Exploration of mechanical, thermal conductivity and electromechanical properties of graphene nanoribbon springs

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Javvaji, B.; Mortazavi, B.; Rabczuk, T.; Zhuang, X.: Exploration of mechanical, thermal conductivity and electromechanical properties of graphene nanoribbon springs. In: Nanoscale Advances 2 (2020), Nr. 8, S. 3394-3403. DOI: https://doi.org/10.1039/d0na00217h

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/10580

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 73




Kleine Vorschau
Zusammenfassung: 
Recent experimental advances [Liu et al., npj 2D Mater. Appl., 2019, 3, 23] propose the design of graphene nanoribbon springs (GNRSs) to substantially enhance the stretchability of pristine graphene. A GNRS is a periodic undulating graphene nanoribbon, where undulations are of sinus or half-circle or horseshoe shapes. Besides this, the GNRS geometry depends on design parameters, like the pitch's length and amplitude, thickness and joining angle. Because of the fact that parametric influence on the resulting physical properties is expensive and complicated to examine experimentally, we explore the mechanical, thermal and electromechanical properties of GNRSs using molecular dynamics simulations. Our results demonstrate that the horseshoe shape design GNRS (GNRH) can distinctly outperform the graphene kirigami design concerning the stretchability. The thermal conductivity of GNRSs was also examined by developing a multiscale modeling, which suggests that the thermal transport along these nanostructures can be effectively tuned. We found that however, the tensile stretching of the GNRS and GNRH does not yield any piezoelectric polarization. The bending induced hybridization change results in a flexoelectric polarization, where the corresponding flexoelectric coefficient is 25% higher than that of graphene. Our results provide a comprehensive vision of the critical physical properties of GNRSs and may help to employ the outstanding physics of graphene to design novel stretchable nanodevices. © The Royal Society of Chemistry.
Lizenzbestimmungen: CC BY-NC 3.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2020
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 29 39,73%
2 image of flag of United States United States 12 16,44%
3 image of flag of China China 6 8,22%
4 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 5 6,85%
5 image of flag of Netherlands Netherlands 3 4,11%
6 image of flag of Taiwan Taiwan 2 2,74%
7 image of flag of Russian Federation Russian Federation 2 2,74%
8 image of flag of Korea, Republic of Korea, Republic of 2 2,74%
9 image of flag of Belgium Belgium 2 2,74%
10 image of flag of Singapore Singapore 1 1,37%
    andere 9 12,33%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.