Traction prediction in rolling/sliding EHL contacts with reference fluids

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Liu, HaiChao: Traction prediction in rolling/sliding EHL contacts with reference fluids. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2020, xxiv, 131 S. DOI: https://doi.org/10.15488/10206

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 754




Kleine Vorschau
Zusammenfassung: 
Machine elements such as rolling bearings and gears transmit forces and permit relative motion in concentrated contacts, whereby elastohydrodynamic lubrication (EHL) plays a major role in surface protection. The friction/traction in a rolling/sliding EHL contact is hard to predict due to non-Newtonian rheology and concomitant thermal effects. In the last decade, much effort has been made to study the EHL traction using reference fluids. However, considerable discrepancies still exist between predictions and measurements.
This work continues the effort to predict the EHL traction with model fluids (mainly with squalane) and investigates the influence factors that lead to the differences between simulations and experiments. An EHL model has been developed for traction prediction accounting for non-Newtonian and thermal effects by embedding fluid models of thermo-physical-rheological properties (such as viscosity, thermal conductivity, shear thinning, and limiting shear stress) supported by independent high-pressure measurements. On the experimental aspects, traction curves have been measured on two traction machines with different contact geometries, i.e. twin-disc and ball-on-disc.
Three factors have been found to complicate the accuracy of the EHL traction prediction, namely solid body temperature effect, thermal conductivity of solids and lubricants, and scale/geometrical effects. Firstly, the bulk temperature of specimens exceeds the supplied oil temperature during traction measurements. Bulk temperature has been adopted as thermal boundary condition in thermal EHL simulations and it has found that the solid body temperature reduces oil viscosity and then reduces the film thickness and traction. Secondly, solid and lubricant thermal conductivity affects heat conduction and the maximum temperature rise, as well as the traction. For lubricants, thermal conductivity doubles its value at about 1 GPa; for solids, recent measurements have shown that thermal conductivity of through-hardened 52100 bearing steel should be around 21 W/mK rather than the widely cited 46 W/mK in literature. The effects of both solid and liquid thermal conductivity are analyzed. Thirdly, the traction curves measured from the two traction rigs for the same fluid are different at comparable operating conditions, i.e. at the same pressure, speed and supplied oil temperature. This phenomenon has been studied through thermal EHL analysis and it shows that the reason lies in the difference in the reduced radius of curvature which affects the film thickness and the heat distribution of the two traction machines. For a thicker EHL film thickness, shear is mainly localized in the middle film due to a temperature-viscosity gradient across the film. The scale effect studied here belongs to thermal effects.
For practical traction predictions, a simplified traction calculation method for highly loaded rolling/sliding EHL contacts has been developed without solving the Reynolds equation and the surface deformation equation. Using a bilinear limiting shear stress model extracted from traction experiments, the discrepancy between measurements and numerical simulations is smaller than 15% over a wide range of operating conditions (e.g. velocity, pressure, and slide-to-roll ratio), which is mainly caused by the solid body temperature effect.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2020
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau
Dissertationen

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 301 39,92%
2 image of flag of United States United States 95 12,60%
3 image of flag of China China 68 9,02%
4 image of flag of Japan Japan 34 4,51%
5 image of flag of Russian Federation Russian Federation 29 3,85%
6 image of flag of Netherlands Netherlands 25 3,32%
7 image of flag of No geo information available No geo information available 24 3,18%
8 image of flag of Czech Republic Czech Republic 22 2,92%
9 image of flag of Spain Spain 21 2,79%
10 image of flag of United Kingdom United Kingdom 18 2,39%
    andere 117 15,52%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.