Wärmeeintrag und Temperaturprofile an der Oberfläche und in der Umgebung von plasmonischen durch Nanosekunden-Laserpulse geheizten Nanopartikeln und Nanoheteropartikeln

Download statistics - Document (COUNTER):

Niemeyer, Max: Wärmeeintrag und Temperaturprofile an der Oberfläche und in der Umgebung von plasmonischen durch Nanosekunden-Laserpulse geheizten Nanopartikeln und Nanoheteropartikeln. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2023, 234 S., DOI: https://doi.org/10.15488/14797

Selected time period:

year: 
month: 

Sum total of downloads: 99




Thumbnail
Abstract: 
Diese Doktorarbeit behandelt Untersuchungen der Auswirkungen von Nanosekunden-Laserpulsen auf plasmonische Nanopartikel. Der Fokus liegt auf den Temperaturen, welche bei der direkten Anregung der beweglichen Ladungsträger der Partikel und durch die Wechselwirkungen mit den Gitteratomen innerhalb der Partikel erreicht werden können und darauf, wie stark und lange die Umgebung der Partikel aufgeheizt werden kann.
This thesis deals with investigations of the effects of nanosecond laser pulses on plasmonic nanoparticles.The focus is set on the temperatures that can be reached during the direct excitation of themobile charge carriers of the particles and through their interactions with the lattice atoms within theparticles, and how strongly and how long the environment of the particles can be heated. In order toinvestigate these questions, two different approaches were followed, which provide new insights intonanoscopic heat generation. The results and discussion section is divided into three parts. In the firstpart, an approach to temperature determination on laser-heated gold particles in solution is pursued.This is based on the thermal decomposition of analyte molecules dissolved in the colloidal suspensionof the nanoparticles. Dye molecules with different charges were used for this purpose. Their decompositioncan be quantified with the help of extinction spectroscopy. The dyes are not directly excitedand decomposed by the laser radiation, but by the plasmonic heating of the gold particles. From thechange in the dye concentration, a reaction rate of the decomposition can be determined, which changeswith the variation of the laser energy density. Using an Arrhenius-like plot of the energy densityand the reaction verlocity, a possible temperature range that is reached at the nanoparticle surface isestimated. This includes temperatures between a few hundred Kelvin up to 10000 Kelvin and more.Investigations of the particles after laser irradiation using TEM, DLS and XPS measurements showthat temperatures at least in the range of the melting and boiling points of gold can be reached. Theloss of the surface ligands of the particles is already given at low laser energy densities and leads toagglomeration of the particles. The second part follows an approach using gold particles encapsulatedwithin a matrix of the metal-organic framework compound ZIF-8. The particles can be heated withinthe material. In the process, ZIF-8 is decomposed around the gold particles. The size dependence ofthe radius of the resulting cavities was investigated as a function of the laser energy density. TEMimages show that the particles fragment into smaller particles at similar energy densities as in theexperiments with the dye molecules. The temperature in the vicinity of the particles can be estimated.The distance from the particle surface at which ZIF-8 decomposes ranges from a few nanometres atenergy densities less than 10 mJ·cm−2 to 60 nanometres at 700 mJ·cm−2. Based on the volume of thecavities in the ZIF-8 matrix, the amount of decomposed material can be estimated and the amount ofheat required to decompose this amount of material can be calculated. The Fourier-equation can beused to determine the temperatures at the particle surface for different energy densities. These temperaturesrange from a few hundred to several thousand Kelvin. At higher energy densities, a suddenincrease up to several 10,000 Kelvin can be observed. Experiments with encapsulated hetero-particlesshow that heat is transferred from a plasmonically heated component of the hetero-particle to thenon-heated component. At sufficiently high energy densities, this is sufficient to thermally decomposethe component not directly heated by the laser pulse and parts of the ZIF-8 matrix. In the third part,the temperature ranges obtained using the two methods for temperature estimation based on theArrhenius equation and the Fourier equation are compared. The morphology changes observableon the particles are observed in both systems at similar laser energy densities. The temperature dataare used to determine temporal temperature profiles for the cooling processes using Newtons law ofcooling. Very small particles cool from several thousand Kelvin to room temperature within severalhundred femtoseconds, while large (about 100 nm) particles take up to 600 picoseconds or more. Thedata from both methods are combined to make a theoretical estimate of the dye turnover of the golddyesystem. The comparison of the theoretically and experimentally determined turnovers leads to theconclusion that a large part of the dye molecules do not decompose during the influence of the laserpulse. The molecules are probably removed from the heated area very quickly by temperature-inducedforces or currents and cannot heat up enough to be decomposed.Keywords:
License of this version: CC BY 3.0 DE
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Naturwissenschaftliche Fakultät
Dissertationen

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 85 85.86%
2 image of flag of United States United States 8 8.08%
3 image of flag of Israel Israel 2 2.02%
4 image of flag of Indonesia Indonesia 2 2.02%
5 image of flag of Netherlands Netherlands 1 1.01%
6 image of flag of India India 1 1.01%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse