Uncovering biosynthetic relationships between antifungal nonadrides and octadrides

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/12685
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12785
dc.contributor.author De Mattos-Shipley, Kate M. J.
dc.contributor.author Spencer, Catherine E.
dc.contributor.author Greco, Claudio
dc.contributor.author Heard, David M.
dc.contributor.author O'Flynn, Daniel E.
dc.contributor.author Dao, Trong T.
dc.contributor.author Song, Zhongshu
dc.contributor.author Mulholland, Nicholas P.
dc.contributor.author Vincent, Jason L.
dc.contributor.author Simpson, Thomas J.
dc.contributor.author Cox, Russell J.
dc.contributor.author Bailey, Andrew M.
dc.contributor.author Willis, Christine L.
dc.date.accessioned 2022-08-24T11:37:57Z
dc.date.available 2022-08-24T11:37:57Z
dc.date.issued 2020
dc.identifier.citation De Mattos-Shipley, K.M.J.; Spencer, C.E.; Greco, C.; Heard, D.M.; O'Flynn, D.E. et al.: Uncovering biosynthetic relationships between antifungal nonadrides and octadrides. In: Chemical Science 11 (2020), Nr. 42, S. 11570-11578. DOI: https://doi.org/10.1039/d0sc04309e
dc.description.abstract Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation-confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2-converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides. © The Royal Society of Chemistry. eng
dc.language.iso eng
dc.publisher Cambridge : RSC
dc.relation.ispartofseries Chemical Science 11 (2020), Nr. 42
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Biosynthesis eng
dc.subject Metabolites eng
dc.subject Bioinformatic analysis eng
dc.subject Biosynthetic pathway eng
dc.subject Filamentous fungi eng
dc.subject Gene disruptions eng
dc.subject Genome sequencing eng
dc.subject Knockout strains eng
dc.subject Ring contraction eng
dc.subject Secondary metabolites eng
dc.subject X-ray crystallography eng
dc.subject.ddc 540 | Chemie ger
dc.title Uncovering biosynthetic relationships between antifungal nonadrides and octadrides
dc.type Article
dc.type Text
dc.relation.essn 2041-6539
dc.relation.issn 2041-6520
dc.relation.doi https://doi.org/10.1039/d0sc04309e
dc.bibliographicCitation.issue 42
dc.bibliographicCitation.volume 11
dc.bibliographicCitation.firstPage 11570
dc.bibliographicCitation.lastPage 11578
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken