stability of Hybridization with the Optical Resonator

To determine the performance of the OMIS in a realistic gravimetry setting we performed a 19.5 h

11980 cycle measurement; of which 10900 points were used to measure the local gravitational ac-

celeration with 87Rb. The piezoelectric transducer (PZT) used for exciting vibrations on the retro-

reflection mirror (Fig. 5B.4) were driven with 20 V at 350 Hz generating an AI weighted acceleration

short term uncertainty of: σweighted = 8.00× 10−3 m/s2/
√

Hz.

We performed interferometry with pulse lengths T = 9 ms, T = 10 ms and T = 11 ms for

central fringe determination for both directions of momentum transfer. We then determined the

mid-fringe position for both directions of momentum transfer (αk− = −25.1503 MHz s−1, αk+ =

25.1501 MHz s−1). When the piezos are turned on, inertial reference motion will shift the output

of the interferometer symmetrically several fringes around the mid-fringe position. This spread

ensures that with a sample of AI measurements we can fit a sine and measure the local gravitational

acceleration. We performed 11 cycles for one direction of momentum transfer and then switched to

11 cycles in the other direction, after which we switched back to the first direction. This processes

was repeated for the entire measurement. As was performed in the short term post-correction,

during each shot we recorded data from the OMIS and Titan simultaneously and in conjunction

with the atom interferometer. Each shot contains 20 ms of pre-trigger samples and was measured

with a sampling rate of 100 kHz.
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Figure 5B.8: Here 1000 points are shown of

k+ direction of momentum transfer are shown.

The offset and amplitude can be extracted from

the point spread function (left) of the data set,

which we can then use to get a fit of the post-

corrected data points (right)

After the long term measurement was com-

plete, we sequenced the ground motion data to

corresponding k+ and k− measurements and then

applied a digital band-pass filter of 300-450 Hz.

We selected our pre-trigger samples (ref. 4.3)

that minimized the residuals of the fit for each

sensor. We then applied the generator constant

for the Titan and the measured generator con-

stant of the OMIS to convert our voltages to ac-

celerations. After this we integrated the time se-

ries measured voltage with the sensitivity function

(section 2.2.1) to get the total phase shift that oc-

curred during a given shot, and applied that phase

correction to the measured mid-fringe point.

We performed this on all of the data points of

the measurement for both directions of momen-

tum transfer. To get the value of the amplitude

and offset, we cut the data into 545 point segments and performed a histogram of the population.

We then separated the data into groups of 50 measurements for fringe fitting. The amplitude and

offset are measured from the histogram fit and the frequency comes from the pulse separation time

T , leaving only the phase of the fit as a free parameter. From this we can extract ~g for one direction

of momentum transfer. We took the half difference between the k+ and k− phase fits following

the momentum reversal method (section 3.3.2) to get the final result of our measurement of the

gravitational acceleration .
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Post-correction

The measurement had an average per shot cycle time of τaverage = 5.44 s. One measurement of the

gravitational acceleration required 100 points total (50 k+ and 50 k−), and therefore a total cycle

time of τ = 272 s4. From the fits of the post-corrected data, we extracted the measured value of the

phase, which we then used to calculate the acceleration.
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Figure 5B.9: The improvement factor is calculated from the ratio of the short-term uncertainty of

the uncorrected data σu = 8× 10−3 m/s2/
√

Hz to the short term uncertainty of the post-corrected

data for the OMIS (Titan) σO = 5× 10−4 m/s2/
√

Hz (σT = 2.7× 10−4 m/s2/
√

Hz).

We fit a 1/
√
τ curve to the acceleration measurements of the Titan and OMIS to extrapolate the

short-term uncertainty at τ = 5.44 s (one shot) and also the value of the uncertainty at one second.

The suppression factor of the OMIS was γo = 16 and for the Titan was γT = 29. The uncorrected

short-term uncertainty of σu =8× 10−3 m/s2/
√

Hz. The short-term uncertainty is calculated after

post correction to be σO = 5× 10−4 m/s2/
√

Hz for the OMIS and σT = 2.7× 10−4 m/s2/
√

Hz

for the Titan. We were able to integrate down to σO = 4.50× 10−6 m s−2 with the OMIS and

σT = 1.77× 10−6 m s−2 with the Titan after 24 656.5 s of integration.

4Each shot took τ = 2.72 s to complete, but since the k+ and k− cycles were interleaved the total cycle time of

one direction of momentum transfer was τ = 5.44 s
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5B.5.3 Comparison of Titan and OMIS

Figure 5B.10: The measured g value after post correction with the Titan and OMIS. We calculated

the rolling average for the OMIS (red solid line) and the Titan (green solid line). The ADEV

uncertainty band for the uncertainty at 6164.1 s is shown for both the Titan and OMIS. Deviations

To understand the long term behavior of the post-correction of the result, we performed a rolling

average (Fig. 5B.10) defined by on the post-corrected data to calculate the average measured

gravitational acceleration g over time.

gi =
N∑
i=1

gi−1 + gi+1

N
(5B.9)

From here we can compare the rolling average signal of the OMIS to the Allan Deviation (ADEV)

of the Titan. We measure a maximum difference between the Titan of gTitan − gOMIS =

1.929× 10−5 m s−2, corresponding to a difference in 3.6 times the uncertainty of the Titan σT, or

1.7 times the uncertainty of the OMIS at 6164.1 s.5. This difference is well within the combined

uncertainty of the two sensors, and with this small difference, we can claim that the OMIS does not

add any bias to the post-correction on the timescale of the measurement.

5Defined as the uncertainty at T = 1⁄3 measurement total. This corresponds to the stability of the Titan and OMIS

at 6164.1 s
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5B.6 OMIS Post Correction Limitations

The OMIS will suffer from some of the same primary noise source contributions as the commercially

available motion sensors, however post-correction with the OMIS yields unique limitations to the

performance of the post correction. Some contributions such as intensity and frequency noise, are

dependent on the source laser, whereas some contributions such as the parasitic cavities and thermal

limitations are generated from the OMIS. In this section we will focus on these key differences 6.

Table 5B.2: Leading noise contributions for post-correction with OMIS 2 in a T = 10 ms atom

interferometer

Noise Source Contribution

Frequency Noise a∼Freq = 2.1× 10−5 m/s2/
√

Hz

Intensity Noise 7 a∼Int = 2.2× 10−4 m/s2/
√

Hz

Fiber Noise a∼FN > 2.7× 10−3 m/s2/
√

Hz

Transmission Loss a∼TL = 2.1× 10−10 m/s2/
√

Hz

Thermal Limit a∼Therm = 5.8× 10−11 m/s2/
√

Hz

5B.6.1 Frequency Noise

Frequency noise of the laser enters as displacement noise and is independent of the voltage response
dV/dλ of the OMIS. From this displacement noise we can use the mechanical transfer function of a

harmonic oscillator (equation 5B.2) to calculate the acceleration noise due to a change in frequency

as:

δaFreq(ω) =
|A(ω)|
|X(ω)|

λ0L

c
δf (5B.10)

To obtain the frequency noise of our laser, we beat the free-running laser [NKT ADJUSTIK C-15]

against an in-house frequency comb. With this change in measured acceleration as a function

of frequency, and we calculated the acceleration power spectral density, from which we could use

equation 5B.11 to calculate the RMS acceleration for interferometers of various pulse separation

times T .

(
a∼ Freq

)2
= k2

eff

∫ ∞
0

|Ha(ω, T )|2Sa(ω)dω. (5B.11)

For a T = 10 ms atom interferometer, we calculated a frequency induced acceleration signal

of a∼ Freq = 2.11× 10−5 m s−2. Our OMIS post-correction measurement is not currently frequency

6Noise contributions are given in terms of RMS acceleration a∼ instead of RMS phase as is done in the previous

chapter. Since we are not limited by the atom interferometer, it is more useful to look at the limitations of the OMIS

compared to other motion sensors which is more convenient to study in terms of acceleration, as opposed to in terms

of phase which is useful for understanding limitations of the atom interferometer. One can convert from RMS phase

to RMS acceleration using the scale factor φ = keffT
2a.

7This is the filtered contribution for filters corresponding to the measurement parameters. Explained further in

subsection 5B.6.2.
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Figure 5B.11: Left. The frequency drift of the free running NKT over time. The frequency drift

was measured by analyzing a beat of the NKT laser against a frequency comb housed within the

institute. The drift around the central beat (34 MHz) is shown. Right. From the frequency induced

acceleration noise we could calculate the PSD of the noise and use the sensitivity function (equation

5B.11) for interferometers of various pulse separation times T . For T = 10 ms the frequency noise

created an acceleration noise signal of a∼ Freq = 2.11× 10−5 m s−2

noise limited by the free-running NKT lase. Frequency noise affecting an OMIS with higher sensitivity

could mitigate frequency noise by locking the frequency of the laser. One benefit of the 1560 nm

wavelength 8 optics within the sensor is that in the future we could frequency double the light and

lock it to the 87Rb D2 line.

5B.6.2 Intensity Noise

Intensity noise from the source laser presents a major contribution to the total limitations of the

sensitivity of the OMIS, and comprises a large reason why filtering of the OMIS signal is required.

Intensity noise enters linearly into our OMIS response equation, and therefore a change in intensity

will linearly mimic motion of the OMIS. This section will focus on intensity noise from the source

laser, fiber induced transmission loss within the fibers will be addressed in the next section.

The voltage response of the photo detector can be modeled as V = KPDI, where KPD is the

photo detector gain. With the OMIS generator constant (equation 5B.8) we can model the relative

intensity noise as:

δaIntensity =
|A(ω)|
|X(ω)|

L

λ0

(
dV

dλ

)−1

VMid δIRIN (5B.12)

Where VMid is the measured photo-detector voltage at the midfringe, and δIRIN is the relative

intensity noise.

8In principle the only reason the sensor was designed to operate with 1560 nm light was due to the availability of

fiber components at telecom wavelengths. In the future an OMIS could be designed to use a portion of locked cooling

light of the 87Rb system.
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We directly measured the intensity fluctuations of the source laser with the photo-detector used

within the post-correction measurements. From these fluctuations we can use equation 5B.12 to cal-

culate the power spectral density of the intensity induced acceleration noise. This was done for the

raw-unfiltered signal giving us the RMS noise over all frequencies, and also calculated for the accel-

eration contribution to measurements taken within this thesis (Filtered frequencies = 300-450 Hz).

For the total RMS acceleration contribution we get a contribution of a∼Filtered
Int = 0.31 m/s2/

√
Hz for

our T = 10 ms . For the 350-450 Hz filtered signal used for post-correction in this thesis we get a

contribution of a∼Filtered
Int = 2.23× 10−4 m/s2/

√
Hz for our T = 10 ms interferometer.

Figure 5B.12: The power spectral density of the intensity noise contribution of the source laser,

the transfer function for a T = 10 ms atom interferometer and the convolution of the two. Noise

contributions are calculated over the entire frequency range, as well as the range in which the

measurements are taken 300-450 Hz.

Intensity noise from the source laser presents a major limitation to the sensor. This noise is

generated from the relative intensity noise of the laser, and can be addressed in future systems

through the use of an intensity stabilization system. For example, a fiber-splitter could divert a

portion of light for monitoring, and where this signal could be used to drive a fiber AOM placed

before the circulator.

5B.6.3 Parasitic Cavities and Fiber Noise

The splicing and attachment of the lead fiber and test mass fiber, is unique to the construction of

each OMIS. This means that each OMIS sensor will have a unique set of optical properties, including
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Figure 5B.13: Demonstration of parasitic cavities on OMIS 2, When measuring dV/dλ we can see the

sinusoidal response of a parasitic cavity on top of the response from the resonantor cavity. These

parasitic cavities add additional intensity fluctuations that limit the performance of the OMIS.

the optical contribution of parasitic cavities. In the course of measurements taken with OMIS 1 and

OMIS 2, the optical contribution of parasitic cavities in conjunction with fiber noise, played a large

role in the limitation for measurements of acceleration, primarily in the low frequency regime.

Fiber noise is a generic term referring to the intensity, phase and polarization noise caused by

mechanical perturbations of the optical fiber [97, 98].

The calculation of the the cavity response in equation 5B.6 made the assumption that the OMIS

has been ideal and that the resonator cavity is the only optical cavity present. To understand how

the collective effects of fiber noise plays a role in our measurement from the OMIS we need to include

the optical response from additional parasitic cavities in the approximation of low optical finesse:

Vr(λ) = A1 sin

(
c

2L1
λ+ φ

)
︸ ︷︷ ︸

OMIS Cavity

+A2 sin

(
c

2L2
λ+ φ

)
+A3 sin

(
c

2L3
λ+ φ

)
+ . . .︸ ︷︷ ︸

Parasitic Cavities

(5B.13)

Where An is the cavity amplitude response, Ln is the cavity length and φn is the offset of a cavity

n. We assume the phase offset φn is constant. Since the optical response of the resonator cavity is

much larger (A1 � An+1), the parasitic cavities will not depend on the response of the resonator

cavity, and therefore we can approximate the total response as summation of optical responses

instead of a product of responses. In the OMIS mid-fringe regime the primary cavity we can apply

the small angle approximation which then becomes:

Vr(λ) =
A1c

2L1
λ+ φ+A2 sin

(
c

2L2
λ+ φ

)
+A3 sin

(
c

2L3
λ+ φ

)
+ . . . (5B.14)
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Figure 5B.14: We can model phase noise of the parasitic cavities as intensity noise and therefore

put an upper bound on the contribution due to path length changes occurring within the fiber.

We can also calculate the voltage response dV/dλ :

dVr
dλ

=
A1c

2L1
+
A2c

2L2
cos

(
c

2L2
λ+ φ

)
+
A3c

2L3
cos

(
c

2L3
λ+ φ

)
+ . . . (5B.15)

The location of the parasitic cavities within the OMIS system will lead to different optical behav-

ior. For example, parasitic cavities are formed within the lead fiber will be sensitive to perturbations

of the lead fiber, but parasitic cavities contained within the test mass will not. Furthermore, some

parasitic cavities will depend on the resonator cavity length and therefore will be sensitive to test

mass displacement. For this reason it is important to draw two types of cavity: parasitic cavities

that are inertially sensitive and parasitic cavities that are non-inertially sensitive.

Non-Inertially Sensitive Parasitic Cavities

The Young’s modulus for a coated fiber is Eg =16.56 GPa[99]. Meaning that for the 40 cm lead

fiber a force of only 12 mN is enough to change the optical path length by λ/4 for our 1560 nm light.

Parasitic cavities formed within the optical fiber will be effect by changes in path length of the

fiber and can be modeled as:

Vr(λ) =
A1c

2L1
λ+ φ+A2 sin

(
c

2(L2 + δL)
λ+ φ

)
+A3 sin

(
c

2(L3 + δL)
λ+ φ

)
+ . . . (5B.16)

For a given fixed source wavelength λ0 entering the lead fiber mechanical stress due to vibrations

will induce length changes δL of the parasitic cavities. These parasitic cavities will change the offset

in response measured at port 3, which will mimic an acceleration.

Due to the difficulty of measuring the parasitic cavities within the lead fiber, we cannot determine

how much of a length change δL is occurring within the fiber. We can however put an upper bound

on the contribution from parasitic cavities by treating a change in offset due to δL as a change in

intensity. We can then model this as intensity noise with amplitude δAN for a cavity N . We can then
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use equation 5B.12 to calculate the acceleration noise contribution from such a cavity. For example

for OMIS 2, we measured a parasitic cavity amplitude (figure 5B.13) A1 = 0.04 V. From this we get

a∼ FN > 2.67× 10−3 m/s2/
√

Hz, which is larger than the short-term uncertainty measured in both the

short term measurement and the long term gravitational acceleration measurement. Unfortunately,

the construction of the OMIS provides no way to distinguish the parasitic cavity intensities form in

this experimental setup there is no way to reduce the constraint of this bound, however methods for

addressing the fiber noise will be offered later in this section.

Inertially Sensitive Parasitic Cavities

Parasitic cavities can also be formed that include the length of the primary cavity in the total overall

length, meaning for example Ln = L1 + L′. Meaning that a change in the test mass position would

also change the overall response.

Vr(λ) =
A1c

2L1
λ+ φ+A2 sin

(
c

2(L1 + L′)
λ+ φ

)
+A3 sin

(
c

2(L1 + L′)
λ+ φ

)
+ . . . (5B.17)

This type of parasitic cavity changes dV/dλ and therefore makes it difficult to measure the ac-

celeration from the optical cavity response. However due to the multiple medium changes required

(e.g. nFused Silica → nAir), the total reflected light from these cavities is minimal. The sensor OMIS
1 was prone to these type of cavities and therefore made it difficult to measure. This was likely due

to defects in the construction of the sensor, and OMIS 2 did not have a measurable contribution

from inertially sensitive parasitic cavities.

Solutions

We can address the fiber noise in the system by: reducing the number of parasitic cavities; increasing

the optical finesse of the OMIS cavity; and minimizing mechanical coupling to the fiber.

Small changes in the design of the OMIS can reduce the ability for parasitic cavities to form.

Future designs of the OMIS will incorporate a strong angle cleave on fiber tip at the end of the

fiber contained within the test mass. This will minimize reflections within OMIS test mass fiber.

We can further eliminate any cavity formed between the APC connector and the lead fiber of the

OMIS by fiber splicing port 2 directly to the lead fiber. Further design of the OMIS to suppress

parasitic cavities is also being considered. Lastly a non-perpendicular cleave of the lead fiber tip will

increase the likelihood of cavities formed from total internal reflection within the fiber. By ensuring

a perpendicular cleave we can minimize the effect from these cavities.

The second technique is to mitigate parasitic effects is to simply increase the amount of light

reflected from the resonator OMIS cavity. Since all reflecting surfaces assume to be forming parastic

cavities within the OMIS are uncoated, they all have the same reflectivity ≈ 4%; the same as the

cavity. By coating the fiber tips of the cavity with a reflective material, we can increase the finesse of

the resonator cavity reducing the overall percentage of reflected light coming from parasitic cavities.

This will of course increase the finesse of the OMIS cavity, and place more stringent requirements

on the frequency noise of the source laser.

We can also reduce the mechanical coupling of fibers leading to the OMIS to minimize fiber

induced noise, as well as mechanically induced transmission loss (section 5B.6.4) . This was the
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Figure 5B.15: The Pearson coefficient of a time series signal taken from both an OMIS and Titan

at a given frequency. This was performed for both OMIS 2 and OMIS 3. The shaded area represents

the frequencies where mechanical oscillations were not coupling into the lead fiber, disturbing the

OMIS response. For OMIS 2 the driving frequency where we can measure is fd > 260 Hz and for

OMIS 3 fd > 50 Hz. The difference between the two is partially due to higher reflectivity of OMIS
3, lessening the effects of other parasitic cavities formed within the OMIS

method employed in our measurements with the OMIS; and was the primary reason for placing the

OMIS-Titan stack on a vibration isolation platform and driving mirror motion with piezo frequencies

around 350 Hz. We found that at this driving frequency the vibrations do not mechanically couple

in as strongly into the fiber and therefore reduced the effect of parasitic cavity noise.

To measure this effect, we mechanically excited the sensor stack by driving the piezos at a given

frequency. We then recorded a 10 s measurement of the OMIS and Titan with a sampling rate of

2× 105 samples/s. We then correlated the signals and calculated the Pearson coefficient of the two

signals as a function of frequency, see figure 5B.15. This was performed for OMIS 2 and OMIS 3.

5B.6.4 Mechanically Induced Transmission Loss

Mechanical stress of the optical fiber can lead to scattering within the fiber and a mechanical loss

of optical signal. This is known as mechanically induced transmission loss [99]. These mechanical

induced losses change the intensity transmitted through the fiber to the OMIS, and light reflected

from the OMIS. As the attenuation changes, so will the amount of light exiting port 3, mimicking a

change in displacement. To characterize the effect of mechanical stress on our system, we sent light

into port 2 and placed our photo detector at port 3. We then introduced mechanical oscillations

along the path of the light and recorded the intensity fluctuations at the photo detector as a function

of frequency.

We were able to measure a change in intensity on the order of a∼ FN Int = 2.11× 10−10 m/s2/
√

Hz

for 350 Hz. Reducing mechanical coupling to the fiber as mentioned in the previous section will
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reduce mechanical induced transmission loss.

5B.6.5 Thermal Limitation

The thermal limitation represents the Brownian motion of the sensor and is given by:

a∼ Therm =

√
4kBT

mQ
(5B.18)

Where kB is the Boltzmann Constant, the temperature is 300 K, m = 25 mg, and the measured

Q = 193.4 in air OMIS 2 yielding an acceleration white noise limit a∼ Therm = 5.8× 10−11 m/s2/
√

Hz.

Future sensors can minimize the contribution to the thermal limit by operating the sensor at lower

temperatures and increasing the mass or the quality factor.

5B.6.6 Combined Noise Sources

We can combine the individual noise sources listed above to determine the current measurement

limitation of the sensor with the current optical setup. To perform this measurement the OMIS was

placed within the acoustic isolation, with the vibration isolation platform on. The OMIS voltage

response dV/dλ was measured and the reflected OMIS voltage was measured on a photo-diode for 10 s

with a sampling rate of 2× 104 point per second. Simultaneously signal from the Titan was measured

to account for any motion during the measurement. The measured Titan signal was subtracted from

the OMIS and the resulting self noise was plotted. This measurement was compared to the power

spectral density of the other noise source contributions.

Figure 5B.16: Measurement of the individual noise components, compared to the measured voltage

response of the sensor. Averaging of the power spectral density was performed to illustrate more

clearly the noise source contributions.

Figure 5B.16 reaffirms what was calculated above; that intensity fluctuations from the the source

laser is the dominating noise source of these post-correction taken with the OMIS. The contribution

from parasitic cavities is diminished due to the fact this measurement occurred in a relatively quiet

environment.
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Chapter 6

Conclusion

Mitigation of inertial noise in atom interferometry based gravimeters through the use of inertial noise

post-correction has been demonstrated. Post-correction with commercial sensors such as the Titan

and Trillium 240 has achieved inertial noise post-correction in low inertial noise environments

and high inertial motion environments. In a low inertial noise environment we were able use the

Trillium 240 to post-correct a T = 78 ms atom interferometer from a short term uncertainty of

σTrillium
UPC = 4.4× 10−6 m/s2/

√
Hz to σTrillium

PC = 9.2× 10−7 m/s2/
√

Hz. By introducing additional

motion we were able to create a strong motion environment, where we able use the Titan to post-

correct an for a T = 10 ms atom interferometer lowering its short term uncertainty of σTitan
UPC =

7.4× 10−3 m/s2/
√

Hz to σTitan
PC = 1.0× 10−4 m/s2/

√
Hz yielding a suppression factor of γ = 73.8.

Commercial sensors were limited by either self noise, or the Gabor-limited high-pass filter, both of

which resulted from the large frequency resolution of the post-correction signal.

Pilot tests of the OMIS demonstrated a novel sensor capable of performing inertial noise post-

correction. The unique advantages of this sensor, such as integrability into the inertial refer-

ence, vacuum compatibility and test mass magnetic field insensitivity, show potential for minia-

turization efforts that will eventually surpass what is possible with commercial sensors. With the

opto-mechanical resonators we were able to show an improvement in the short term stability of

σOMIS
PC = 8× 10−3 m/s2/

√
Hz from σOMIS

UPC = 5× 10−4 m/s2/
√

Hz. Intensity noise of the source laser

and parasitic cavities on the lead fiber prevented higher correlation of the atom interferometer with

the OMIS.

In this final chapter we will discuss the future directions taken to improve inertial noise post-

correction, as well as the impact and implementation of these techniques into future atom interfer-

ometers. Improvements of the OMIS and optical setup for inertial noise post-correction are currently

underway; construction of new sensors, as well as a better optical setup to reduce frequency and

intensity noise within this experiment. Lastly we will discuss developments with the OMIS that will

extend past this experiment, and change how gravimetry is performed.
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6.1 Improvements in the Post-Correction method

As seen in section 5 A.2.1, motion signal measurements on the order of ∆TPC ∼ 200 ms corre-

sponds to a large spectral resolution ∆FPC, a concern for digital filtering. As mentioned previously,

this problem can be alleviated by measuring continuously, resulting in an arbitrarily fine spectral

resolution.

With higher spectral resolution one can change the nature of the sensor-atom interferometer

relationship and use the atom interferometer signal to perform bias corrections on the commercial

sensor [50]. As seen in section 5 A.2.1, classical motions sensors drift over long time periods. In

the case of inertial navigation, such a drift is problematic and provide false information used for

navigation over long time periods. To solve this problem, one could use an absolute accelerometer

such as an atom interferometer, however the ‘dead-time’ between measurements in current systems

is not suitable for the high repetition rate required for navigation. One can solve both problems

by using an atom interferometer to correct long-term drifts of the commercial sensor, providing a

hybrid sensor capable of measuring acceleration with a high repetition rate and long term stability.

6.2 Improvements to Post-Correction with the OMIS

The OMIS is independently undergoing active research at the DLR in Bremen, where new sensors are

being constructed that address parasitic cavity limitations outlined in this thesis. Along with better

optical systems for interrogation, these developments will increase the OMIS inertial sensitivity, and

allow for better post-correction. Within this section several methods for improving sensor self noise

will be outlined, ranging from measurements with lower resonance sensors, to altering the design of

the sensor and improving the optical setup.

Low Resonance Frequency OMIS

The high frequency resonance of the OMIS gives us a large measurement bandwidth, allowing us

to measure signal up to ≈ 7.7 kHz. However this is far above the corner frequency of the atom

inteferometer, meaning a large portion of the measurable frequency range of the OMIS is minimally

affecting the atom interferometer, and therefore not pertinent to post-correction. By lowering the

resonance frequency of the OMIS, we can increase the sensitivity of the sensor to lower frequency

accelerations which as has been shown in section 5 A.2.5, are more relevant to inertial noise post-

correction. Lowering the resonance increases the displacement to acceleration transfer function |X(ω)|
|A(ω)|

for frequencies below resonance. We can calculate the improvement by analyzing the displacement to

acceleration transfer function for a lower resonance frequency. For example, for a 680 Hz sensor in the

flat response region below resonance, we can see an improvement in signal of 130 times the 7.7 kHz

sensor. Additionally, decreasing the sensor resonance ω0 alters the OMIS relation to noise source

contributions. Using the measured noise source contributions outlined in the previous chapter, we

can calculate the change in noise source contribution for a lower resonance sensor, table 6.1.

As sensitivity to lower frequency motion increases, risks that the sensor leaves the linear measure-

ment regime required for optical readout also increases. Unlike at 7.7 kHz, there is a large amount

of ground motion in the 500-700 Hz range, risking excitation of the sensor resonance and possibly

displacing the sensor out of the linear regime. Since these sensors are currently under construction,
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Figure 6.1: By reducing the mechanical resonance of the sensor we can increase the sensor’s sensi-

tivity at lower frequency. Using parameters measured from OMIS 2 with the physical properties of

a lower resonance sensor, we can calculate the increase in signal from a lower resonance sensor for

an acceleration of 1 m s−2. The response of the 680 Hz sensor to acceleration is a factor of 130 times

more sensitive than the 7700 Hz sensor at 1 Hz

.

Table 6.1: Noise source contribution for a reduced resonance compared to the current high frequency

resonance sensor.

Noise Source Contribution ω0 = 7700 Hz ω0 = 680 Hz

Frequency Noise 2.1× 10−5 m/s2/
√

Hz 3.7× 10−7 m/s2/
√

Hz

Intensity Noise (unfiltered) 0.31 m/s2/
√

Hz 2.4× 10−3 m/s2/
√

Hz

we have some preliminary values from these sensors and can perform some cursory calculations. To

stay in the linear regime of the sensor, test mass displacement needs to remain less than ≈ 7.5%

of the free spectral range (FSR). For a sensor that has a resonance of 680 Hz, with an in-air Q of

700 and a cavity FSR of 775 nm, this means test mass displacement needs to remain below ∼ 30 nm

which corresponds to an acceleration of a∼RMS = 6× 10−4 m s−2 and a displacement of 5× 10−10 m.

For reference ground motion in our laboratory environment at 680 Hz is a∼ground ≈ 5× 10−5 m s−2.

During construction of these new sensors, additional features have been implemented. Light

exiting a fiber tip diverges, which limits the amount of light reflected from the cavity. This problem

is exacerbated by large cavity lengths, such as those achieved with the lower resonance cavity. This

new sensor utilizes a gradient-index (GRIN) lens attached to the fiber tip to collimate the light

entering the cavity. Lastly a quarter wave plate is implemented directly after the GRIN lens so

that reflected light re-entering the lead fiber has orthogonal polarization to the light entering. This

allows for the use of a polarizing beam-splitter instead of using an optical circulator.
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Higher Finesse Cavity

Figure 6.2: The increase in OMIS sensitvity rela-

tive to the OMIS 2.

An additional method for improving the sensi-

tivity of the OMIS covered in this thesis is to

increase the optical finesse of the OMIS cav-

ity. This can either be achieved by coating

the fiber tips, or through the implementation

of fiber Bragg gratings [100]. By increasing

the finesse, we can increase the sensitivity of

the sensor to test mass motion, while the sig-

nal from parasitic cavities within the lead fiber

remains the same.

Experimentally a higher finesse cavity will

manifest as an increase of dV
dλ . To estimate the

increase in OMIS sensitivity we can calculate

the increase in slope of the mid-fringe point as a

function of finesse. By normalizing these slopes

relative to a cavity with F = 2, we can deter-

mine the gain of OMIS sensitivity as a function

of finesse (6.2).

Upgraded optical setup

As is clear from the previous chapter, intensity noise from the source laser is currently limiting

post-correction with the OMIS. To reduce this noise source, we need to upgrade the optical setup

and implement intensity stabilization. This can be performed in the future using a monitoring diode

and an acousto-optic modulator1. With a portion of light after the optical isolator diverted to a

photo-detector, changes in intensity can be corrected feeding the error signal to the AOM.

In the case that frequency noise ever presents the limitation to OMIS measurement sensitivity,

the frequency noise contribution can be reduced through frequency locking the source laser. With

the current operational setup within the context of atom interferometer post-correction, this is easily

possible by frequency doubling the 1560 nm light and offset locking to the 87Rb D2 transition.

1In the case of a Gooch and Housego FIBER-Q FIBER COUPLED MODULATORS, the AOM is fiber coupled, leading to a

completely fiber coupled system.
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6.3 Outlook with Future Sensors

The integration of the OMIS into our inertial post correction system has proven fruitful and the

techniques learned here can be applied gravimeters that are under development.

Figure 6.3: The ‘gravity in hand’ concept. A miniature sensor head small enough to hold in one hand

could be deployed for field use, with the OMIS directly integrated into the atom chip. This device

could measure the gravitation acceleration without vibration isolation, with the OMIS providing the

inertial noise post-correction.

One of the benefits of the opto-mechanical sensors is the relative simplicity of materials and

construction. The versatility of these sensors allow for them to be directly implemented into the

inertial reference point. For example, in the case of our experiment, we could integrate the OMIS

directly into the center of motion of the retro-reflection mirror, or in the case of portable gravimeters,

we can directly integrate the sensor into the atom chip. This offers a complete solution for future

experiments where light used for the cooling and trapping could also be used for optical interrogation

the OMIS.

These advances alongside developments in miniaturization of atom gravimeters could help provide

portable gravimeters capable of measuring the location of resources, or geological phenomena without

the need for vibration isolation platforms. Direct integration of the OMIS could help portable

gravimeters such as QG-1; future space missions such as BECCAL; or eventually extremely portable

devices such as the ”Gravity in hand” concept.

In total the inertial noise post-correction demonstrated within this thesis can be applied to

any atom interferometer, reducing one of the largest contributions limiting accurate measurements

of acceleration. The work in this thesis represents a step on the path towards portable absolute

gravimeters capable of measuring in inertially noisy environments, something not possible with

current classical devices.
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Appendix A

Sensors

A.1 Motion Sensing

For vibration post correction to be possible we need to be able to record the motion of the retro-

reflection mirror during a measurement cycle. Before use of the optomechanical inertial sensor

(OMIS) was possible, we used readily available sensors available on the commercial market. To

understand how we perform inertial noise post-correction and it’s limitations, we need to understand

the operating principles behind these classical sensors.

In the course of this research we used readily available commercial sensors such as accelerometers

capable of measuring accelerations and seismometers which measure velocity. The distinction be-

tween accelerometers and seismometers is mostly a historical one, by taking the derivative or using

the appropriate sensitivity function both accelerometers and seismometers perform the same pur-

pose1. For this reason we will refer to both accelerometers and seismometers as commercial motion

sensors.

The common thread of these sensors is that they are capable of measuring ground motion and

outputting and an electric potential that is a function of said ground motion. From this output we

can convert the output using a generator constant to convert from a voltage to an acceleration.

A.1.1 Simple Harmonic Oscillator Model

In the simplest case we can approximate a ground motion sensor as a dampened harmonic oscillator

comprised of a test mass M , attached to a spring with stiffness K, and dampened by a dampener

R. For a ground motion x(t) and test mass position y(t) we define z(t) = x(t)− y(t). We define any

external force on the test mass as f(t).

Mz̈(t) = f(t)−Kz(t)−Rż(t) (A.1)

From which we can get the relation:

1The distinction between accelerometers and seismometers typically reflects a frequency band that they are capable

of being measured in. Seismometers usually reflect a low frequency range, while accelerometers typically can measure

in higher frequencies and have higher dynamic range. The reasons for this will become apparent.
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Figure A.1: A simplified model of how a classical motion sensor works. We can approximate the

sensor as a dampened harmonic oscillator with a test mass M , spring stiffness K, and dampener R.

Mz̈(t) +R ˙z(t) +Kz(t) = f(t)−Mẍ(t) (A.2)

For now we assume2 f(t) = −M ¨x(t). So for a ground motion of x(t) which applies a force

−Mx(t) to the mass. In order to keep the test mass in place current is sent to an electromagnetic

transducer.

We can use the Laplacian relationship for a general differential equation:

L{a0p̈(t) + a1ṗ(t) + a2p(t) = b0q̈(t) + b1q̇(t) + b2q(t)} (A.3)

a0s
2P (s) + a1sP (s) + a2P (s) = b0s

2Q(s) + b1sQ(s) + b2Q(s) (A.4)

We can perform a Laplace transform on equation A.2 to get the equation of motion for Z

s2MZ(s) + sRZ(s) +KZ(s) = F − s2MX (A.5)

Solving for Z(s) we get:

Z(s) =
(F/M − s2X)

s2 + sR/M + S/M
(A.6)

From which we can try the trial solutions X(t) = 1/2πXe−iωt and F (t) = 1/2πFe−iωt, from which

we get:

T (ω) =
(F/M − ω2X)

−ω2 + ωR/M + S/M
(A.7)

2Later we will discuss the validity and ramifications of this approximation. This approximation is part of the

transfer function approximation.
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Realistic Motion Sensor

The simple harmonic oscillator gives us a good working model for how motion sensors operate, but

in reality their construction is more complicated. We will briefly discuss how they operate beyond

the simple harmonic oscillator picture and how this can affect measurement.

The construction seismometers and accelerometers is slightly different and we will briefly outline

the construction differences and the effect of this on post-correction.

Force-Balance-Accelerometers

Both the broadband seismometers and accelerometers utilize force balance. The concept here is

to provide a feedback loop capable of keeping the tests masses within a set range. Small motion

occurring due to ground motion is recorded, then sent back to re-position the mass.

This principle of force balance is employed in ‘strong-motion’ sensors (accelerometers). The

servo-loop keeps the test mass in place, and can succesfully measure down the DC frequency, however

feedback defines the corner frequency, above which the sensor is less sensitive.

U

ẍ
=
MTMRΩ

E
(A.8)

This means by simply changing the resistance we can increase the gain of the accelerometer.

Indeed most commercial accelerometers allow us to tune the sensitivity of the sensor by internally

or externally changing the resistor in the feedback.

Broad-Band Seismometers

A broadband sensor refers to a sensor capable of measuring in the 1 mHz-50 Hz. The sensitivity

at lower frequencies is pertinent to post-correction with atom interferometers, however, they suffer

from an extremely low clipping levels, and are unsuitable for seismically loud environments. For this

reason, in our post-correction these devices can perform well, but only when placed onto vibration

isolation platforms.The readout of these sensors are typically readout by measuring capacitance of

the test-mass [101].

In the case of the Trillium 240, the sensor is designed in a ‘tri-axial configuration’, meaning

three capacitive outputs are read out in an orthogonal basis û, v̂andŵ. This configuration has the

benefit that it is less sensitive to sensor tilting.xy
z

 =

 2 −1 −1

0
√

3 −
√

3√
2
√

2 −
√

2

uv
w

 (A.9)

A.1.2 Frequency Response

The frequency response of a sensor is not flat, and will measure different amplitudes and phases for

a given incoming frequency. This is known as the frequency response of the sensor.

U(ω) =
X(ω)

T (ω)
(A.10)

98



A.1. MOTION SENSING

Figure A.2: The tri-axial configuration of the Titan. This configuration mitigates the problems of

the horizontal axis having different sensitivities than the vertical. This configuration is currently

only used in the Nanometrics Trillium and Streckeisen STS-2.

For motion at a given frequency X(ω), the sensor will transform the signal given by T (ω) and

we will measure a signal from our sensor U(ω).

This frequency response is measured by the manufacturer and is determined by the individual

components of the sensor. The frequency response of the sensor can be defined as a series of poles

pn and zeroes zn following the relation:

T (S) = SSensork
Π(S + pn)

Π(S + zn)
(A.11)

Defined by the poles and zeroes of the sensor. This will define the frequency response for the

sensor. In the case of most of the sensors however post correction was performed over a small

frequency range.
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