Development of a density-based topology optimization of homogenized lattice structures for individualized hip endoprostheses and validation using micro-FE

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/17098
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/17226
dc.contributor.author Müller, Patrik
dc.contributor.author Synek, Alexander
dc.contributor.author Stauß, Timo
dc.contributor.author Steinnagel, Carl
dc.contributor.author Ehlers, Tobias
dc.contributor.author Gembarski, Paul Christoph
dc.contributor.author Pahr, Dieter
dc.contributor.author Lachmayer, Roland
dc.date.accessioned 2024-04-17T08:41:13Z
dc.date.available 2024-04-17T08:41:13Z
dc.date.issued 2024
dc.identifier.citation Müller, P.; Synek, A.; Stauß, T.; Steinnagel, C.; Ehlers, T. et al.: Development of a density-based topology optimization of homogenized lattice structures for individualized hip endoprostheses and validation using micro-FE. In: Scientific Reports 14 (2024), 5719. DOI: https://doi.org/10.1038/s41598-024-56327-4
dc.description.abstract Prosthetic implants, particularly hip endoprostheses, often lead to stress shielding because of a mismatch in compliance between the bone and the implant material, adversely affecting the implant’s longevity and effectiveness. Therefore, this work aimed to demonstrate a computationally efficient method for density-based topology optimization of homogenized lattice structures in a patient-specific hip endoprosthesis. Thus, the root mean square error (RMSE) of the stress deviations between the physiological femur model and the optimized total hip arthroplasty (THA) model compared to an unoptimized-THA model could be reduced by 81 % and 66 % in Gruen zone (GZ) 6 and 7. However, the method relies on homogenized finite element (FE) models that only use a simplified representation of the microstructural geometry of the bone and implant. The topology-optimized hip endoprosthesis with graded lattice structures was synthesized using algorithmic design and analyzed in a virtual implanted state using micro-finite element (micro-FE) analysis to validate the optimization method. Homogenized FE and micro-FE models were compared based on averaged von Mises stresses in multiple regions of interest. A strong correlation (CCC > 0.97) was observed, indicating that optimizing homogenized lattice structures yields reliable outcomes. The graded implant was additively manufactured to ensure the topology-optimized result’s feasibility. eng
dc.language.iso eng
dc.publisher [London] : Macmillan Publishers Limited, part of Springer Nature
dc.relation.ispartofseries Scientific Reports 14 (2024)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Additive manufacturing eng
dc.subject Individualized hip endoprosthesis eng
dc.subject Lattice structures eng
dc.subject Micro-FE eng
dc.subject Topology optimization eng
dc.subject.ddc 500 | Naturwissenschaften
dc.subject.ddc 600 | Technik
dc.title Development of a density-based topology optimization of homogenized lattice structures for individualized hip endoprostheses and validation using micro-FE eng
dc.type Article
dc.type Text
dc.relation.essn 2045-2322
dc.relation.doi https://doi.org/10.1038/s41598-024-56327-4
dc.bibliographicCitation.volume 14
dc.bibliographicCitation.firstPage 5719
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken