Nanoporous hybrid core–shell nanoparticles for sequential release

Download statistics - Document (COUNTER):

Jahns, M. et al.: Nanoporous hybrid core–shell nanoparticles forsequential release. In: Journal of Materials Chemistry B 8 (2019), Nr. 4, S. 776-786. DOI: https://doi.org/10.1039/C9TB01846H

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/9316

Selected time period:

year: 
month: 

Sum total of downloads: 113




Thumbnail
Abstract: 
In this article, a new type of core–shell nanoparticle is introduced. In contrast to most reported core–shell systems, the particles presented here consist of a porous core as well as a porous shell using only non-metal materials. The core–shell nanoparticles were successfully synthesized using nanoporous silica nanoparticles (NPSNPs) as the starting material, which were coated with nanoporous phenylene-bridged organosilica, resulting in a total particle diameter of about 80 nm. The combination of a hydrophilic nanoporous silica core and a more hydrophobic nanoporous organosilica shell provides regions of different chemical character and slightly different pore sizes within one particle. These different properties combined in one particle enable the selective adsorption of guest molecules at different parts of the particle depending on the molecular charge and polarity. On the other hand, the core–shell make-up of the particles provides a sequential release of guest molecules adsorbed at different parts of the nanoparticles. As a proof of concept, loading and release experiments with dyes were performed using non polar fluorescein and polar and charged methylene blue as model guest molecules. Non polar fluorescein is mostly adsorbed on the hydrophobic organosilica shell and therefore quickly released whereas the polar methylene blue, accumulated in the hydrophilic silica core, is only released subsequently. This occurs in small doses for an extended time corresponding to a sustained release over at least one year, controlled by the organosilica shell which acts as a diffusion barrier. An initial experiment with two drugs — non polar ibuprofen and polar and charged procaine hydrochloride — has been carried out as well and shows that the core–shell nanoparticles presented here can also be used for the sequential release of more relevant combinations of molecules.
License of this version: CC BY-NC 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2019
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 72 63.72%
2 image of flag of United States United States 20 17.70%
3 image of flag of China China 4 3.54%
4 image of flag of No geo information available No geo information available 2 1.77%
5 image of flag of Russian Federation Russian Federation 2 1.77%
6 image of flag of Ethiopia Ethiopia 2 1.77%
7 image of flag of Brazil Brazil 2 1.77%
8 image of flag of Taiwan Taiwan 1 0.88%
9 image of flag of Romania Romania 1 0.88%
10 image of flag of Indonesia Indonesia 1 0.88%
    other countries 6 5.31%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse