Laser-induced pit formation in UV-Antireflective coatings

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Paschel, S.; Balasa, I.; Jensen, L.O.; Cheng, X.; Wang, Z.; Ristau, D.: Laser-induced pit formation in UV-Antireflective coatings. In: Proceedings of SPIE 10805 (2018), 108051N. DOI: https://doi.org/10.1117/12.2500338

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/10265

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 90




Kleine Vorschau
Zusammenfassung: 
Previous studies have shown that nanometer scale defects can lead to the formation of submicrometer craters, if located in coatings with a relatively small thickness. Due to the small size, such damages are challenging to detect in the online and offline damage detection and may therefore lead to an overestimation of the LIDT for the tested optical component. However, the influence of these nanopits on the optical properties and the impact on the initiation of catastrophic damage was not investigated in detail in the past. In order to study the correlation between nanopits, optical properties and catastrophic damage, samples with an AR-coating were fabricated by means of ion beam sputtering (IBS) and tested for their laser resistance by LIDT raster scans in the nanosecond regime at 355 nm. The generation and morphology changes of the nanopits were monitored for different pulse numbers and in dependence of the starting fluence. In addition to the inspection with an optical microscope in differential interference contrast (DIC) mode as prescribed by ISO 21254, alternative inspection methods, for example, dark field microscopy and scanning electron microscopy (SEM), were used to detect the nanopits. The damage test revealed that nanopits occur rarely in standard AR-coatings and possess only a small relevance for the LIDT. The typical damage morphology observed consisted of micrometer-sized pits which exhibited a stable size over a large fluence range and no growth after repeated irradiation. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Publikationstyp: BookPart
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2018
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 31 34,44%
2 image of flag of United States United States 29 32,22%
3 image of flag of China China 8 8,89%
4 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 3 3,33%
5 image of flag of Ireland Ireland 3 3,33%
6 image of flag of Belarus Belarus 3 3,33%
7 image of flag of Bulgaria Bulgaria 2 2,22%
8 image of flag of Indonesia Indonesia 1 1,11%
9 image of flag of Hong Kong Hong Kong 1 1,11%
10 image of flag of Australia Australia 1 1,11%
    andere 8 8,89%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.