Download statistics - Document (COUNTER):

Kraus, Benjamin: A highly stable UV clock laser. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2023, IX, 145 S., DOI: https://doi.org/10.15488/15360

Selected time period:

year: 
month: 

Sum total of downloads: 430




Thumbnail
Abstract: 
Optical clocks are the most precise frequency measurement devices, with a systematic fractional frequency uncertainty as low as 10−18. While these clocks are typically operated in stationary laboratories, there is a growing interest in implementing transportable optical clocks. As part of this thesis, a transportable 40Ca+/27Al+ quantum logic clock is being developed. For spectroscopy of the 27Al+ clock transition from 1S0 to 3P0, a highly stable UV laser system is required. This thesis focuses on the evaluation of a transportable and highly frequency stable UV laser system built for the 40Ca+/27Al+ clock. The laser system includes a highly frequency stable cavity designed for stabilizing the seed laser frequency and a system for quadrupling the laser frequency without introducing phase disturbances. The cavity consists of a Fabry-P´erot resonator, consisting of a 20 cm long spacer made from ultra-low expansion glass (ULE) with Al0.92Ga0.08As/GaAs mirror coatings on fused silica substrates, optically bonded to the spacer. The calculated thermal noise floor limit is approximately 7-8 × 10−16. The laser is locked to the resonance frequency of the cavity using the Pound Drever- Hall locking technique. A residual amplitude modulation (RAM) stabilization scheme is employed, and the fractional frequency instability limit due to RAM is evaluated. Optical properties such as finesse, linewidth, and birefringence line splitting of the cavity are measured. Additionally, the main sources of relative length change in the cavityare assessed, including vibration noise, photo-thermal noise, and photo-birefringence noise. These noise sources, including RAM, are found to be at or below the thermal noise limit. The cavity is temperature-stabilized using two passive and one active heat shield and is further isolated against temperature fluctuations. The remaining length changes of the cavity due to thermal expansion of the cavity spacer and thermal stress inside the heat shields is evaluated to be dominant over longer timescales. The frequency stability of the cavity is measured by phase comparison with a more stable reference cavity using an optical frequency comb. A fractional frequency instability, represented by the modified Allen deviation, of 2 × 10−16 is achieved. The seed laser frequency is quadrupled using a transportable and compact setup consisting of two single-pass second harmonic generation stages. The single-pass configuration enables phase stabilization of the seed light and UV light throughout the entire setup. The performance of the system is evaluated, demonstrating negligible phase distribution and sufficient UV output power for operating an optical 27Al+ clock. Furthermore, the current status of transportable 40Ca+/27Al+ ion clock is presented, including the physics package with the ion trap in a vacuum chamber, magnets and coils for magnetic field generation, optical paths for ion integration, and the imaging system all mountedon a breadboard.
License of this version: CC BY 3.0 DE
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Dissertationen
QUEST-Leibniz-Forschungsschule

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 98 22.79%
2 image of flag of United States United States 90 20.93%
3 image of flag of Netherlands Netherlands 70 16.28%
4 image of flag of China China 46 10.70%
5 image of flag of Poland Poland 18 4.19%
6 image of flag of Hong Kong Hong Kong 15 3.49%
7 image of flag of Japan Japan 13 3.02%
8 image of flag of Russian Federation Russian Federation 9 2.09%
9 image of flag of No geo information available No geo information available 8 1.86%
10 image of flag of United Kingdom United Kingdom 8 1.86%
    other countries 55 12.79%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse