Branching Exponents of Synthetic Vascular Trees under Different Optimality Principles

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/17020
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/17148
dc.contributor.author Jessen, Etienne
dc.contributor.author Steinbach, Marc C.
dc.contributor.author Debbaut, Charlotte
dc.contributor.author Schillinger, Dominik
dc.date.accessioned 2024-04-10T08:51:05Z
dc.date.available 2024-04-10T08:51:05Z
dc.date.issued 2023
dc.identifier.citation Jessen, E.; Steinbach, M.C.; Debbaut, C.; Schillinger, D.: Branching Exponents of Synthetic Vascular Trees under Different Optimality Principles. In: IEEE Transactions on Biomedical Engineering (T-BME) 71 (2024), Nr. 4, S. 1345-1354. DOI: https://doi.org/10.1109/tbme.2023.3334758
dc.description.abstract Objective: The branching behavior of vascular trees is often characterized using Murray's law. We investigate its validity using synthetic vascular trees generated under global optimization criteria. Methods: Our synthetic tree model does not incorporate Murray's law explicitly. Instead, we show that its validity depends on properties of the optimization model and investigate the effects of different physical constraints and optimization goals on the branching exponent that is now allowed to vary locally. In particular, we include variable blood viscosity due to the Fåhræus–Lindqvist effect and enforce an equal pressure drop between inflow and the micro-circulation. Using our global optimization framework, we generate vascular trees with over one million terminal vessels and compare them against a detailed corrosion cast of the portal venous tree of a human liver. Results: Murray's law is fulfilled when no additional constraints are enforced, indicating its validity in this setting. Variable blood viscosity or equal pressure drop lead to different optima but with the branching exponent inside the experimentally predicted range between 2.0 and 3.0. The validation against the corrosion cast shows good agreement from the portal vein down to the venules. Conclusion: Not enforcing Murray's law increases the predictive capabilities of synthetic vascular trees, and in addition reduces the computational cost. Significance: The ability to study optimal branching exponents across different scales can improve the functional assessment of organs. eng
dc.language.iso eng
dc.publisher New York, NY : IEEE
dc.relation.ispartofseries IEEE Transactions on Biomedical Engineering (T-BME) 71 (2024), Nr. 4
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Blood eng
dc.subject branching exponents eng
dc.subject Electron tubes eng
dc.subject Fåhræs–Lindqvist effect eng
dc.subject human liver eng
dc.subject Liver eng
dc.subject Minimization eng
dc.subject Murray's law eng
dc.subject Optimization eng
dc.subject synthetic vascular trees eng
dc.subject vascular corrosion cast eng
dc.subject Vegetation eng
dc.subject Viscosity eng
dc.subject.ddc 610 | Medizin, Gesundheit
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.title Branching Exponents of Synthetic Vascular Trees under Different Optimality Principles eng
dc.type Article
dc.type Text
dc.relation.essn 1558-2531
dc.relation.issn 0018-9294
dc.relation.doi https://doi.org/10.1109/tbme.2023.3334758
dc.bibliographicCitation.issue 4
dc.bibliographicCitation.volume 71
dc.bibliographicCitation.date 2024
dc.bibliographicCitation.firstPage 1345
dc.bibliographicCitation.lastPage 1354
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken