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Abstract

This thesis reports the first demonstration of °Be™ ion qubit control using an
optical frequency comb. It covers a theoretical discussion of the requirements
and the application range of coherent “Be* ion control implemented by a pulsed
laser, the development of an appropriate laser system as well as the experimental
implementation and demonstration in a surface-electrode radio-frequency trap.
The use of a pulsed laser for coherent qubit control is motivated by the stringent
requirements arising from a high-precision Penning trap experiment currently being
designed and set up in our group. As part of the BASE collaboration, we aim to
realize a test of CPT invariance based on a quantum logic inspired measurement and
comparison of the proton’s and antiproton’s g-factor. Cooling, manipulation and the
spin-state detection of a single trapped (anti-)proton will be implemented indirectly
through interaction with a co-trapped beryllium ion. The essential manipulation of
beryllium is carried out using two-photon stimulated Raman transitions. Because
of the high required magnetic field of 5T, which is mandatory for precise frequency
measurements of the (anti-)proton, and the resulting large hyperfine qubit splitting
of “Be™ near 140 GHz, the widely used continuous wave laser approach for the
implementation of the Raman process is rather unprofitable. Instead, a pulsed
Raman laser has been investigated in order to directly implement the necessary
operations, where comb mode pairs coherently add up and provide the essential
9Be™ ion qubit coupling.

Numerical simulations of the relevant processes in the ?Be™ ion for various magnetic
field regimes are presented, showing the importance of the comb’s spectral properties.
Due to the atomic level structure of beryllium, the spectral bandwidth and spectral
shape must be precisely controlled in order to optimize the ratio between the Raman
coupling strength and the scattering rate. The Raman laser system developed for
this purpose is based on a customized femtosecond frequency comb operating near
626 nm. To selectively generate the required narrow-bandwidth ultraviolet pulses
near 313nm, a nonlinear spectral compression technique is implemented during
the second-harmonic generation process. Here, for the first time, the significant
influence of spatio-temporal couplings inside nonlinear BiBO crystals has been
investigated. The nonlinear effects further allow a simple and efficient control of the
comb’s outer-lying frequency components. The implementation and demonstration
of spin control and spin-motion coupling of a single “Be™ ion using the pulsed
Raman system is reported for experiments carried out with a surface-electrode
radio-frequency trap. The results convincingly validate the concept and exhibit a
promising realization of the stringent requirements for beryllium qubit control in
the high-field regime and further provides flexible applicability for qubit control in
other field regimes.

Keywords: Coherent qubit control, UV frequency comb, nonlinear spectral pulse
modification, trapped and laser-cooled ions, quantum logic spectroscopy






Kurzfassung

Im Rahmen dieser Dissertation wurde erstmalig die kohédrente Kontrolle einzelner
9Be™-Tonen mittels eines optischen Freqenzkamms realisiert. Die Arbeit umfasst
eine theoretische Diskussion der Anforderungen, die Entwicklung eines geeigneten
Lasersystems sowie den experimentellen Nachweis.

Die erstmalige Anwendung eines gepulsten Lasersystems fiir die kohérente Zus-
tandsmanipulation von Beryllium-Ionen wurde aufgrund spezieller Anforderungen
gewahlt, die sich im Rahmen eines Hochpréazisions-Experiments in einer Penning-
Falle ergeben. Ziel dieses Experiments ist ein Vergleich der g-Faktoren des Protons
und des Antiprotons zur Uberpriifung der CPT Symmetrie. Die Kiihlung, Manip-
ulation und Detektion des Spin-Zustandes einzelner gefangener (Anti-)Protonen
sollen dabei erstmalig indirekt durch quantenmechanische Wechselwirkung mit
einem Beryllium-Ion durchgefiihrt werden. Die dem Experimentprotokoll zu-
grunde liegende Manipulation des Beryllium-Ions erfolgt durch stimulierte Raman-
Ubergéinge. Aufgrund des zur Manipulation des (Anti-)Protons erforderlichen,
hohen Magnetfeldes von 5T und der resultierenden grofsen atomaren Aufspaltung
der Qubit Zustdnde von ungefihr 140 GHz, ist die weit verbreitete Verwendung
eines Dauerstrich-Lasers fiir die Umsetzung des Raman Prozesses nicht iiberzeu-
gend. Daher wurde im Rahmen dieser Arbeit die Implementierung notwendiger
Operationen mittels eines optischen Frequenzkamms untersucht.

Die Dissertation zeigt und diskutiert numerische Simulationen der relevanten atom-
aren Prozesse in Be™ fiir verschiedene Magnetfeldregimes. Um eine hohe Raman-
Kopplungsstéirke zu erzielen und gleichzeitig die Streurate zu unterdiicken, ist es
aufgrund der atomaren Struktur von Beryllium notwendig, die spektrale Breite und
Form des Frequenzkamms prézise zu kontrollieren. Das zu diesem Zweck entwickelte
Raman-Lasersystem basiert auf einem speziell angefertigten Frequenzkamm, welcher
Femtosekunden-Pulse bei einer Wellenldange von 626 nm emittiert. Zur selektiven
Erzeugung schmalbandiger Pulse im ultravioletten Spektralbereich wurde eine
nichtlineare spektrale Komprimierungs-Technik wéahrend der Frequenzverdopplung
zu 313 nm implementiert. In diesem Zusammenhang ist erstmalig der signifikante
Einfluss von rdumlich-zeitlichen Kopplungen im nichtlinearen Medium BiBO unter-
sucht worden. Die nichtlinearen Kopplungen erméglichen zudem eine innovative und
effiziente Manipulation der d&ufteren Frequenzkomponenten des optischen Kammes.
Die Arbeit préasentiert dariiber hinaus die experimentelle Implementierung der
Kontrolle und Kopplung des Spin- und Bewegungs-Freiheitsgrades eines einzelnen
9Be™-Ions unter Verwendung des gepulsten Raman-Systems. Die Ergebnisse der
an einer Oberfldchenfalle durchgefithrten Experimente unterstreichen iiberzeugend
das vorgestellte Konzept und stellen somit eine vielversprechende Umsetzung der
speziellen Anforderungen an die kohirente Kontrolle “Be*-Ionen im Hochfeld-
Regime dar.

Schlagworter: Kohirente Zustandskontrolle, UV Frequenzkamm, spektrale Puls-
modifikation, gefangene und lasergekiihlte Tonen, Quantenlogikspektroskopie
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CHAPTER 1

INTRODUCTION

Since the development of ion traps [1, 2| a few decades ago, a remarkable growth
in scientific and technological applications has taken place. The ability to study
individual quantum systems and to precisely control all degrees of freedom of a
single particle [3] under excellent environmental isolation has further revolutionized
a wide range of modern research fields, such as atomic physics [4], high-precision
experiments |5, 6, 7] and quantum information processing [8, 9, 10].

Penning traps [11, 12] have become one of the key instruments for high-precision
experiments in atomic and nuclear physics [13, 14]. In such a trap, single particles
and/or antiparticles are trapped by a superposition of electrostatic and magneto-
static fields. Due to the use of only static fields nearly no micro motion occurs
and a high degree of isolation with virtually unlimited storage times is achieved.
Further, the strong homogeneous magnetic field, typically on the order of several
Tesla, enables high-precision measurements of the particle’s cyclotron motion, which
supports for example ¢/m, g-factor and mass measurements. The highly accurate
determination of these atomic and nuclear properties provides stringent benchmarks
for existing theoretical models and might lead to an improved understanding of
fundamental interactions and symmetries.

Among the fundamental symmetries of nature is the invariance of physical processes
under combined charge, parity and time reversal (CPT) within the Standard Model
of particle physics [15]. While each single transformation (C,P,T) and the combina-
tions of all pairs of two transformations is violated [16, 17, 18], the combination still
holds [19]. This implies that fundamental properties of particles and antiparticles,
such as their masses, their lifetimes, charges and magnetic moments should be iden-
tical, apart from the signs of the two latter. Even though our current understanding
of physics is based on the Standard Model of particle physics and this model has
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enormous proven predictive capabilities in many aspects, it is widely believed to
require substitution by a more complete model. Several observations such as dark
matter [20], dark energy [21] and the imbalance between matter and antimatter
in the universe [22] are extremly difficult to explain within the Standard Model.
Also, it has so far not been possible to implement gravity, as the last of four known
fundamental interactions in nature, into the Standard Model by the formulation of
an appropriate quantum field theory. This incompleteness motivates high-precision
experiments to investigate CPT symmetry by comparing fundamental properties
of particles and antiparticles, as possible physics beyond the Standard Model of
particle physics might not require CPT invariance. A violation would have a
meaningful impact on the foundations of our current understanding of physics,
since it would be related to the really basic cornerstones of the Lorentz-invariant,
local quantum field theories of the Standard Model [23].

g-factor comparisons between particles and antiparticles are one of the most sensi-
tive (anti-)matter tests of possible CPT-violating effects [24, 25]. In the leptonic
sector the electron’s g-factor is indeed one of the most accurately measured and
theoretically most precisely calculated quantities in modern physics. Based on
Dehmelt’s experiments comparing the electron’s and the positron’s g-factor [1]
and ongoing work [26], CPT invariance is well tested for leptons with a current
g-factor comparison uncertainty on the order of 107! [27, 28| and has so far not
been found to be violated. In the baryonic sector, the situation is quite different.
The experimental data is limited, although the g-factor anomaly of for example
the (anti-)proton is three orders of magnitude larger than for the electron. The
comparatively big anomaly arises because the (anti-)proton is a composite sys-
tem, which at the same time prevents a precise calculation of the (anti-)proton’s
g-factor. As the g-factor anomaly would be strongly affected by a CPT violation,
the comparison of the proton’s and antiproton’s g-factor provides one of the most
stringent tests of CPT symmetry with baryons [29, 30]. Since a CPT violation
would not have to occur in all sectors of the Standard Model to the same extent, the
completion of high-precision measurements in the baryonic sector is of high interest.
From an experimental point of view, the (anti-)proton’s 1836-fold higher mass and
658-fold smaller magnetic moment compared to the electron complicates the precise
determination of the g-factor. Currently mainly two efforts on (anti-)proton g-factor
comparisons are carried out. One by the BASE (Baryon Antibaryon Symmetry
Experiment) collaboration [31, 32, 33| and one by the ATRAP (Antihydrogen Trap)
collaboration [34, 35|, both operating antimatter experiments at an antiproton
beamline at CERN’s (french: Conseil Européen pour la Recherche Nucléaire) An-
tiproton Decelerator facility. The most accurate determination of the proton’s
g-factor by now has a relative precision of 3.3-107% [7] and the antiproton’s g-factor
was recently published by BASE with a fractional precision of 0.8 - 107¢ [36]. On
this scale also no CPT violation has yet been found.



Despite the remarkable ongoing progress over the last years, precision experiments
involving baryonic (anti-)matter, such as the (anti-)proton’s g-factor measurement,
are limited by the temperature of the particles [33]. Relevant improvements in
precision would be provided by significantly lowering motional amplitudes. Unlike
in other research fields, where the development of sophisticated cooling and manip-
ulation techniques have brought substantial improvements over the last decades,
these techniques have not yet or are just recently being started to be implemented
in Penning traps. Exceptional progress has for example been made in the field of
quantum information processing |8, 9, 10|, which mostly relies on the possibility of
achieving the motional ground state and on the ability to coherently manipulate
single quantum states [37]. Ground-state cooling [38] and a series of techniques
developed within quantum information processing have meanwhile been success-
fully applied to other research fields, such as high-precision spectroscopy. The
prime example is quantum logic spectroscopy [39, 5|, which has enabled atomic
clocks of highest accuracy and the most accurate frequency standards to date with
inaccuracies on the order of 107'® [40]. The idea is that a well investigated and
well controllable “logic” ion provides sympathetic laser cooling, state manipulation,
and detection for a simultaneously trapped “spectroscopy” ion. Most work has
however been focused on Paul traps [2]|, where charged particles are trapped in
the center of an oscillating electric quadrupole field. The experimental overhead
for implementing these techniques in Penning traps is considerably higher, due to
technical complexities associated with the Penning trap environment, such as the
high magnetic field. First results for motional ground-state cooling in a Penning
trap on an optical transition in “°Ca’ have just recently being published [41],
demonstrating the general feasibility.

Our research group is part of and supported by the BASE collaboration. We aim
to apply the cooling and manipulation techniques of quantum logic spectroscopy
developed in the context of quantum information processing to high-precision
g-factor experiments with trapped (anti-)protons in Penning traps. The ultimate
goal is to boost the precision of ongoing tests of CPT symmetry. Following the
proposals of Heinzen and Wineland [42, 43|, the (anti-)proton will be coupled to
a co-trapped atomic “logic” beryllium ion and sympathetically cooled, controlled
and read out indirectly by using quantum logic operations. Beryllium is chosen
due to its lightest mass among the commonly used qubit ions, which is highly
desirable for the realization of the coupling scheme. The essential ground-state
cooling and manipulation of “Be™ ions has so far not been demonstrated in Penning
traps, mainly because of the lack of suitable laser systems. The high applied
magnetic field in Penning traps provides large Zeeman ground-state splittings which
requires special effort in terms of coherent qubit control. Subject of this thesis is
the development and investigation of a laser system suitable for coherent control of
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single beryllium ions trapped in the environment of an externally applied magnetic
field of 5T. This field strength is mandatory for precise frequency readout of the
(anti-)proton and results in a beryllium qubit splitting near 140 GHz.

The essential quantum control of Be™ will be carried out by two-photon stimulated
Raman transitions [43], which in general requires two phase-coherent beams with
frequency difference equal to the qubit splitting. For this typically continuous
wave lasers are employed, where the two frequencies are provided by either phase
locking two lasers or by a single laser modulated by acousto-optic or electro-optic
modulators. Due to the lack of efficient high-frequency modulators and technical
demands of phase locking two lasers with a frequency difference of 140 GHz, the
continuous wave approach is rather unprofitable for implementation of the Raman
process under given experimental conditions. Optical frequency combs [44] for this
application in contrast offer the unique advantage of providing a broad spectrum
with phase-coherent, regularly spaced sharp comb modes, which allows a direct
and precise connection of also distant frequencies, without needing a second laser
or inefficient high-frequency modulators, if the spectral bandwidth is larger than
the qubit splitting. This feature allows to directly bridge the large qubit splitting
in a controllable way, where pairs of comb modes coherently sum up and provide
the Raman level coupling. So far only demonstrated for qubit control of "*Yb*
ions for a qubit splitting near 10 GHz [45, 46], within this thesis, for the first time
an optical frequency comb will be investigated for the implementation of *Be™ ion
qubit control. The successful implementation might bring the technological break-
through for ground-state laser cooling and state detection of single (anti-)protons,
which may ultimately boost accuracies of current tests of CPT invariance based on
g-factor comparisons. Further it may possibly contribute to a general impact on
precision measurements, quantum logic and quantum simulations in Penning traps.



Outline

This thesis covers my doctoral research work, starting from the theoretical investi-
gation of the application of an optical frequency comb for coherent qubit control of

9Be+

ions under various experimental conditions, over the development and realiza-

tion of an appropriate Raman laser system, to the first experimental demonstration
of coherent qubit control of beryllium ions using an optical frequency comb carried
out in a planar radio-frequency trap:

Chapter 2 explains the quantum logic inspired g-factor measurement for single
(anti-)protons. The measurement protocol, including the essential operations
on the co-trapped beryllium ion, and key aspects of the implementation are
discussed.

Chapter 3 covers theoretical aspects of coherent qubit control. Besides general
fundamentals on coherent laser control, this chapter gives insight into the
physics of Raman transitions directly driven by an optical frequency comb. In
addition it contains a comprehensive discussion of the specific requirements
for qubit control of ?Be™ ions using a pulsed Raman system.

Chapter 4 describes the development of a narrow-bandwidth ultraviolet
frequency comb for coherent qubit control of beryllium ions at magnetic fields
of up to 5T. The key parts are presented with special attention to the control
of the comb’s spectral properties.

Chapter 5 presents the experimental implementation and demonstration of
quantum control using the aforementioned Raman laser system. Results,
obtained with a surface-electrode radio-frequency trap, demonstrating spin
control and spin-motion coupling are shown and discussed.

Chapter 6 concludes the experimental achievements and reviews them in the
context of the planned (anti-)proton g-factor measurement experiment and
beyond.
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CHAPTER 2

QUANTUM LOGIC ENABLED ¢g-FACTOR
MEASUREMENT OF SINGLE
(ANTI-)PROTONS

As part of the BASE collaboration, our group aims to develop and implement novel
laser-based, quantum logic inspired cooling and internal state detection techniques
for single (anti-)protons. The ultimate goal is to support the most precise test of
CPT symmetry in the baryonic sector of the Standard Model, based on a comparison
of the proton’s and antiproton’s g-factor. The challenging spin state detection of
the (anti-)proton required for g-factor measurement will be implemented indirectly
through interaction with a co-trapped logic ion, following the proposals by Heinzen
and Wineland [42, 43|. Where current efforts based on classical schemes are hurt by
the slowness of state detection in combination with the inability to precisely control
the motional states of the (anti-)proton, this quantum logic approach further allows
for ground-state cooling of a single trapped (anti-)proton. This provides a boost in
particle localization, allowing to speed-up detection times by potentially more than
three orders of magnitude. It is expected that these improvements will contribute
to further increases in the precision of g-factor measurements. In order to perform
high precision g-factor measurements a single (anti-)proton will be trapped in a
cryogenic Penning trap environment with static magnetic field of 5T and brought
into interaction with a single co-trapped °Be™ ion in a neighboring potential well.
Experiments will be carried out in a multi-zone cylindrical Penning trap array
partly adapted and extended from the BASE experiment. In order to perform
different steps of the quantum logic cooling and detection procedure both particles
will be shuttled between spatially separated zones. In this chapter the g-factor
measurement protocol and key aspects of the implementation will be presented and
discussed.
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2.1 Determination of the g-factor

The g-factor is a dimensionless proportionality constant which denotes the relation
betweenethe (anti-)proton’s spin S and its magnetic moment ji; according to
=95,

high-precision measurements of the g-factor are typically carried out in Penning
traps, which provide an extraordinary degree of isolation and virtually unlimited
storage times. A strong magnetic field in axial direction B, radially confines the
particle and a superimposed electric quadrupole field provides axial confinement. In

such an environment the determination of the g-factor is based on the measurement
of two frequencies from which the g-factor can be extracted according to:

S, where e/ my is the charge-to-mass ratio of the (anti-)proton. Direct

WL,
=2— 2.1
9=27 (2.1)

e e
Here wy, = gQ—BZ is the Larmor frequency and w. = — B, is the free cyclotron
m m

p p
frequency. Whereas both frequencies are field-dependent, the g-factor, given by the
ratio of both frequencies, is field-independent.

Free cyclotron frequency Larmor frequency
AB AB
(-

— | ®*

We A 2m - 76 MHz wy, =~ 27 -213MHz

Figure 2.1: Schematical representation of the free cyclotron frequency for the case of
zero axial velocity (left) and of the Larmor frequency (right). For a magnetic field of
5T the (anti-)proton’s free cyclotron frequency is w. ~ 27 - 76 MHz and describes the
particle’s circular trajectory around the magnetic field direction. The (anti-)proton’s
Larmor frequency at a magnetic field of 5T is given by wr, ~ 27 - 213 MHz and describes
the precession of the particle’s magnetic moment about the direction of the magnetic field.

Measurement of the free cyclotron frequency

The free cyclotron frequency w. describes the periodic motion a charged particle
experiences in a homogeneous magnetic field due to the Lorentz-force. In case of
zero axial velocity, its trajectory is constrained to a circular orbit perpendicular to
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superposition modified cyclotron

frequency wy

7 &
vy

magnetron frequency w_

axial frequency w,

Figure 2.2: Schematical representation of the eigenfrequencies of a particle’s motion
occurring in a Penning trap environment. Its trajectory is composed of three decoupled
harmonic oscillations: The modified cyclotron frequency w.y, the magnetron frequency
w_ and the axial frequency ws,.

the direction of the magnetic field, as schematically shown in Figure 2.1. Within
the Penning trap environment the free cyclotron frequency can be determined by
measuring the eigenfrequencies of the particle’s oscillations and applying the Brown-
Gabrielse invariance theorem [47]|. The particle’s trajectory in a Penning trap can
be described by a superposition of three different decoupled harmonic oscillations, as
schematically illustrated in Figure 2.2: The modified cyclotron motion w, resulting
from the free cyclotron frequency modified due to the additional electric fields, the
magnetron frequency w_ occurring due to the crossed magnetic and electrostatic
potential and the axial motion w, resulting from the electrostatic quadrupole po-
tential. The precise measurement of each frequency can be performed by detecting
image currents in the trap electrodes using highly sensitive detection systems. The
invariance theorem connects the experimentally accessible motional eigenfrequencies
to the desired free cyclotron frequency according to w? = w? + w? + w2, which
allows a calculation even in presence of trap imperfections [11].

Measurement of the Larmor frequency

The Larmor frequency wy, describes the precession frequency of the spin magnetic
moment about the direction of an external magnetic field, as schematially shown
in Figure 2.1. It corresponds to the energy that is required to change the (anti-)

protons’s spin state. The energy difference results from Ey = —ps, - B, with
two energy levels occurring for the (anti-)proton as spin 1/2 system, leading to
eh

AFE, = gQ_BZ = hwr,. Since the Larmor precession is not accompanied by any
m

extra physical motion of the particle, this frequency cannot be measured by simply
detecting image currents. Instead, the Larmor frequency is determined by an
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iterative process in which the spin flip probability is measured as a function of
a radio-frequency (rf) drive field. The resulting resonance curve then allows to
extract the desired Larmor frequency. This procedure requires to detect the spin
state of the (anti-)proton for each applied rf frequency. The direct detection of a
single (anti-)proton’s spin-flip is the main experimental challenge and bottleneck in
current experiments, based on classical measurement schemes.

Classical approach for spin detection

The established approach for detecting the spin orientation relies on the continuous
Stern-Gerlach effect, which was first presented by Dehmelt and Ekstrom [48] for
the g-factor measurement of the electron. It uses a magnetic inhomogenity to
induce a coupling of the trapped particle’s spin to its axial eigenfrequency. The spin
transition causes a change in the axial frequency, which can be measured. Whereas
the electron’s g-factor is one of the most precisely measured quantities with this
technique, it is hard to adopt to (anti-)protons due to their 1860-fold higher mass.
This results in a 659-fold smaller magnetic moment, which in consequence requires
a much stronger magnetic inhomogenity to be able to discriminate between different
spin states. Current efforts therefore spatially separate the spin state analysis region
with the strong magnetic inhomogenity from the region in which spin flips are driven
and where the cyclotron frequency is measured to not degrade the spectroscopic
signal [49]. In terms of cooling, the small cyclotron frequencies on the order of tens
of MHz instead of hundreds of GHz resulting from the (anti-)proton’s higher mass
prevent cryogenic cooling to be able to reach the ground state of the cyclotron
motion, which would be highly beneficial for the measurement protocol. In order
to discriminate between spin flips through jumps in the axial frequency a stable
cyclotron motion is required, which is best achieved for low temperatures. In current
experiments cooling is achieved by coupling the (anti-)protons to a 4 K cryogenic
resonator via image currents induced in trap electrodes [33, 50]. The achievable
motional amplitudes of the (anti-)proton are critical because fluctuations in the w,
eigenmodes of their oscillations also induce a magnetic moment which couples to
the inhomogenity of the magnetic field and causes a change in the axial eigenmode
frequency being of the same order as the change due to a spin flip, which makes it
extremely difficult to identify the spin state of the (anti-)proton. In combination
with the long detection times on the order of several minutes, required to achieve
sufficient Fourier resolution during detection, this brings extreme requirements on
the stability of experimental parameters. Current experiments could therefore be
strongly improved by cooling the (anti-)protons to the motional ground state and
by speeding up the spin state detection procedure.
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Quantum logic approach for cooling and state detection

To overcome the experimental challenges arising due to the high temperature
and slow detection within the classical approach, our group aims to implement a
completely different approach based on quantum logic operations. Cooling and state
detection of a single (anti-)proton shall be realized indirectly through interaction
with a co-trapped, well controllable “logic” ion following the proposals of Heinzen and
Wineland from 1990 [42] and 1998 [43]. In particular the proposal from Wineland
et al. from 1998 considers trapping both particles in separate, but near-by wells of
a double-well potential, where the Coulomb interaction between them can be used
for sympathetic cooling of the (anti-)protons. The proposed protocol for spin state
detection relies on the same double well potential in combination with operations
enabling spin state transfer via spin-motion coupling for the (anti-)proton and the
atomic ion.

Sympathetic ground-state cooling

As first step of the sympathetic ground-state cooling of the single (anti-)proton,
the atomic ion will be cooled to its motional ground state using resolved sideband
cooling [43, 51|. This laser cooling technique requires the motional trap frequency
to be much larger than the optical resonance linewidth, thereby satisfying the
so-called strong-binding condition [52]. The ion will therefor be pre-cooled using
Doppler laser cooling. Subsequently a sequence of motional subtracting sideband
transitions will be applied, each providing a simultaneous spin flip and a reduction
of the motional excitation by one quantum of motion (see chapter 3.1). By further
implementing a dissipative repump process between each application, initializing
the ion back into its initially prepared spin state, the motional excitation can
successively be reduced until the motional ground state is achieved. In a second
step the atomic ion and the (anti-)proton are brought to interact via the Coulomb
force. In case of equal frequencies both particles will periodically exchange their
energy, similar to classical pendulums being coupled via a spring. By interrupting
the interaction after one exchange period, the kinetic energy of the (anti-)proton
will have been transferred to the atomic ion. Subsequently re-cooling the atomic ion
using sideband cooling again, both particles are brought in the absolute motional
ground state. Compared to classical (anti-)proton g-factor experiments using
only cryogenic cooling, the sympathetic cooling of the (anti-)proton will boost
their localization from about 80 yum to 20 nm, being more than three orders of
magnitude. This will have an important impact on reducing systematic errors in
the measurement.
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‘ unknown spin state (anti-)proton ‘
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cooling ‘ ground-state cooling of atomic ion ‘ spin-motion coupling ion
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Figure 2.3: Quantum logic enabled measurement cycle for obtaining the Larmor frequency
resonance as a function of a radio-frequency (rf) drive field. For each step of the
sympathetic ground-state cooling and the spin state transfer the essential quantum
logic operations are denoted on the right.

Spin state detection

The general idea for spin state detection is to transfer the unknown spin state of
the (anti-)proton to the logic ion, where it can then easily and efficiently be read
out using well established laser induced fluorescence detection. Assuming both
particles have been cooled to the motional ground state, the procedure is based
on three further key operations. First the unknown spin state of the (anti-)proton
must be transferred into a conditional motional excitation. In a second step the
(anti-)proton is coupled to the co-trapped atomic ion via the Coulomb interaction
and their motional states are swapped. As a third step the conditional motional
excitation of the logic ion must be converted back into a spin excitation. By this
procedure the unknown spin state of the (anti-)proton has been transferred onto
the atomic ion and can be easily detected for analysis. Using a state dependent
fluorescence signal the final spin state of the logic ion can be determined, which
allows to infer the intial spin state of the (anti-)proton. These operations can
be performed within the range of milliseconds, therefore potentially boosting the
(anti-)protons spin state detection time by three orders of magnitude, compared
to classical schemes with state detection durations of several hundreds of seconds.
The quantum logic state readout will therefore have a great impact on averaging
times and studies of systematic effects.
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Quantum logic enabled measurement cycle for the Larmor frequency

For a complete measurement of the Larmor resonance this cycle, including sympa-
thetic ground-state cooling, spin transfer and detection, is then repeated once the
(anti-)proton’s spin state has been concluded and a spectroscopy pulse is applied to
the (anti-)proton, as depicted in Figure 2.3. According to the proposals by Heinzen
and Wineland the essential spin-motion coupling, as applied during several steps as
denoted in the shown protocol, is suggested to be implemented by motional sideband
transitions. Whereas the atomic ion provides an optical transition, allowing to use
laser light for implementation (see chapter 3.1), the (anti-)proton does not exhibit
an optical transition. The simultaneous spin flip and change in motional state will
therefore be implemented on the spin flip transition at the Larmor frequency using
radio-frequency radiation. For the essential coupling of the motional degrees of
freedom, required for motional state exchange, the direct coupling of the atomic
ion and the (anti-)proton in a double well potential, as suggested in 1998 [43], has
the great advantage of being accessible for protons and antiprotons using the same
atomic logic ion. Storing an antiproton in the same trap as the logic ion would
alternatively require a negatively charged ion. This approach is being investigated
in the group of Kellerbauer [53]. A third approach for achieving motional coupling
was suggested in the first proposal of Wineland and Heinzen in 1990 by storing the
two particles in different traps and coupling them through image charges induced
in a shared trap electrode. This procedure is also being investigated in a different
context in the groups of Rodriguez [54| and Héffner [55]. Here, we focus on the
double well technique.

2.2 Implementation

In order to realize the sympathetic cooling and detection scheme, a segmented
cylindrical Penning trap array consisting of different zones, partly adapted and
extended from the BASE trap, has been designed within our group. Different steps
of the quantum logic cooling and detection procedure will be carried out in spatially
separate zones. Towards this end, the particles will be shifted between the zones by
using time dependent voltages on trap electrodes. The transport must be performed
within the motional ground state without significant heating. For achieving reason-
ably high Larmor frequencies a magnetic field of 5T will be applied. Furthermore a
cryogenic system will pre-cool the protons, which will presumably be loaded by irra-
diating organic material with electrons and then be resistively pre-cooled by a 4 K
tank circuit. The cryostat, the magnet and outer vacuum system follow the design of
the BASE setup at CERN. It consists of a large inner bore superconducting magnet
and an independent science chamber, which is roughly the size of a large “can”.
This chamber has been extended and in addition to the CERN setup, the trap and
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L p/p  coulomb .
p/p spmfhp sideband coupling laser cophng and
precision trap trap trap detection trap

Figure 2.4: Sketch of a cut along the symmetry axis of the conceptual multi-zone Penning
trap array. The coloured blocks represent the trap electrodes generating the electrostatic
field providing axial confinement and allowing to shuttle the (anti-)particles between
different zones. The design comprises four “modules”, from left to right: The p/p spinflip
precision trap, the p/p sideband trap, the double-well Coulomb coupling trap and the
laser cooling and detection trap, which provides four laser ports at 45° with respect to
the trap axis.

the apparatus will feature lasers and optical components for manipulating the logic
ion. Once cooling and detection has been successfully demonstrated with protons
in Hannover, the newly developed components shall be implemented at the BASE
beamline at the Antiproton Decelerator (AD) at CERN, which is the only source of
slow antiprotons. In current experiments, the kinetic energy of the antiprotons are
further reduced by letting them pass a degrader foil attached in front of the trap
“can”, which allows trapping by applying voltages to the trap electrodes. The simi-
larity of the two setups will support the challenging interchange of the experimental
systems. Laser systems and optics will have to be adapted from the Hannover setup.

2.2.1 Trap setup and measurement protocol

Due to conflicting boundary conditions concerning trapping potentials and geome-
tries, four spatially separate zones are designed for implementing different steps of
the g-factor measurement protocol:

(Anti-)proton spinflip precision trap

(Anti-)proton sideband trap

Double-well Coulomb coupling trap

Laser cooling and detection trap
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Figure 2.4 shows a cut along the symmetry axis of the conceptual multi-zone
cylindrical Penning trap array. The trap is formed by multiple segmented wafers
with differently sized inner holes stacked on top of each other with an insulating
spacer inbetween. The first trap module, the (anti-)proton spinflip precision trap,
is provided by our BASE collaborators from CERN. In this part motional and
spin resonances of the single (anti-)proton will be probed. In the second part, the
(anti-)proton sideband trap, the coupling of spin and motional degrees of freedom
of the single (anti-)proton required for spin state transfer will be carried out. In
the third trap, the Coulomb coupling trap, the double well potential for the single
(anti-)proton and the single “Be™ ion will be provided, allowing to swap their
motional states as required for sympathetic cooling and state transfer. The laser
cooling and detection trap allows for spin-motion coupling, laser cooling and state
readout of a single Be™ ion. The trap design features four laser ports at 45° with
respect to the trap axis. A detailed discussion of the specific requirements, of the
trap design and the entire experimental apparatus can be found in [56].

Measurement protocol

To realize the entire spin state detection protocol, a single *Be™ ion will be loaded
and trapped in the laser cooling and detection trap. Here it will be pre-cooled using
Doppler cooling and then be cooled to its motional ground state using sideband
cooling. The Be™ ion will be prepared to the |1) state and motional subtracting
blue sideband pulses will be applied, removing one quantum of motion and causing
a spin flip to [|). After each pulse the ion will be dissipativly initialized back to the
|1} level by pumping it to an excited state spontaneously decaying back into the
initially prepared |1) state. This cycle will be repeated until the ion has reached its
motional ground state. In the next step a pre-cooled (anti-)proton! and the ground
state cooled atomic ion will both be shuttled to the double well trap in which
they interact via the Coulomb force. Within one exchange period the motional
states will have been swapped and the particles will be spatially separated again.
Recooling the “Be™ ion to the ground state within the cooling and detection trap
will bring both particles to their motional ground states. At this point the logic ion
is assumed to be prepared in a well known spin state, in particular it will always be
prepared in |1). The spin state of the proton is unknown within the first iteration
loop, its position is within the (anti-)proton spinflip trap.

For implementing the state readout, the particles will then be separately shifted
to the trap region performing the dedicated function. In order to realize the first
key operation, the (anti-)proton will be shuttled to the sideband trap. Here a blue
sideband radio-frequency pulse will be applied. This will flip the (anti-)proton’s

L As preparation the trapped (anti-)protons will be pre-cooled by sympathetic Doppler cooling.
This will be carried out analogous to sympathetic ground-state cooling using motional state
transfer with a Doppler cooled °Be™ ion.
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Figure 2.5: Quantum logic enabled measurement protocol for the spin state transfer and
detection, assuming that the “Be™ ion and the (anti-)proton have been cooled to their
motional ground states. The motional degree of freedom is visualized by the equidistant
levels of a harmonic trapping potential, where the ground-state level corresponds to n=0
and the first motionally excited state to n=1. The left and the right column compare the
cases of the (anti-)proton initially being in [{) (left) and the (anti-)proton initially being
in [1) (right). The *Be™ ion is assumed to always be prepared in |1).

spin state and add one quantum of motion if and only if it was in ||) previously.
In case of the (anti-)proton initially being in [1) no motional level exists to which a
blue sideband pulse could couple and the ion remains unchanged in its internal and
motional state. After this sideband pulse the spin state is therefore always [1) and
the initially unknown spin state information has been mapped into the conditional
motional excitation, where the information is given by whether the (anti-)proton is
in the ground state (n=0) or in the first motionally excited state (n=1). This allows
the second key operation to be performed. For this both particles are shuttled to
the coupling trap. By keeping the trap frequencies equal for both particles over
one exchange period, the conditional motional excitation of the (anti-)proton will
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be transferred to the logic ion. After spatially separating the particles again and
shuttling them back into their initial trap, the motional state of the logic ion now
contains the information about the initial spin state of the (anti-)proton. It will be
in n=1 if the (anti-)proton initially was in |}) and in n=0 otherwise. Within the
cooling and detection trap the third key operation can then be performed on the
logic ion. By applying a blue sideband transition the motional information will be
mapped into the spin degree of freedom of the ion. The pulse will flip the ion’s spin
state and remove one quantum of motion if and only if it was motionally excited. It
will remain unchanged if the ion was already in the motional ground state. By this
procedure the spin state information of the (anti-)proton has been transferred to the
logic ion’s spin state, which can be read out by using state-dependent fluorescence
detection. Shining in a laser beam being resonant on a closed-cycle transition from
the |1) state will scatter photons which will be collected on a photomultiplier for
data analysis. If the ion was is ||) the laser beam is far off-resonant and no photons
will be scattered. The appearance of scattered photons hence indicates the spin
state of the logic ion, allowing to deduce the initial spin state of the (anti-)proton.
The measurement protocol for the spin state transfer and detection is summarized
in Figure 2.5 for both possible initial spin states of the (anti-)proton.

2.2.2 Key operations

The successful realization of the quantum logic based cooling and state detection
protocol requires the implementation and combination of three key operations, each
of these alone being a challenging task to be overcome.

Proton and antiproton spin-motion coupling

Coupling the internal and motional degree of freedom of the (anti-)proton is
challenging because no optical transitions exist allowing for laser based manipulation.
The only available transition is the spin flip frequency, which for 5T is on the order
of 213 MHz. Coupling to a particle’s motional state requires a spatial field variation
over the size of a wavepacket [57], typically being on the order of tens of nm. Free
space radio frequency fields with wavelengths on the order of meters do not bring
sufficient variation and will therefore just flip the spin without affecting the motional
state. This limitation has been overcome for atomic ions in the context of trapped-
ion quantum information processing. Spin-motional couplings were achieved either
by using a gradient in the near-field of dedicated conductors near-resonant with
the ion’s spin flip frequency [58, 59| or by applying a spin-dependent force induced
by a static magnetic field gradient [60]. The latter approach will be applied for the
first time to a single trapped (anti-)proton in the framework of this experiment,
where the required field gradient will be obtained by a strong magnetic bottle in
the dedicated sideband trap.
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Motion-motion coupling between the (anti-)proton and the Be’ ion

The second key operation is the motional coupling between the Be™ ion and the
(anti-)proton. The idea of direct Coulomb coupling two particles in a double well
potential has already successfully been demonstrated for two atomic ions in the
context of quantum information processing [61, 62|. Essential for the two particles to
swap their motional excitation is that they have equal trap frequencies within their
trapping potential. To achieve this, the ratio between the masses of the two particles
must be equal to the ratio of their potential curvatures. As the coupling strength
scales with the third power of the particle distance and larger ratios between the
potential curvatures typically require a larger particle separation, the mass ratio
should be kept as close to one as possible in order to achieve a strong coupling. For
this reason “Be™ as the lightest readily laser cooled qubit ion was chosen for the
experiment. The potential in which the °Be™ ion will be trapped must therefore
provide a curvature about a factor m(°Bet)/m(p) ~ 9 higher than the potential
curvature for the adjacently trapped (anti-)proton. Preliminary simulations yield a
particle separation of 300 um for an axial trap frequency of 27 - 4 MHz, allowing to
swap the motional states within 3.7ms [33]. This double well Coulomb coupling
including two particles of different mass trapped within a Penning trap is a unique
feature of the project discussed within this thesis.

‘Be™ ion spin-motion coupling

The third essential key operation is the coupling of the internal and motional degree
of freedom of the “Be™ ion. Whereas coherent laser manipulation of atomic qubit
ions is a standard process within trapped-ion quantum information processing, a
substantial challenge arises from the high magnetic field of 5T to be applied within
this experiment. This field is required to achieve sufficently high frequencies for
the (anti-)proton. For the ?Be™ ion it leads to the drawback of causing a large
ground-state splitting on the order of 140 GHz, which requires special effort in
terms of qubit control. Implementing laser quantum control requires a Raman laser
system with two phase-coherent beams with a frequency difference equal to the
qubit splitting. Because of the large frequency gap, the widely used continuous wave
laser approach is rather unprofitable. Instead, a pulsed laser system is investigated
in order to directly implement the necessary operations, where pairs of comb teeth
of the laser’s spectrum coherently sum up and provide the desired coupling. This
technique has so far only been demonstrated for '"'Yb™ ions at a level splitting
near 10 GHz [45, 46]. The implementation for “Be™ ions is subject of this thesis
and will bring out the first direct °Be™ ion qubit control using an optical frequency
comb.



CHAPTER 3

COHERENT QUBIT CONTROL

Our group aims to realize a precise test of CPT invariance with baryons based on
a quantum logic inspired measurement and comparison of the proton’s and antipro-
ton’s g-factor. Cooling, manipulation and spin state detection of a single trapped
(anti-)proton will be implemented indirectly through interaction with a co-trapped
beryllium ion using quantum logic operations. The essential manipulation of Be™
will be carried out using two-photon stimulated Raman transitions. Because of
the high required magnetic field of 5T and the resulting large qubit splitting of
9Be™ ions near 140 GHz, the widely used continuous wave laser approach is rather
unprofitable. Instead, a pulsed Raman laser system is investigated to directly
implement the necessary operations. In section 3.1, general basics on coherent laser
control will be given. In section 3.2, a simplified model giving insight to the physics
of Raman transitions driven by an optical frequency comb will be presented, while
section 3.3 contains an accurate discussion of the specific requirements for qubit
control of ?Be™ ions using a pulsed Raman system.

3.1 Coherent laser control

The quantum logic inspired cooling and detection scheme presented in chapter 2
requires adressing and coupling of the internal and external degrees of freedom
of the “Be™ ion. This can be achieved by performing certain transitions between
a pair of long lived energy levels being identified as qubit states, as exemplarily
shown in Figure 3.1. The spin qubit, representing the internal degree of freedom,
possesses a lower state labeled [|) and an upper state labeled |1), separated by an
energy hwy. Each of these states exhibits equidistant motional levels consecutively
numbered by n, whose energies are determined by the harmonic trapping potential
and whose splitting is given by the trap frequency w,. Spin-motion coupling can be

19
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Figure 3.1: Schematic representation of first-order sideband and carrier transitions between
the ion’s qubit states. Its internal state is represented by the two-level system with the
ground state labeled |]) and an upper state labeled [1). Each of these states exhibits
equidistant motional levels consecutively numbered by n, representing the motional degree
of freedom. A red sideband transition (rsb) induces a spin flip and simultaneously
reduces/increases the ion’s motion by one quantum of motion in case of it being initially
in [)/|1), as shown in the left /right picture. A blue sideband transition (bsb) will induce
a spin flip and in contrast reduce/increase the ion’s motion by one quantum of motion in
case of it being initially in |1)/|}). The carrier transition does not affect the ion’s motion
and only changes the spin state for both cases.

implemented by motional sideband transitions by which a quantum of motion is
added or substracted while changing the internal state. Adressing only the internal
degree of freedom can be implemented by a carrier transition which consists in a
spin flip without affecting the motional degree of freedom. These transitions can
be controlled by the electromagnetic radiation of a laser beam. Assuming electric
dipole transitions, the interaction between an ion and the electric field of the laser
beam can be written as

Hi(t) = —d-E = —d - Eyépcos(kZ —wpt + ¢) , (3.1)

where d is the electric dipole operator being proportional to o™ +0~ with o™ = |1) (|
and o~ = |})(1|. Ep is the electrical field amplitude, k the k-vector, wy, the
frequency and ¢ the phase of the laser beam. The polarization of the laser beam
€1, is characterized with respect to the quantization axis of the ion and expressed in
terms of left circular (67), right circular (6%) and linear (7) polarizations according
to ép, = e_0~ + eoft + e, 6" with |e_|*+|eg|*+|es [*= 1. The ion position operator
Z = zp(a + a') can be written in terms of the ground state wavepacket size 2, and
the creation a' and the annihilation a operator associated with the trap frequency
w, for the harmonic oscillator of the trapping potential. In the Lamb-Dicke regime,
where the extent of the ion’s motion is much less than A\/27 = 1/k, within the
interaction frame and the rotating wave approximation [43]| the Hamiltonian can
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be approximated by [63]:
Hipe ~ B(Qe'?)ote @0t ] 4 jn(ae” ™ + ale™!)] + h.c. (3.2)

The shortcut h.c. stands for the Hermitian conjugate including the terms propor-
tional to o~.

= Eo(Tld - eL[d)/(2n) (3.3)

is the single-photon Rabi frequency! and n = k - 2y the single-beam Lamb-Dicke
parameter. From Equation 3.2 it can be seen that for certain choices of the laser
frequency wy, the dominating term of the Hamiltonian of interaction yields a first-
order sideband or carrier transition:

e Blue sideband transition
for w, = wy +w,:  Hiy =~ inh(Qe?)o*al + h.c.
with:
|1} — |1) transitions accompanied by |n) — |n + 1)
1) — |J) transitions accompanied by |n) — |n — 1)

¢ Red sideband transition
for wy, = wp — w,:  Hig =~ inh(Qe’®)oTa + h.c.
with:
|1} — |1) transitions accompanied by [n) — |n — 1)
1) — |J) transitions accompanied by |n) — |n + 1)

e Carrier transition
for wp, = wo:  Hine =~ M(Qe)o™ + h.c.
with:
|1} — |1) transitions accompanied by |n) — |n)
|1) — |{) transitions accompanied by |n) — |n)

Whether a sideband transition adds or removes a quantum of motion depends on
the initial spin state of the ion, as visualized in Figure 3.1. If the ion is prepared in
|4), the implementation of a single red sideband with frequency wy, = wy — w, will
reduce its motion, whereas if it is initialized in |1), a blue sideband at wy, = wy + w,
is required for cooling purposes. Further note that if there is no motional state to
couple to at the applied sideband frequency wy, = wg + w,, the ion’s internal and
external state will remain unchanged.

'Equation 3.3 for the single-photon Rabi frequency follows the definition introduced at the
National Institute of Standards and Technology (NIST) in Boulder, CO. Other commonly used
definitions (e.g. [64, 65]) deviate by a factor of 2: Q = Eo(f|d - éL|{)/(R)
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Figure 3.2: Illustration of the two-photon stimulated Raman process. Two Raman beams
induce a ground-state sublevel coupling via interaction with a virtual excited state being
detuned by A from a real excited state |e). If the detuning is large enough to not
strongly populate the excited state, the ion can perform transitions between |]) and |1) by
absorbing light from one beam and emitting it into the other beam when their frequency
difference is equal to the ground-state splitting.

3.1.1 Raman transitions

For spin qubits implemented in two hyperfine ground-state levels, the coherent
transitions are typically carried out with lasers® using two-photon stimulated Raman
transitions [63]. The coupling of the qubit states is achieved by applying two phase
coherent Raman laser beams which have a frequency difference equal to the ground-
state splitting. Each beam is connecting one of the ground-state sublevels to a
virtual excited state, which is detuned by A from resonance with a real excited
state |e) as shown in Figure 3.2.

For sufficiently large detunings, the population of the excited state is negligible
and the state can be adiabatically eliminated. The system then behaves as an
effective two-level system leading to the desired ground-state sublevel coupling. The
ion can perform transitions by absorbing light at wy, from one beam and emitting
at wy, & wqupit into the other beam. As the process is driven by two laser beams,
the interaction Hamiltonian in Equation 3.2 must be adjusted accordingly. &, wy,
and ¢ must here for be replaced by the k-vector, frequency and phase difference
Ak = |k; — ko|, w1 — wo and ¢ — ¢ between the laser beams. Furthermore the
single-photon Rabi frequency must be replaced by the two-photon Rabi frequency?

2An alternative approach applies microwaves to directly implement the level coupling [59],
as realized in the surface-electrode ion trap experiment described in section 5.1. This approach
cannot be applied for the high-field (anti-)proton experiment, due to the large qubit splitting on
the order of 140 GHz, wherefor the established method using Raman transitions is pursued.

3Equation 3.4 again follows the NIST definition. In case the single-photon Rabi frequency
has been chosen in th(e2 oﬂglzer existing definition, a factor of 2 must be added in the denominator

14

according to: Qeg =

Q= Eo(fld- e/ (h)

with €1 and 29 being the single-photon Rabi frequencies given by
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[63]:
Oy BBy (11d - ér,les){eild - e, [d)
R T A 34

The indices 1 and 2 denote the two laser beams, {2; and {2y their single-photon
Rabi frequencies according to Equation 3.3, A; their detuning from the excited
state |e;) of the Raman process. The Lamb-Dicke parameter is now proportional
to Ak and given by n = Ak - z,.

Tuning the frequency difference between the two Raman beams to resonance with
either the red or blue sideband or the carrier transition, the system will undergo a
coherent evolution according to [63]:

) In) = cos(Q, 1)) In) — iesin(Q,, 1) [1)[n) (3.5)

M) |n) — —ie™sin(Q,, /1) |[1)|n) + cos(Q, . t)[1)|n) (3.6)

The sideband Rabi frequencies are given by €, .~ = nQy/n> , with n. being the
upper of n and n’, leading to:

e Blue sideband transition
for |wi —ws| =wo +wyr N =n+1: Qg =nQyvn + 1

e Red sideband transition
for |wi —wy| =wp —wy: N =n—1: Qg =nQey/n

e Carrier transition
!
for [w) —wy| =we: - =n: Qe=Q,

Under these conditions the system will perform Rabi oscillations between the
qubit states. The probability of finding the ion in the upper or the lower qubit
state oscillates with the corresponding Rabi frequency. The time required for
implementing a 7-pulse! is given by [63]:

™

te = oo
20

(3.7)

If the duration of laser operation is adjusted to this time a single transition will
be executed, as required for implementing the sympathetic cooling and spin state

4The formula 3.7 follows the NIST definition. Due to the deviating formulas for the single-
photon and two-photon Rabi frequency (see footnote 1 and 2), also the formula for the 7-time
differs by a factor of 2 between the existing definitions. Within the other mentioned definition

the 7-time is given by: t; = &
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transfer scheme. Note that in order to achieve an efficient coupling of spin and
motion the two Raman beams must be directed onto the ion from different direc-
tions as the coupling is proportional to Ak, given by the linear dependence of the
sideband Rabi frequencies on the two-photon Lamb-Dicke parameter n = Ak - z.
The absorption of a photon from one beam and emission into the other beam causes
a momentum change of AAk along the direction of the wavevector difference Ak,
which allows coupling to the ion’s motion along the direction given by Ak.

3.1.2 Rabi frequency

While the above treatment of the Raman process was simplified to the exemplary
case of a single excited state, it needs to be generalized to multiple excited states
for calculation of experimentally relevant Rabi oscillations. The Rabi frequency is
then given by the sum over all contributing level couplings [63]:

q— By E,y Z (T]d - ér,leq) (eild - én, [)) (3.8)
4h? A;
The sum over ¢ includes the contribution of all excites states |e;) with respective
detunings A,.
The calculation of the Rabi frequency can be simplified by expressing the two-
photon Rabi frequency in terms of a single-photon Rabi frequency of a closed-cycle
transition. This further simplifies the comparison with other ion species having a
comparable level structure. For a closed-cycle transition the dipole matrix element
can be set in relation to an experimentally measured spontaneous emission rate
using Fermi’s golden rule for an atom coupled to free space. The relation is given
by [65]:
2 3’76077)\3

Hey = 9
With pe; denoting the dipole matrix element of the cycling transition (ct), A the
wavelength, v the linewidth and ¢, the vacuum permittivity. This relation allows
the single-photon Rabi frequency of this transition® to be expressed in terms of the
saturation intensity [46]:

(3.9)

v
(L) = 3.10
D) = 1 2 (3.0
With the saturation intensity Is, given by [64]:
h 2cegh?
[ = 10— T %0 (3.11)

AENOCEE Apy

5A factor 2 in the denominator in Equation 3.10 comes for the NIST definition of the Rabi
frequency
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Here I = C%E’g is the laser beam intensity at the position of the ion and A the
wavelength of the laser. The Rabi frequency of the closed-cycle transition therefore,
besides some atomic constants, only depends on the laser’s intensity and is given
by:

37IN3 K,
9all) =\ e = ot

This relation can then be used to simplify the calculation of any other Rabi fre-
quency according to:

(3.12)

Ey Ey (e|]d - éL]g) (eld - éL]g)
-} —— gt T = gy 1
2h QHM ' Het et Mt (3.13)

where e and ¢ stand for the involved excited and ground-state levels. The two-
photon Rabi frequency from Equation 3.8 can hence be calculated by:

Q = get(11)get (12) Z ld éL2|A€Z:>'<;i2|d el (3.14)

7

Qeg: <e|d€L|g> -

3.1.3 Scattering rate

A fundamental source of decoherence is spontaneous emission induced by the off-
resonant laser radiation during the Raman process. The scattering of photons
can be minimized by detuning the Raman laser beams from resonance with the
optical transitions, but it cannot be eliminated completly. In case an excited state
gets populated, it can spontaneously decay back into the ground state. In the
presence of multiple gound-state sublevels two kinds of photon scattering occur.
For Raman scattering the population is transferred to other sublevels than the
initial state, always causing a loss of coherence. Rayleigh scattering in contrast does
not change the ground-state population after the scattering event and therefore
not necessarily affects coherence. Decoherence of the qubit superposition state
occurs if the scattered photon carries information about the qubit state, leading to
dephasing of the superposition. The decohering part due to Rayleigh scattering
has been found to be determined by the difference between the elastic scattering
amplitudes for the two qubit levels [66]. For small splittings between the ground-
state qubit levels, the difference of scattering amplitudes for beryllium is small and
decoherence due to off-resonant light scattering is dominated by Raman scattering,
as experimentally been shown in [67]. For large qubit splittings, decoherence due to
Rayleigh scattering cannot be neglected, as the difference of scattering amplitudes
can be large.

The rate of photon scattering events, for which an ion initially in |g,;) after
the scattering event ends in |ggna) is given by the Kramers-Heisenberg relation
[68, 69, 70]. Excluding the case where |gini) = |gfina) and summing over all level
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contributions yields the Raman scattering rate ['raman. For an ion initially in the
spin state |gini) = myg, the j-th Raman laser beam with polarization ér,; causes a
rate of:

9 2

4h?

3> (gnalld - &e;) - {eild - &, ms)

. 7f0r Gfinal 7é mg
Mt (Ai - 1%)

1—‘Ramanj (mS) ==
q 7

2
(gtnar|d - €gles) - (ei]d - €1, ms)
= ’YgCQt(]]) Z Z 2q A e 7f0r gﬁnal % mS

(3.15)

The sum over ¢ includes the contribution of all excites states |e;) with respective
detunings A;. ¢ denotes the polarization of the scattered photons with respect
to the ion’s quantization axis, €, the respective polarization vector, fi; the dipole
matrix element of a closed-cycle transition according to Equation 3.9 and g the
Rabi frequency of the cycling transition according to Equation 3.12. The complex
damping factor —i3 corresponds to the linewidth of the excited states and avoids
infinity on resonance.

The case |gini) = |ganal) yields the Rayleigh scattering rate for an ion initially being
in the spin state |gini) = mg. This rate does not provide information about the
induced decoherence. The decohering part due to Rayleigh scattering is proportional
to the square of the difference of the probability amplitudes for elastic scattering of
the two qubit levels and given by [66]:

E2 (L ]d-égles) - {esd - ér.| 4) (1]d - &,lew) - (ex]d - e 1)
Lo, =v7— — — —
IJ 4h2 Z Z Het * (Az - 1%) Z Mt * (Az’ - 1%)

q 7 il

(LId - éle) - (eld e, 1) = (11 Eles) - feald - e, D)
— 2 I q j . q 7
/ygct< ])Z Z ,uctQ(Az_i%) Z/ MCtQ'(Ai/_i%I)

7

q 7

(3.16)

Of special interest is the probability of off-resonant light scattering occurring
during qubit operations. One measure for this is the calculation of the scattering
probability occurring during the time required to carry out a m-pulse on the carrier
transition [63], given by the product of the total scattering rate times the m-time of
the carrier Rabi oscillation:

Pycar = iotal * r (317>

In order to account for spontaneous emission induced decoherence, the total deco-
herence rate is evaluated for the superposition of qubit states, which for the j-th
Raman beam is given by:

1
Ftotalj = _(FRaman]— (i/) + FRamanj (T) + I‘elj) (318)
2
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For qubit operations implemented by two Raman beams the total decoherence rate
is given by the sum of the total rates for each Raman beam.

3.1.4 Stark shift

So far Stark shifts induced by off-resonant laser radiation have not been accounted
for. The time-varying electric field of the laser leads to a shift of the atomic Zeeman
levels. In the limit that A; > v the absolute Stark shift from the j-th beam on the
level |g) within the ground-state manifold is given by [63]:

ld e
= Z

‘ g’d 6L ’61 ’
_gCt Z :uct

The sum over ¢ includes all excited level contributions with respective detunings
A;. e denotes the dipole matrix element of a closed-cycle transition according
to Equation 3.9 and g the Rabi frequency of the cycling transition according
to Equation 3.12. Of special interest is the relative shift denoting the effective
direction of each ground-state level shift. It can be calculated by subtracting the
mean of the absolute Stark shift of all ground-state manifold levels. The relative
shift from the j-th beam on the level |g) is given by:

(3.19)

Amenn(, ) = 6(g1§) — i S 6(9.) (3.20)

With y denoting the number of levels within the ground-state manifold. Comparing
the relative shifts for two qubit states gives the change of the qubit frequency
induced by the off-resonant laser irradiation.

3.2 Qubit control using an optical frequency comb

Raman transitions are typically realized using continuous wave (CW) laser beams.
For this either two phase locked CW lasers or a single CW laser modulated by
acousto-optic (AOM) or electro-optic modulators (EOM) are used. In contrast
pulsed lasers have a sufficiently broad spectrum to directly bridge the qubit splitting
without needing a second laser or a high frequency modulator, if their spectral
bandwidth is larger than the qubit splitting. This advantage is of special interest
for the (anti-)proton g-factor measurement experiment, where the qubit splitting
of 140 GHz is significantly larger than for typical trapped-ion experiments. Due
to the lack of efficient high frequency AOMs and EOMs and due to the technical
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complexity of phase locking two lasers with frequency difference of 140 GHz, the CW
laser approach is rather unfavorable. Optical frequency combs for this application
offer the unique advantage of providing a broad spectrum with phase coherent,
regularly spaced sharp comb modes, which allows a precise connection between the
distant qubit frequencies. This feature allows to directly bridge the large splitting
in a controllable way. In this section the basic properties of optical frequency
combs will be presented and the general concept of their implementation in terms
of coherent qubit control will be discussed.

3.2.1 Optical frequency combs

An optical frequency comb by definition describes a spectrum consisting of several
laser modes equidistantly spaced in frequency [44, 71| and is commonly generated
by mode-locked lasers. In the time domain picture such lasers produce a periodic
sequence of ultrashort phase-coherent pulses separated by the round-trip time of
the laser cavity Tiep, as shown in Figure 3.3. The frequency domain representation
is given by the Fourier transformation of the pulse train. The resulting spectrum
has a frequency width which is inversely proportional to the temporal width of
a single pulse envelope 7, and is centered at the optical frequency of its carrier
we. The comb line spacing is inversely proportional to the time between the pulses
%ep = frep = 52 and hence given by the repetition rate of the laser generating
the pulses fiop. The spectral width of each comb mode is Fourier limited and
approximately scales like ~ f“—;", with NV being the number of involved pulses of the
corresponding pulse train. In the limit of an infinite pulse train the spectral shape
of each mode is given by a delta-function. The optical frequency of the n-th comb
tooth can be written as f, = n - fiep + feeo, Where n is an integer that indexes the
comb line and fee, = % is an offset frequency of the entire comb structure
originating from the pulse to pulse shift of the carrier envelope phase A¢¢e,. This
phase shift occurs because of differing group and phase velocities (see section 4.3.1)
inside the laser cavity. For the application of performing two-photon stimulated
Raman transitions this shift is irrelevant [45] and the electric field of an ideal pulse
train of N pulses at a fixed point in space can be written as:

N-1
E(t) = fot = nTep) - € (3.21)
n=0

Here f,(t) denotes the envelope of a single pulse, which is periodically repeated
with time period T, and multiplied with the carrier wave. The corresponding
comb spectrum E(w) of the pulse train is given by the Fourier transform®:

E(w) = FT[E(t)] ! / N E(t)e™!dt (3.22)

" or

—0o0

6 All calculations are performed within the inverse non-unitary Fourier transformation definition
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Figure 3.3: Representation of the electric field of a pulse train emitted by a mode-locked
laser in the time domain and its corresponding characteristic comb spectrum in the
spectral domain. The pulse train is composed of a periodically repeated envelope of a
single pulse and a carrier wave with frequency w.. The comb line spacing in the frequency
domain is inversely proportional to the time between the pulses Trep, = %:p and given by
the repetition rate of the laser wyep. The spectrum has a bandwidth which is inversely
proportional to the pulse duration of a single pulse 7, and is centered at the carrier wave
frequency we. The width of each comb mode is Fourier limited and scales with ~ “t

N
with N denoting the number of pulses.

It can be calculated by composing the separate Fourier transforms of the periodic
envelope function p(t) = Y fo(t—nTep) and the carrier wave c(t) = e according
to the convolution theorem (e.g. [72]):

E(w) = FT[E(t)] = FT[p(t) - h(1)] = p(w) * &(w) (3.23)

With p(w) and é(w) denoting the Fourier transforms of p(t) and ¢(t). The periodic
envelope function p(t) itself can be seen as a convolution of the single pulse envelope
f»(t) and a periodic series of Dirac delta distributions spaced at intervals of Tjep,
d(t) = >, 0(t — nTiep). In the limit of an infinite number of pulses the periodic
envelope function can hence be written as:

p(t) = fot)* > 6(t = nTiep) (3.24)

n=—0oo

The Fourier transform of the periodic envelope function p(w) is, according to the
convolution theorem, given by the product of the Fourier transforms of the single
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functions, corrected by a normalization factor:

Blw) = FT[p(t)] = FT[f,(t) x d(t)] = 27 - fy(w) - d(w) (3.25)

With f,(w) and d(w) denoting the Fourier transforms of f,(t) and d(t). With the
well known Fourier transform of a periodic series of Dirac delta distributions” [73]

spaced at intervals of T, = erZp’
dw — FT[H:ZOO Ot = nThep)] = o+ Wrep kz §(w — kwrep) , (3.26)

the Fourier transform of the periodic envelope function becomes:

o0

P(w) = Wrep - fp(w> Z 0(w — ktwrep) = Wrep Z fp(kwrep) 0w — kwiep) (3.27)

k=—o0 k=—o0

It consists of sharp comb lines spaced by wye, where the electric field of the j-th
comb tooth is given by E; = wyep fp(jwrep). Together with the Fourier transform of
the carrier wave,

&(w) = FT[c(t)] = FT[e™"] = 6(w + we), (3.28)

the spectrum of the pulse train in Equation 3.21 in the limit of an infinite number
of pulses is:

Ew) = A}gr(l)o E(w) = p(w) * &(w) = Wrep - fp(w + we) Z S(w + we — kwrep)
k=—o00

= Wrep * Z fp(l{wrep)é(w + we — kwrep)

k=—o00

(3.29)

This equation describes an ideal frequency comb, whose envelope function, given
by fp(w), is centered at the carrier frequency w.. The Dirac Delta distribution is
only non-zero if w = kwyep — we. Introducing the new variables

Wi = kWyep — We (3.30)

and ) )
Ei = Wrep - fo(wi + we) = Wrep * fp(kWrep) (3.31)

"The Fourier transform of a periodic infinite series of Dirac delta distributions is again a
periodic series of Dirac delta distributions with inversed periodicity. The scaling factor arises
from the Fourier coefficient in the Fourier series representation.
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Equation 3.29 can be written as:
E'w)= > Epd(w—w) (3.32)

The inverse Fourier transformation of Equation 3.29 gives the electric field of an
infinite pulse train:

E°(t) = FT'[E(w)] = i Wrep * fo(kuwrep)e ettt (3.33)

k=—o00

Where Equation 3.33 is simply an infinite pulse train written as a Fourier series.
Using the variables wy and E} it becomes:

EO(t) = i Epe (3.34)

k=—00

These expressions for an infinite pulse train can be used to describe the implemen-
tation of Raman transitions.

3.2.2 Single-beam spin control

Carrier Raman transitions, as described in section 3.1, can be implemented with
a single train of pulses. The physical requirement is that the spectrum of the
corresponding frequency comb contains teeth which are separated by the ground-
state qubit splitting, which for a carrier transition is given by the spin qubit
frequency wy. As the spacing of the comb teeth is given by the repetition rate of
the laser, the carrier resonance condition is given by [45]:

Wy = Wreps EZ (3.35)

Rabi oscillations with a single pulsed laser beam can hence occur if the spin qubit
splitting wy is an integer multiple of the repetition rate of the laser wyep, as illus-
trated in Figure 3.4. A photon can be absorbed by one comb tooth and emitted
into another one in order to drive transitions. Due to the regularity of the comb line
spacing several pairs of comb teeth exist, which all contribute to the Raman process.

The Hamiltonian describing the interaction of the ion with the pulse train is
given by:
Hi(t) = —d - E(t) = —=d- Y Ejé Re[e ], (3.36)

k=—o00
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Figure 3.4: Schematical view of the two-photon stimulated Raman process driven by a
single beam of an optical frequency comb. Carrier Raman transitions are performed by
stimulated absorption from one comb tooth and stimulated emission into another comb
tooth, if the spin qubit splitting wg is an integer multiple of the repetition rate wyep of the
laser. The qubit ground-state coupling between |]) and |1) is achieved via several virtual
excited states being detuned from the real excited state |e).

where Equation 3.34 has been inserted for the electric field of the pulse train.
Assuming the optical fields of the pulse train to be detuned far enough from
resonance, the time-averaged dynamics can be described by an effective Hamiltonian
directly coupling the qubit states [74]. Following the notation from section 3.1 and
neglecting the Stark shift, the Hamiltonian terms relevant for carrier transitions for
a single pair of comb teeth in the approximation of large detunings is given by [75]:

Hine (1) =~ %ﬁe“wmwnlwﬁ + h.c. (3.37)
Here the indices m and n denote the comb teeth, from which one couples to
the qubit state |]) and the other to the qubit state |[1). Each comb mode has a
frequency given by Equation 3.30 and the single-photon Rabi frequency €2, and
Q,, according to Equation 3.3 with an electric field approximated by Equation
3.31. A solution for the performance of carrier transitions can be obtained by
considering only the resonant, stationary terms for which the time-dependence in
the exponential functions vanish. The requirement for this is |w,, — w,| —wo = 0.
Inserting the frequencies of the m-th and n-th comb mode, w,, = Mwyep — we and
Wy, = NWrep — We, leads to the resonance condition of |m — n| = ‘”—Op, which is the

Wre

mathematical description of the physical requirement that the qubit splitting must
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be an integer multiple of the repetition rate. The effective Hamiltonian of the
entire frequency comb is given by the sum over all comb tooth pairs fulfilling this
requirement. The comb can therefore be thought of as an ensemble of CW lasers.
In the approximation of large detunings the Rabi frequency is given by [45]:

2k EkErg (T1d-éLfei)(eild -] 1) . w
Q:Z k4h2 d L L with ¢ = — € Z (3.38)

Ai,k ’ Wrep

This Equation can be derived from the formula 3.8 for the two-photon Rabi fre-
quency implemented with two CW beams, by replacing the product of electric field
amplitudes by the sum over all comb tooth pairs fulfilling the resonance condition
3.35. In contrast to the CW approach, where one beam drives the ion into the
excited state and the other beam drives it back to the other qubit ground state,
a single comb tooth cannot be dedicated to either the absorption part or the
emission part of the Raman process. Due to the regularity of comb line spacing
each comb tooth can participate in both processes, if the resonance condition is
fulfilled. The optical frequency comb therefore uses its power twice as efficiently |75].

If the sum over k in Equation 3.38 is replaced by an integral, an analytic ex-
pression for the Rabi frequency can be obtained. The Rabi frequency can then be
expressed as a product of the time-averaged resonant Rabi frequency of the pulse
train €y times a function ([f,(wo, Awpwnwm)] depending on the pulse shape of the
envelope and the qubit splitting [45]:

)~ QO . ([fp(wo, ACUFWHM)] (339)

The function ¢ is shown in Table 3.1 for different functional forms of the pulse
envelope and plotted in Figure 3.5 as a function of the spectral bandwidth. If
the spectral bandwidth of the frequency comb is large compared to the qubit
splitting, the function { converges towards unity for any pulse shape. In this case
the Rabi frequency (2 is approximately given by (2. If the spectral bandwidth of
the comb is reduced, the net transition rate is supressed, according to the drop
of ¢ shown in Figure 3.5. This results from the fact that fewer pairs of comb
teeth exist that contribute to the Raman process. A general requirement for
efficient Rabi oscillations performed by an optical frequency comb is hence given
by Awpwam > wo.

The time-averaged resonant “two-photon” Rabi frequency of the pulse train €2
can be expressed in terms of the saturation parameter s = I /I, with the average
intensity® [45]

= [ aff =2nfn S [ dlfP 340

[e.o] —00

8The additional factor of 27 in the expression with the integral over dw comes from the inverse
non-unitary Fourier transformation definition.
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Table 3.1: Table showing the function ¢ for different functional forms of the pulse envelope
fo(t). The functions ¢ and the corresponding spectral envelope functions f(w)? are shown
in Figure 3.5.

scaled to the saturation intensity I of a closed-cycle transition, as given by
Equation 3.11. €y can therefore be calculated in terms of the dipole matrix element
of the closed-cycle transition ., given by Equation 3.9, according to [45]:

oI 2

2 2
T 7 I ce /Lct
Q1) = = 2= 41
o(7) 8AIL,:  4h* A (3-41)

The relation between the time-averaged resonant “two-photon” Rabi frequency of
the frequency comb 2y and the CW single-photon Rabi frequency of a closed-cycle
transition g, as introduced in section 3.1.2, is given by:

gct([zf)gct(I:I_)_ =
- — 0o(D) (3.42)

Due to the fact that each comb mode contributes to the emission and to the
absorption part of the Raman process, the associated CW single-photon Rabi
frequencies g, in Equation 3.42 both are scaled to the full available averaged
intensity I of the pulse train.

3.2.3 Multiple-beam qubit control

The realization of motional sideband transitions requires the existence of pairs of
comb teeth, which are separated by the qubit splitting given by wqubit = wo £ w,.
As the Raman frequency for sideband transitions is proportional to n = Ak - zg,
as discussed in section 3.1.1, it is further required that the comb teeth must
originate from separated beams directed onto the ion from different directions.
The absorption of a photon from one beam tooth and emission into a tooth from
the second beam causes a momentum change of RAk along the direction of the
wavevector difference Ak, which allows coupling to the ion’s motion. The resonance
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Figure 3.5: Comparison of the function ([f,(wo, Awpwrm)| for different functional forms
of the pulse envelope, plotted as a function of the ratio between the spectral bandwidth
in full width half maximum (FWHM) definition Awpwy and the internal state qubit
splitting wg. In the left graph, ¢ is shown, in red of a sech-shaped, in blue of a gaussian
and in black of a sinc-shaped spectrum. All functions are scaled to the same average
intensity, as shown on the right. The envelope functions are shown in Table 3.1. For
broad spectra with spectral bandwidths being several multiples of the qubit splitting, the
function converges towards unity for any pulse shape.

condition is fulfilled by shifting the frequencies of both beams relative to each other,
such that teeth from the one beam paired with teeth of the other beam are resonant
with the qubit splitting, as illustrated in Figure 3.6. This ensures the participation
of both beams. The resonance condition for sideband transitions is given by [45]:

J-wep £ Aw =wy £ w,, jE€Z (3.43)

With j being an integer, wy the separation of the internal qubit states, w, the trap
frequency and Aw the frequency shift between both beams. The optimum frequency
shift for performing sideband transitions is on the order of one-third of the laser’s
repetition rate or multiples of it, Awept & (I41/3) wiep, I € Z, and not as in the case
of using CW lasers given by the entire qubit splitting. This is a major advantage
of this approach, especially relevant for the (anti-)proton g-factor measurement
experiment possessing the large qubit splitting on the order of 140 GHz. In order
to avoid having the single beams accidently driving carrier transitions, Aw should
not be a harmonic of an integer or half integer of the laser repetition rate we, [46].
In the former case, each comb itself directly fulfills the carrier resonance condition
of a single beam, given by Equation 3.35, whereas in the latter case both combs
fulfill the second harmonic of the carrier resonance condition, which in both cases
supresses the sideband signal. In order to ensure coupling only to the sideband
transition over a wide range of frequencies, a large repetition rate is beneficial. A
detailed discussion on the general limit criterion for resolving motional sidebands
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Figure 3.6: Demonstration of the Raman resonance condition fulfilled by comb tooth pairs
originating from two separate beams of the pulsed laser, indicated by the blue and red
beam. The right picture shows the equally spaced comb teeth of each beam’s spectrum in
relation to the qubit splitting wqupit- In order to bridge the qubit splitting the relative
frequency shift Aw must be introduced between the beams, such that a tooth of one beam
in combination with a tooth from the second beam are separated by wqunit. For carrier
transitions the qubit splitting is given by wqubit = wo. Sideband transitions with motional
coupling along the direction of Ak can be performed if wyupit = wo & wy.

is performed in [75]. The sideband transition amplitude is found to dominate the
carrier transition amplitude if:

f rep

N = tprobe : frep > o,

(3.44)

With n being the Lamb-Dicke parameter and N the number of pulses of the pulse
train, determined by the product of the experimental probe duration ¢,..ne and the
repetition rate of the laser. The limitation can therefore be interpreted as a limit
criterion concerning the linewidth of a single comb mode. In case of short probe
durations, corresponding to a small number of involved pulses, the linewidth of
each comb mode is broadened and motional sidebands cannot be resolved in the
limit of Equation 3.44.

Whereas the use of two beams is mandatory for the implementation of sideband
transitions, carrier transitions can be performed by either using a single beam or
by using two beams of the pulsed laser train. Within the two-beam configuration,
the frequency shift Aw between the lasers beams must be set, such that pairs of
teeth exist which are separated by the qubit frequency wqubit = wo. The general
resonance condition for performing two-photon stimulated Raman transitions with
two pulsed laser beams is given by:

J * Wrep £ Aw = Wqubit, J € Z (3.45)

Figure 3.7 schematically demonstrates the Raman process implemented by two
beams of a pulsed laser. Each comb represents the spectrum from one beam. Raman
transitions are performed by pairs of comb teeth, whereby teeth from one comb are
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Figure 3.7: Schematical view of the two-photon stimulated Raman process driven by two
beams of a pulsed laser. On the left the comb spectrum of beam 1 is shown, with carrier
frequency we, and on the right the comb of beam 2 with carrier frequency wc,. Raman
transitions are performed by pairs of comb teeth originating from the different beams, if
the resonance condition from Equation 3.43 is fulfilled. Assuming the ion to be initialized
in |}), in this picture teeth from the first beam’s spectrum are always responsible for the
absorption part and teeth from the second beam are always responsible for the emission
part of the Raman process. The Raman coupling is given by the sum over all contributing
pairs of comb teeth, which can be found along the virtual excited states indicated by
the dashes lines, detuned from the real excited state |e). Note that the frequency shift
between the beams is on the order of “:2 and not of the qubit splitting Wqubit, Which is

3
difficult to see due to the representation of shared virtual states.

always responsible for the absorption part and the teeth from the second comb for
the emission part of the process. Due to the regularity of the comb line spacing
the resulting Rabi frequency is then again given by the sum over all pairs of teeth,
fulfilling the resonance condition 3.45.

The carrier Rabi frequency implemented by two beams can be derived analo-
gous to the case of a single beam. The Hamiltonian describing the interaction of
the ion with the two beams of the pulse train is given by:

Hipg(t) = —d-[By()+Ea(t)] = =d-Re | > By ép, e ™'+ > By, ép, e !
ki=—00 ko=—00

(3.46)
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Neglecting Stark shifts and assuming large detunings, the effective Hamiltonian
terms relevant for carrier transitions for a single pair of comb teeth originating
from different beams is given by:

Hing () =~ %U*@i(l‘“mmﬂwqub“)t + h.c. (3.47)
Here the index m denotes the m-th comb tooth from laser beam 1 and n denotes the
n-th comb tooth from laser beam 2. As discussed for the single-beam approach, an
approximate solution for the performance of carrier transitions can be obtained by
picking out the stationary resonant terms, which requires |wy,, — wa,, | — Wqubit = 0,
with the frequencies of each beam given by Equation 3.30. In contrast to the
single-beam approach both comb tooth frequencies are now referenced to different
carrier frequencies due to the applied frequency shift Aw. Inserting the frequencies

W, = MWrep — We, aNd Wa, = NWyep — We, = NWrep — We, £ Aw leads to:
Waubit = Aw
|m —n| = L——m (3.48)
Wrep
Introducing the parameters
Waubit + Aw Waubit — Aw
ro Wit TAG g g = Yawbit T AW (3.49)
wrep wrep

it can be seen that the resonance condition can either be fulfilled by requiring ¢’
or ¢ to be an integer. This differentiation corresponds to the fact, that due to
the applied frequency shift between the beams, a clear designation is introduced
identifying which beam is responsible for the absorption part and which beam for
the emission part of the Raman process.

Because the transition is driven by both pulse trains it is further required that
the individual pulses must arrive simultaneously at the ion. A derivation of this
condition can be obtained by introducing a temporal delay in the expression of
the electrical field of a pulse train. The calculations show that when the delay
between both beams is zero also either ¢’ or ¢” is an integer, implying that the
two pulses must arrive the ion simultaneously for efficient Rabi oscillations [75].
Further assuming that the pulse trains are not chirped and all contributions add
up in phase, the beat note between the two frequency combs will resonantly drive
Raman transitions and the Rabi frequency, for example in the case of ¢’ being an

integer, is given by:
o Wqubit + Aw

Zk; EklEkz—Q’ <T |d ’ éLl |€’L><€%|d ’ éL2| l,) . /
= § thg =" """ cZ
- 4h?2 Ak Wi g Wrep <

)

(3.50)
The Rabi frequency in case of two offset combs performing the Raman process
can hence be expressed similar to the case of a single beam, with the difference
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that each tooth from contributing comb mode pairs can be dedicated to either the
absorption or the emission part of the Raman process. The beam from which a
comb tooth originates is therefore labeled with the index 1 for emission and 2 for
absorption. By this also the electric field amplitude of each comb mode in Equation
3.50 is referenced to the power contained in the specific beam. This in consequence
means that if the power contained within a single pulse train is divided into two
beams, the achievable Raman coupling strength implemented by the two-beam
approach is reduced by a factor of two compared to the coupling strength achievable
with the single-beam approach. This relation can be pointed out in the limit of
Awpwham > wo. The Rabi frequency from Equation 3.50 in this case can also be
approximated by a “two-photon” time-averaged resonant Rabi frequency of the
pulse train ). Further a “single-photon” time-averaged resonant Rabi frequency
go can be introduced, which can be set in relation to the saturation intensity of
a closed-cycle transition Iy, and the closed-cycle matrix element p. according to
[46]:

I o
o) =g = o et (3.51)

The relation to the single-photon CW Rabi frequency of the closed-cycle transition
Jet 1S given by: B B
9o(1) = geu(I = 1) (3.52)

The resulting time-averaged “two-photon” resonant Rabi frequency (2 of the Raman
process implemented by two beams can be expressed as:

0 = 9o(11) - go(12) (3.53)

A

In contrast to the “two-photon” time-averaged resonant Rabi frequency for the
single-beam approach in Equation 3.42, the associated single-photon Rabi frequen-
cies now are scaled to the averaged intensities of the particular beams, denoted as
I, and Iy. In case of dividing the available average intensity of a pulse train I into
two beams, each beam only has an intensity of % Whereas for the single-beam ap-
proach each associated single-photon Rabi frequency is scaled to the entire average
intensity of the pulse train I, due to the fact that each comb mode can participate
to the absorption and to the emission part of the process. The coupling strength
is therefore reduced by a factor of two within the two-beam approach. This is in
full analogy with the implementation of Raman transitions with two CW beams.
Here also the power contained in one beam is available for the absorption part and
the power contained in other beam is available for the emission part of the Raman
process.

The Rabi frequencies for motional sideband transitions can be obtained based
on the Equations derived in section 3.1.1. The sideband Rabi frequencies depend on
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the motional state of the ion n and are naturally weaker than the carrier (c) Rabi
frequency by a factor given by the Lamb Dicke parameter 1. The Rabi frequency
for the red sideband (rsb) and blue sideband (bsb) are given by:

Qugp, = 7/IQC\/E (354>

Qbsb = T]QC\/ n+1 (355)

with the Lamb-Dicke parameter

h

277/Lionwz

n= Ak , (3.56)
where m;,, denotes the mass of the ion. A direct derivation of the effective Hamilto-

nian and the sideband Rabi frequencies for the pulsed laser approach can be found
in [75].

The calculation of the scattering rates FRamanofc I'g ofe, and the Stark shift d(g )Ofc

induced by the j-th optical pulse train can be der1ved from the CW equations
(Equation 3.15, Equation 3.16, Equation 3.19) by replacing the product of electric
field amplitudes by the sum over comb tooth pairs, Egj — > B Alternatively
the expressions can be approximated by replacing the CW Rabi frequency of the
cycling transition by the time-averaged resonant single-photon Rabi frequency,
get(I;) = go(I;), leading to:

2
Z <gﬁnal|d : EAq|€i> : <€z|d . éLj|mS>
12 - (A; — 1%)

,fOI‘ Jfinal 7é mg

FRamanofcj (ms) = 79(2)(1_]) Z

q

7

(3.57)
Fe L= 2 I. i j _ - J
ey =7 0 ])Zq: 2T e (i) Z s (B — 13)
(3.58)
d- !
8(9)ofe; = Z‘ g’ﬂ L, ’e (3.59)
: ct ’

The average intensity I; denotes the average intensity available in the j-th pulse
train of the Raman process. Within this expression the Rabi frequency is given by:

Qote = go(11)go(12) Z (- ngLezﬁ.(ZLd el Y

(2

- ([ fp(wo, Awpwam)]  (3.60)

The function ([f,] implements the drop of Raman coupling strength in case the
spectral bandwidth Awpwphn does not significantly exceed the qubit splitting wy,
as discussed in section 3.2.2.

'2
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3.3 Beryllium ion qubit control using an optical
frequency comb

In this section specific requirements for qubit control of beryllium ions using a
pulsed Raman system will be discussed. A specific challenge arises from the atomic
level structure of beryllium, which requires a careful control of the spectral comb
properties in order to optimize the ratio between the Raman coupling strength
and the total scattering rate. Once the requirements for the (anti-)proton g-factor
measurement experiment are met, the pulsed Raman system presents a flexible
tool allowing for qubit control of “Be™ ions at any less stringent conditions given
at lower magnetic fields. The level structure of “Bet and its hyperfine qubits at
different experimental conditions will be introduced and corresponding numerical
simulations of the relevant atomic processes occurring in the °Be™ ion as well as
resulting requirements discussed.

3.3.1 Beryllium qubit

Quantum logic inspired trapped-ion experiments require ions which exhibit a pair
of long-lived energy levels which can be identified as qubit levels. Furthermore
simple techniques for cooling the ion and for initializing, detecting and coupling
the qubit levels should be available, restricting the list of appropriate ions to ones
which are alkali-like, thus having a single unpaired valence electron when being
ionized. Beryllium has been chosen for the (anti-)proton g-factor measurement
experiment due to its lightest mass along the established qubit ions. It belongs to
the alkali earth metals, has the atomic number Z = 4 and two valence electrons.
Experiments in the group are performed with singly ionized °Be™ which is the only
stable isotope. In the following the electronic level structure and the implementation
of qubit levels will be discussed.

Beryllium level structure

The relevant atomic structure of ionized beryllium is shown in Figure 3.8. For
a derivation of its atomic description see e.g. [76, 65]. Be™ exhibits a singlet
ground state in the s-orbital, 2S; /2, and two p-levels, 2p, /2 and 2P, /2, following the
spectroscopic notation 2! L ;, where L is given by the subshell letter L=0,1,2,...=
S,P,D,... . The transition between the ground state and the lower p-level is near
ABe &~ 313 nm, which is, up to the detuning from the excited states A which has
to be set, the wavelength required for implementing Raman transitions. The fine-
structure splitting between the p-levels is wg = 27 - 198 GHz. The fine structure
results from the coupling of the spin angular momentum S and the orbital angular
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Figure 3.8: Atomic structure of ionized beryllium (not to scale). °Be™ has a singlet ground
state in the s-orbital, 2S; /2, and two excited levels in the p-orbital, ’p, /2 and 2p, /2, with
a fine-structure splitting of wg = 27 - 198 GHz. Each level is split into hyperfine sublevels
due to the coupling to the nuclear spin of I = 3/2 resulting in corresponding quantum
numbers characterized by F. The hyperfine ground-state splitting is 1.25 GHz.

momentum L to the resulting electron angular momentum J by J = L + S leading
to the corresponding quantum number J, with J € {|L— S|, ..., L+ S}. Accordingly
with S = 1/2 the ground state with L = 0 has a single level with J = 1/2, whereas
the excited state with L = 1 exhibits two levels with J = 1/2 and J = 3/2. These
fine-structure levels are further split into hyperfine sublevels due to the coupling of
the nuclear angular momentum I to the electron angular momentum J resulting
in the atomic angular momentum F by F = J 4 I leading to the corresponding
quantum number F', with F' € {|J — I|,...,J + I}. With a nuclear spin of [ = 3/2
the ground state and the first excited p-level are split into two sublevels with F' =1
and F' = 2, with an energy splitting of 1.25 GHz and 237 MHz, whereas the second
excited p-level is split into four sublevels with ' =0, F =1, F=2and FF =3
with splittings around 1 MHz |77, 78|. Each of these levels has 2F + 1 sublevels
which are degenerate at zero magnetic field. The degeneracy gets broken when
applying a magnetic field, where the description and energy of the levels depend on
the strength of the magnetic field.

Hyperfine qubits

Beryllium ion qubit levels are chosen within the electronic %S/, ground-state
manifold while applying a magnetic field resolving the sublevels. The Hamiltonian
describing the interaction of the external magnetic field B with the hyperfine
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structure is given by

H=hAl-J—p B, (3.61)

with h being the Planck constant, A a hyperfine constant and g the magnetic
dipole operator. The interaction with the magnetic field is described by —u - B and
depends on the strength of the applied magnetic field. In the weak-field regime,
known as Zeeman regime, the interaction of I-J dominates over the effect of
the external magnetic field, and I, J, F, mp are good quantum numbers, with mpg
denoting the projection of F' onto the quantization axis. The separation of the
energy levels for a magnetic field in z-direction is described by

AEB = U grmpr BZ y (362)

with the Bohr magneton ug and the Landé g-factor gr. For the strong-field regime,
known as Paschen-Back regime, the interaction with the magnetic field dominates
the coupling of I-J and J, I, m;, m; are good quantum numbers, with m; and m
denoting the projection of I and J onto the quantization axis. The separation of
the energy levels is given by

AEg = (up gymy + px grmr) B, (3.63)

with g7, g; denoting the Landé g-factors and pk the nuclear magneton. In the
intermediate regime neither |F,mg) nor |my,my) are good quantum numbers.
The energy levels are obtained by diagonalizing the combined Hamiltonian. An
analytical expression is given by the Breit-Rabi formula:

142 m==+(I+1/2)
AEHFS AE’HFS
AFgp = ———=— B+
BT i) Mk 2
\/1 + ﬁ%x + z2 otherwise
(3.64)
where m = my = my; =my 4+ 1/2 and z is defined by
(gJ - QI)MB
r=>—""".B 3.65
AFEyps (3:65)
and A Fyrs is given by
1
ABgps = A - (I + 5) . (3.66)

The + in Equation 3.64 preceding the last term refers to F' =1 4+ 1/2.

Figure 3.9 shows the energy levels of the ?S;/, ground-state manifold of beryl-
lium as a function of an externally applied magnetic field for the low-field and
intermediate regime, determined with the Breit-Rabi formula (Equation 3.64),
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Figure 3.9: Energy levels of the hyperfine ground-state manifold of “Be™ as a function of an
externally applied magnetic field in the low-field and intermediate regime, determined by
the Breit-Rabi formula 3.64. Experiments, as described in chapter 5, work at a magnetic
field of 22.3 mT where the transition between |F =2, mp = 1) and |F = 1,mp = 1) is
first-order field independent.
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Figure 3.10: Energy levels of the hyperfine ground-state manifold of “Be™ as a function
of an externally applied magnetic field in the high field regime. At a magnetic field of 5T,
as applied within the (anti-)proton g-factor measurement experiment, two energy level
bundles exist being characterized by mj = +1/2 and m; = —1/2, with four sublevels each
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where the states are labeled with both, |F,mg) and |m;,my). In this regime
experiments are typically performed at a magnetic field, at which a magnetic
field-insensitive transition exists. In this case the slopes of the qubit energy levels,
given by the derivative of the Breit-Rabi formula with respect to the magnetic field
strength, are identical. Such transitions have the huge advantage of being first-order
insensitive to magnetic field fluctuations leading to long lived qubit states. Experi-
ments, as described in chapter 5, were carried out at a magnetic field of 22.3mT at
which the transition between |F' = 2,mp = 1) and |F = 1, mp = 1) is first-order
field independent. Further field-independent transitions exist at B=11.9446 mT,
B=11.9642mT and B=0.0254mT as discussed in |79, 80].

For a magnetic field of 5T, as to be applied in the (anti-)proton g-factor mea-
surement experiment, the energy levels are described in the Paschen-Back regime.
The energy levels of the ?S; /2 ground-state manifold as a function of the magnetic
field for the high-field regime are plotted in Figure 3.10. Two energy level bundles
exist, being characterized by m; = +% and my = —%, with four sublevels each
according to m; € (—3/2,—1/2,41/2,+3/2) being separated by ~ 300 MHz. Qubit
levels and all laser transitions should be chosen within the same m; subsystem,
in order to achieve high coupling efficiencies. A change of m; is accompanied by
a nuclear spin flip, for which the probability is suppressed by several orders of
magnitude. Because of the existence of closed-cycle transitions, being typically used
for implementing the Doppler cooling and state detection beam, either the m; = —1—3
or my = —% subsystem are available for choice. For the (anti-)proton g-factor
measurement experiment the subsystem m; = +% is chosen, because the excited
state of the closed-cycle transition is most separated from neighboring sublevels.
The level structure of the subsystem at an externally applied magnetic field of
5T is shown in Figure 3.11. The qubit states within the ground-state manifold
are [|) = |m; = =1, m; = +3) and [1) = |my = +3,m; = +2) with an internal
state splitting of wy = 27 - 139.1850 GHz. The closed-cycle transition couples the

1) = |my = +5,m; = +3) state to the excited 2Ps)o, |my = +2,m; = +3) level,

3.3.2 Calculation of dipole matrix elements

The calculation of Rabi frequencies, scattering rates and Stark shifts for the imple-
mentation of the two-photon stimulated Raman process requires the determination
of the electric dipole couplings between the qubit ground states and relevant excited
states. In this thesis the relevant matrix elements are scaled to the matrix element
of the closed-cycle transition between the 259, |m,; = +%,m1 = +%> and the
2Pyjo,|my = +%,m1 = —|—%> levels:
2 2 1 3 12 3 3.9
Hop = ‘( Sl/Q,mJ = —|—§,m1 = +§‘d -0 ‘ P3/2,mj = —|—§,m1 = —|—§>’ (3.67)

With d - 67 denoting the right circular component of the electric dipole operator.
For this transition the relation to an experimentally measured spontaneous emission
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Figure 3.11: Beryllium level splittings in GHz within the m; = +3/2 subsystem at
an externally applied magnetic field of 5T (not to scale). The internal qubit states
) = |mys = —1/2,m; = +3/2) and |T) = |myj = +1/2,m; = +3/2) are separated
by wo = 27 - 139.1850 GHz. A closed-cycle transition exists between the |1) = |m; =
+1/2,m; = +3/2) and the Py 5, |m; = +3/2,m; = +3/2) levels. The excited state of
this transition is separated by a frequency of 2z - 93.3095 GHz from the next subsystem
level, which allows to optimally suppress accidental state transfer during cooling and
detection.

rate, given by Equation 3.9, holds. Based on this, all Rabi frequencies, scattering
rates and Stark shifts are calculated in terms of the intensity dependent resonant
Rabi frequency of this closed-cycle transition.

The relevant dipole matrix elements can be evaluated by applying the Clebsch-
Gordan algebra. According to the Wigner-Eckart theorem the dipole matrix
elements can be expressed as products of an angular momentum coupling coefficient
Aty dm, (or Apimr pmy) and a radial part Ry . The angular part shows the
relative weights of different contributions and results from recoupling all Clebsch-
Gordan coefficients occurring during basis transformation while expanding the
corresponding Eigenfunctions [64]. The radial part R, ., also known as reduced
matrix element (n'l'||d||nl), is independent from the projection of any angular
momentum quantum number on the quantization axis. Since all relevant matrix
elements for beryllium couple between a ground-state level in the s-orbital and an
excited state in the p-orbital, the reduced matrix elements R, ,; are identical for
the closed-cycle transition and any transition between |e) and |g) contributing to
the Raman process. The ratio of a matrix element scaled to the matrix element
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of the closed-cycle transition is therefore determined by the ratio of the angular
momentum coupling coefficients.

For low magnetic fields, where F' and mg are good quantum numbers, the angular
momentum coupling coefficient for the Zeeman regime is given by [64]:

Apy, pmp = (=1 PSR SO+ 1) (20 + 1)(2F + 1)(F + 1)
L S\ [ PN (F 1 F (368)
J L 1f\F J 1f\mp q —mp
For high magnetic fields, in the Paschen-Back regime, with m , m; being good
quantum numbers the angular momentum coupling coefficient ist given by [64]:

g rJ sS\(J 1 J
Aty gy = (=1)FFS "\/(2J+1)(2J’+1){J L 1}( )

my q —m/,

(3.69)
With the curly brackets denoting Wigner 6j and the round brackets Wigner 3;
symbols. The quantum numbers with prime correspond to the involved excited
state, without prime to the involved ground state quantum numbers. ¢ indicates the
polarization of the light with ¢ = 0 for linear and ¢ = +1 for right- and left-circular
polarized light. In the intermediate regime a numerical diagonalization at the given
magnetic field is required in order to obtain the corresponding basis coefficients of
the Eigenstates. A detailed derivation can be found in [81].

Approximation of excited state contributions

The existence of several excited states possibly leads to quantum interferences
between different Raman contributions. Within a simple approximation the relative
weights of different excited state contributions can be obtained. In the limit of
large detunings and neglecting the differing detunings from the hyperfine level
splittings as well as the different detunings of participating comb modes, the
relevant energy levels of beryllium for this simplified pre-calculation are shown
in Figure 3.12. Following the notation in [63, 82| the Raman beam coupling to
the |) level is designated as blue Raman (b) and the beam coupling to |1) as red
Raman (r) beam, with respective frequencies wy, and w,. The corresponding laser
polarizations are expressed with respect to the quantization axis of the ion according
to Ejé; = j_6~ + jom + jiot with 1712+ 1jol* + |j+|* =1 and j =r1,b. In terms of
qubit control implemented by optical frequency combs, the two contributions r and
b can be seen as exemplary comb lines being responsible for the absorption part
and the emisson part of the process. For the two-beam approach they originate
from different beams, whereas for single-beam spin control they can originate from
the same beam. The detuning A has its origin at the line center of the 2P, ) level
and positively increases for larger energies. Within the simple pre-approximation
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Figure 3.12: Schematical view of notations relevant for the numerical simulations of the
two-photon stimulated Raman process in beryllium. The detuning A has its origin at
the line center of the 2P, /2 level and increases for larger energies. Within the simple
pre-approximations, the detuning from the 2P, /2 level is expressed in terms of the p-level
fine-structure splitting we. For accurate simulations the detuning is precisley calculated
with respect to the line center of the 2P, /2 level. The Raman beam coupling to the [{)
level is designated as blue Raman (b) and the beam coupling to [1) as red Raman (r)
beam, with respective frequencies wy, and wy.

the detuning to the ?Pj, is expressed in terms of the p-level fine-structure splitting
Wis-

Using the appropriate Clebsch-Gordan coefficients, given by the angular coupling
coefficient in Equation 3.69, the terms (], 1 |d - Ej€;|e;) can be evaluated. The
Rabi frequency of the qubit transition ||) = [my = —3,m; = +2) < 1) = |m; =
+%, my; = +%) following Equation 3.60 is found to be:

Wi

V2
Q= ———gb9-(bor_ + bﬂo)m

; (3.70)

With g, and g, denoting the single-photon Rabi frequencies of the closed-cycle
transition and by, 7o being the linearly polarized and b, ,r_ the right and left circular
polarized components of the blue and red Raman beam. This simple approximation
gives a first intuitive insight to the different polarization contributions occurring
when summing over all hyperfine levels. It can be seen that the maximum Rabi
frequency for the qubit transition can be obtained by two different combinations
of laser beam polarizations. The optimum Raman coupling can be achieved if the
polarization of the Raman beam coupling to |}) refers to atomic o transitions and
the polarization of the Raman beam coupling to |1) refers to atomic 7 transitions.
Alternatively, within this simple approximation, a similar coupling can be achieved
by combining 7 transitions for coupling to ||) with o~ transitions for coupling to

).
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Accurate detunings and dipole matrix elements

Neglecting the different detunings within the hyperfine structure at an applied
magnetic field of 5T is not a valid approximation. For an accurate calculation the
exact detunings of each level contributions must be taken into account. Table 3.2
summarizes the relevant matrix elements for the m; = +3/2 subsystem and denotes
cach detuning referenced to the transition betwen the 25 2 and 2P/, line centers,
given by the wavelength Ag, = 313.19742nm [83|. Figure 3.13 illustrates all relevant
coupling transitions between the ground-state manifold and the excited p-levels of
9Be™ at an applied magnetic field of 5 T. The possible Raman coupling contributions
for the denoted qubit states are pointed out. Comparing the corresponding matrix
elements they can be proved to result in similar electric dipole couplings. Due to
the large energy splittings and differing detunings between the possible contribution
paths, the combination of atomic o™ transitions for coupling to |]) and atomic 7
transitions for coupling to |1) leads to slightly stronger Raman couplings.

matrix

ground state excited state o . detuning polarization
[4) 281 fmy==1) 2Py |my=-3)  +057734  + 46.355 ™
[4) 281 Imy=—3)  2Py|my=+})  +0.81649  + 92.832 ot
[1) 29y [my==3)  2Ps|m;=-%)  —0.99999  +127.630 o”
[4) 285 [ms==3) 2Py |my=-3)  —081649  +220.939 ™
1) 28y Imy==3) 2Py lmy=+1)  —057735  +314.248 ot
1) %Sy lmj=+3)  2Py|my=-3)  —081650  — 92.830 o”
1) %Sy Ims=+3) 2Py Imy=+3) —0.57735  — 46.354 ™
1) 28y Imy=+3)  2Ps lmy=—3)  —0.57735  + 81.734 o~
1) %Sy Imy=+3)  2Ps Imy=+})  —081650  +175.063 ™
1) 253 [my=+3) 2P [my=+3)  +1.00000  +268.372 ot

Table 3.2: Table of relevant Raman coupling contributions for the m; = +3/2 subsystem
at 5T showing the involved states, the corresponding transition matrix elements, detunings
and polarizations. The matrix elements are scaled to the closed-cycle transition between
the 251/2, myj = +1/2 and the 2P3/2, myj = +3/2 levels und the detunings are specified
in GHz and referenced to the transition between the 251/2 and 2P1/2 line center.
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Figure 3.13: Illustration of possible transitions between the ground-state manifold and the
excited p-levels of “Be™ at an applied magnetic field of 5T for the m; = +3/2 subsystem.
In this subsystem a closed-cycle transition exists between the 25, /2, my = +1 /2 and the
2p; /2, My = +3/2 levels. All illustrated matrix elements are scaled to this transition
and are summarized in Table 3.2 with respective detunings referenced to the transition
between the 25 /2 and ’p /2 line center. Efficient coupling of the denoted qubit states
can be obtained with either a 7 polarization coupling to |}) and o~ to |1) or with o™
polarization coupling to ||) and 7 polarization to |1).

3.3.3 Numerical simulations

In this section numerical simulations of the relevant atomic processes occurring in
beryllium ions during two-photon stimulated Raman transitions using an optical
frequency comb will be presented. The atomic level structure of *Bet requires
special care concerning the spectral properties of the pulse envelope in order to
maximize the Raman coupling strength while supressing decoherence induced by
off-resonant light scattering. Operating within the optimized region of parameters
is mandatory in order to achieve appropriate Raman coupling strengths. Once
fulfilling the requirements for the (anti-)proton g-factor measurement experiment,
the Raman laser represents a flexible tool for qubit control of beryllium ions at any
less stringent experimental conditions given at lower magnetic fields. A qualitative
and quantitative discussion of simulation results will be presented.
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Qualitative discussion of parameters

The aim when implementing Raman transitions is to maximize the Rabi frequency
while controlling decoherence induced by off-resonant light scattering during qubit
operations. As derived in section 3.2 the Rabi frequency for the use of an optical
frequency comb (ofc) is proportional to:

Zk EkEqu o I- C[fp(W&AwFWHM)]
A A

Qofc 08 (371)
High Rabi frequencies, corresponding to fast m-times ¢, o¢ 1/, can hence be
achieved for spectral bandwidths being significantly broader than the qubit splitting
resulting in ([f,(wo, Awpwrm)] = 1 and for small detunings from the excited states.
In general it is advantageous to implement qubit operations as fast as possible
for being unsusceptible to experimental fluctuations. For the implementation of
qubit operations using an optical frequency comb, a lower limit concerning the
probe duration results from the condition for resolving motional sidebands given in
Equation 3.44. For an expected axial trap frequency on the order of 4 MHz for the
(anti-)proton g-factor experiment, the probe duration for implementing sideband
transitions should exceed fpone > 2pus. A fundamental upper limit cannot be
defined. We aim for carrier transition 7-times on the order of tens of us, but slower
operation need not limit the experiment.

Decoherence induced by off-resonant light scattering in contrast can be highly
detrimental. A challenging benchmark is to keep the scattering probability below
104, which allows to enter the regime of fault-tolerant qubit operations [84]. As
derived in section 3.2 the total scattering rate in the limit of large detunings is
proportional to:

E} T

2 B o — (3.72)
A2 A?

Since the scattering rate increases quadratically with smaller detunings a compro-

mise of parameter settings must be found optimizing the ratio between Raman

coupling and scattering rate.

1—‘ofc &

Specific challenge of beryllium qubit control

For atomic level structures exhibiting two excited fine structure p-levels an estab-
lished compromise within the CW laser approach is to choose a detuning between
the excited state manifolds. At this position there is a local maximum of the Rabi
frequency, due to a strong coupling to both excited states, combined with a local
minimum of the scattering rate. In case of a large fine structure splitting between
the excited p-levels, this benefit can also be used for the implementation using
a pulsed Raman laser. The pioneers of qubit control using an optical frequency
comb, D. Hayes and C. Monroe, have taken advantage of this. Entanglement of
atomic qubits using an optical frequency comb has for the first time and so far
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Figure 3.14: Comparison of the atomic structure of '"'Yb™ and ?Be™ relevant for the
implementation of Raman transitions using an optical frequency comb. "1Yb™ as used
by the pioneers of this technique [45], exhibits one ground state in the s-orbital and two
excited states in the p-orbital, similar to “Be™. The fine-structure splitting between the
p-levels of ytterbium is 500-times larger than for beryllium, which allows to choose a
Raman detuning between these states. This is advantageous for obtaining an optimized
ratio between the Raman coupling strength and the scattering rate. In contrast, due to
the small fine-structure splitting of “Be™, a detuning outside the p-level manifold must
be chosen, which requires a careful control of the spectral comb properties to operate in
the optimum region maximizing the Raman coupling while keeping the scattering rate
acceptably low.

only been demonstrated within the hyperfine ground-state manifold of 1™'Yb™* [45].
The level structure of ytterbium offers several advantages for implementation of
pulsed laser qubit control. A comparison with the level structure of *Be™ is shown
in Figure 3.14. '"'Yb™ also exhibits a single ground state in the s-orbital, where
the qubit levels are chosen within the hyperfine manifold while applying a magnetic
field resolving the sublevels. The qubit level splitting during experiments has
been on the order of 10 GHz [45]. Furthermore two excited states in the p-orbital
exist. The fine-structure splitting between them is 100 THz, which is extremely
large. This is of huge advantage for the implementation of qubit control using an
optical frequency comb, as it allows operating at the optimum position between
the p-levels, while providing a large detuning. The large detuning not only reduces
scattering, it also ensures the spectral bandwidth to be easily made much broader
than the qubit splitting, which is essential for efficient Raman coupling. Also the
spectral properties of the frequency comb are irrelevant due to the large detunings.
A further advantage of ytterbium is that commercial high power lasers are available
at the ideal frequency between the p-levels near 355 nm.
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In comparison, the implementation of qubit control using an optical frequency comb
for beryllium is more challenging due to the combination of the large qubit splitting
and a small excited state fine-structure splitting. The fine-structure splitting of the
excited states of only wg = 27 - 198 GHz requires the Raman detuning to be chosen
outside the p-level fine-structure manifold in order to not resonantly excite the
p-levels with the outer-lying frequency components of the spectrum. A detuning
outside the p-level manifold in general allows for small scattering rates during the
Raman process when choosing large detunings, but it also limits the maximum
achievable coupling strength, as the contribution from one of the excited-state
manifolds is reduced. In addition the application of the pulsed-laser approach
demands a further tradeoff concerning the optimal spectral bandwidth. On the one
hand efficient Raman coupling requires the spectral bandwidth to be much broader
than the qubit splitting, whereas on the other hand a broader spectrum also requires
a larger detuning in order to control the scattering rate. In consequence due to the
larger detuning, the Raman coupling strength drops, despite the broader spectrum.
This behaviour requires an accurate optimization of the laser’s spectral properties
to enable efficient qubit operations. As the required wavelength near 313 nm, in
contrast to the required wavelength of 355 nm for ytterbium, is not commercially
available with high power, it is important to operate within the optimum region in
order to achieve appropriate Rabi frequencies.

Quantitative simulations

Numerical simulations of the Raman process implemented by an optical frequency
comb have been carried out according to Equation 3.60 for the Rabi frequency”
and according to Equations 3.57 and 3.58 for the calculation of the scattering rates.
The product of the time-averaged resonant single-photon Rabi frequencies in both
equations has been calculated by:

go(L) - go(L2) = ZQO(El,k)gO(EQ,k—q)

= Z 90 [Wrepfpl (kwrep)] - 9o [Wrepfpg((k - q)wrep)] (3.73)
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9For the single-beam approach the full average intensity of the pulse train is available for both
single-photon Rabi frequencies. For the two-beam approach the average intensities denote the
power contained in each beam separately.
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The electric field amplitudes for the spectral envelope functions are each obtained
from the average intensity according to Equation 3.40. For spectral bandwidths be-
ing not significantly larger than the qubit splitting, the function ([f,(wo, Awrwim))
in Equation 3.60 accounts for the drop of the Raman coupling strength based
on deviating electric field amplitudes according to Ey(Y., FrEir—y) = Eo(I) -
\/ C[fp(wo, Awpwrm)]. The detuning of each comb tooth is considered within
the detuning in the aforementioned equations. For accurate calculations the sum
over each discrete comb mode is carried out, which accounts for resonances of any
comb tooth with any level of the excited-state manifold. Replacing the sum by a
frequency integral yields to a valid approximation if single resonances are not of
interest and if the spectral bandwidth exceeds the comb tooth spacing.

Within the numerical simulations a hyperbolic secant (sech) function has been
assumed as standard pulse shape, representing a typical envelope form of pulsed

lasers:
7T Avpwiwm - t
sech(l) = —FE h(————— 3.75
Fuca(t) = | B (375
The corresponding spectrum is given by the (non-unitary) Fourier transform,
yielding:
~ T 0.1787 0.1787m - w
sec - —E h 3.76
een(12) \/g OQAVFWHMSGC [QAVFWHM] ( )

Further it has been assumed that the pulses are not chirped and are time-bandwidth
limitied. For the assumed pulse envelope the FWHM pulse duration Tewpym is
connected to the FWHM spectral bandwidth Avpwuawm by the time bandwidth
product TBP = 1pwawMm - Avewam = 0.315. The average intensity according to
Equation 3.40 is given by:

C€0 o 0.1787m

9 0° AVFWHM frep (377)

I sech —

For the relation to the average laser power a gaussian pulse profile is assumed
according to I = 2% with wy being the beam radius (in 1/e? definition) and Py,
the average power gioven by P = Ej, - frep With the laser pulse energy F, and the
laser repetition rate fip. Within the following calculations a laser repetition rate

near 100 MHz and a beam radius of wy = 15 um are assumed. Further assumed are
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Raman beam laser polarizations corresponding to atomic ot-polarisation coupling
to |J) and atomic m-polarization coupling to |1). Dependencies of the Raman
detuning are exemplarily shown for positive detunings being blue detuned from the
excited p-level manifold and referenced to the line center of the 2P, s2-level. For
comparisons of simulation results of different pulse envelopes, functional forms as
listed in Table 3.1 have been applied, scaled to the same average intensity.

Importance of spectral properties

For a Raman detuning outside of the p-level manifold the spectral properties of
the pulsed laser are of extreme importance, because they determine the minimum
detuning A,;, which is required to control the total scattering rate. This detuning
strongly influences and limits the maximum achievable Rabi frequency:

Ftotal — Amin (fp(AwFWHM)> — Qmax (378>

Figure 3.15 schematically demonstrates the dependence of the required detuning
on the spectral envelope, assuming the scattering rate to be kept below a certain
threshold. The detuning is referenced to the carrier frequency of the envelope.
For a given pulse envelope function the required detuning therefore increases with
increasing spectral bandwidth. Furthermore the absolute value of the required
detuning strongly depends on the pulse shape. Due to the characteristic sidelobes
of a sinc-shaped spectrum, the required detuning for example is much larger than
the one required for an ideal sech-shaped spectrum of identical bandwidth. The
effect on the maximum achievable corresponding Raman coupling strength has
been calculated for both pulse shapes. The results are shown in Figure 3.16.

In order to obtain the optimum combination of spectral bandwidth and detuning,
the required power for achieving a carrier m-time of ¢, = 5 us and a scattering
probability of (Titair + Ctotarz) - 5 s = 1074 for different combinations of detunings
and bandwidths has been calculated. The required power is plotted against the
spectral bandwidth of the pulses and further the corresponding minimum required
detuning for each bandwidth is shown. It can be seen that the minimum required
power, in order to achieve the desired Rabi frequency, occurs for a spectral comb
width being slightly broader than the qubit splitting near 140 GHz. For lower
bandwidths the required power increases, which can be explained by the fact that
less contributing comb pairs exist. For larger spectral bandwidths the achievable
Rabi frequency also drops because of the increasing required detuning, as shown in
the corresponding plot. This general behaviour is the same for both exemplarily
shown pulse shapes. A clear optimal bandwidth at a narrow width exists, which
results from a compromise between the number of contributing comb tooth pairs for
the Raman process and the smallest possible detuning which still allows to control
the scattering rate. The values of required power and required detuning however
differ strongly. The required power within optimum conditions for the sinc-shaped
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Figure 3.15: Schematical illustration of the minimum required detuning in order to keep
the scattering rate below a certain threshold, depending on different spectral envelopes.
For a given spectral shape the required detuning increases the broader the spectrum
is. The absolute value of the required detuning further depends on the pulse shape. If
frequency components exist located close to resonance with the excited state, a larger
detuning is required.
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Figure 3.16: Numerical simulation results comparing the influence of different pulse shapes
on the achievable Raman coupling strength for an applied magnetic field of 5T. In the
left graph the average power P,y is shown, required in order to achieve a spin flip within
tr = 5 us and while ensuring the scattering probability to be (I'totarr + Ttotal2) -5 s = 1074,
as a function of the spectral bandwidth Avpwin. On the right side the corresponding
required detunings A, are shown. In red the data points for a sech-shaped spectrum are
plotted and in blue for a sinc-shaped spectrum. The dotted lines represent guides to the
eye.
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Figure 3.17: Schematical illustration comparing the minimum required detuning in order
to keep the scattering rate below a certain threshold for an unmodified sinc-shaped
spectrum (left) and for the identical spectrum where the frequency components close to
resonance to the excited state are blocked (right).

spectrum is about 8-9 times higher than for the sech-shaped spectrum. This is
due to the much larger required detuning, being ~ 1 THz larger within optimum
conditions than the required detuning for the sech-shaped pulses within optimum
conditions, as shown in Figure 3.16.

These calculations show that the optimum bandwidth, under the constraint of
controlling the scattering rate, is very small, being only slightly broader than the
qubit splitting. Further they show the major importance and influence of the
spectral envelope. Any frequency components contained in a spectrum located
close to resonance strongly limit the achievable Raman coupling strength due to
the larger required detuning. As such spectral sidelobes and imperfections often
occur during nonlinear processes which are required to achieve the UV wavelength
of 313 nm, the spectral shape of the pulse envelope must be controlled in order to
achieve appropriate Rabi frequencies.

Advantage of spectral pulse shaping

Due to the strong limiting effect of the detuning on the maximum achievable Rabi
frequency, spectral pulse shaping efforts have a large impact on improving results.
For this it is convenient to spectrally block unwanted frequency components of the
spectrum located close to the excited states during the Raman process. The absence
of those frequency components allows for a much smaller detuning, as schematically
demonstrated in Figure 3.17. The improvements on the achievable Raman coupling
strength have been calculated, similar to the previously discussed calculations. In
Figure 3.18 the results of the unmodified sinc-shaped spectrum under conditions as
before are compared to the case where the frequency components of all characteristic
sidelobes are blocked, as illustrated in Figure 3.20.

The required detuning in order to control the scattering rate for the cut spectrum is
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Figure 3.18: Numerical simulation results comparing the influence of spectral pulse shaping
on the achievable Raman coupling strength for an applied magnetic field of 5T. In the
left graph the average power P, is shown, required in order to achieve a spin flip within
tr = 5 us and while ensuring the scattering probability to be (I'iotalr +Total2) -5 ps = 1074,
depending on the spectral bandwidth Avpwaym. On the right side the corresponding
required detunings A, are shown. In blue the data for an unmodified sinc-shaped spectrum
are plotted and in red the data for the identical spectrum, where all sidelobes close to
resonance to the excited states are blocked, as schematically illustrated in Figure 3.17
and visualized in Figure 3.20. The dotted lines are guides to the eye.
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Figure 3.19: Numerical simulation results comparing the influence of different amounts of
spectral blocking of frequency components on the achievable Raman coupling strength
for an applied magnetic field of 5T. In the left graph the average power P, is shown,
required in order to achieve a spin flip within ¢; = 5 us and while ensuring the scattering
probability to be (Tiotaln + Ttotal2) « 5 s = 10~*, depending on the spectral bandwidth
Avpwam- On the right side the corresponding required detunings A, are shown. In
red the data for an unmodified sech-shaped spectrum are plotted. In black the data
for the identical spectrum being blocked at a spectral cutoff position of + 3 Apwmm are
shown and in blue the data for the spectrum being blocked at a spectral cutoff position of
+ 1.5 Apwam- The dotted lines represent guides to the eye.
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Figure 3.20: Visualization of the spectral cutoff positions as assumed for the numerical
simulations. On the left the corresponding positions are shown for a sech-shaped and on
the right for a sinc shaped spectrum. The respective power loss has been neglected.

much smaller and does not significantly exceed with larger bandwidths within the
plotted spectral region. As consequence the required power to achieve the desired
Rabi frequency is strongly reduced and also shows a very insensitive dependence on
the spectral bandwidth. This further allows operating with broader spectra, which
within the shown spectral range in general can be achieved with higher efficiency.
As such sharp spectral cutting edges are not realistic to achieve in an actual
implementation, Figure 3.19 further shows simulation results obtained for different
cutoff positions of a sech-shaped spectrum. The corresponding blocking positions
are visualized in Figure 3.20. The slopes of the increase of required detuning with
increasing spectral bandwidth clearly depend on the spectral cutoff position, which
directly affects the achievable Raman coupling strength.

The presented simulations show the strong influence of the spectral pulse shaping
on improving results. In order to achieve strong Raman couplings spectral pulse
shaping is mandatory. The smaller the required detuning for a given spectrum is,
the stronger the possible Raman coupling strength becomes. The optimal spectral
bandwidth and the value of achievable Raman coupling depend on the position and
hence on the resolution of the cutting edge while controlling the spectrum and on
the spectral envelope shape.

Simulation data - required laser parameters

In order to estimate the Raman coupling strength which can be expected for
the (anti-)proton g-factor experiment at an applied magnetic field of 5T, a sech-
shaped spectrum cut at 1.5Apwhy is assumed as an exemplary case for a well
performed spectral pulse shaping. For comparison, a sinc-shaped spectrum cut
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Figure 3.21: Numerical simulation results of beryllium ion qubit control at 5T demon-
strating achievable Raman couplings when implementing spectral pulse shaping. Shown
is the required power in order to achieve a spin flip in t; = 5 us as a function of the
spectral bandwidth. For each data point the minimal required detuning to achieve a
total scattering probability of (I'totar + Ttotar2) - b s = 1074 is assumed. The blue data
points correspond to a sech-shaped spectrum with frequency components blocked at a
spectral cutoff position of + 1.5 Apwmn. The red data points correspond to a sinc-shaped
spectrum with frequency components blocked after the second side-maxima. The cutoff
positions are visualized in Figure 3.20. The dotted lines are guides to the eye.

behind its second side maximum is assumed in order to obtain an estimation for
the exemplary case of a non-perfectly implemented pulse shaping. Both cutoff po-
sitions are visualized in Figure 3.20 and simulations results are shown in Figure 3.21.

As discussed before, the optimal spectral bandwidth and the absolute achiev-
able Raman coupling strength strongly depend on the position of the cutting edge
when blocking outer-lying frequency components and on the spectral envelope.
Without implementing any spectral control, the required detunings for spectral
bandwidths being significantly broader than the qubit splitting are too high to
achieve appropriate Raman couplings, whereas the achievable 7-times with im-
plemention of spectral pulse shaping show promising values. Assuming a well
implemented spectral modification, only a few mW per Raman beam are required
in order to achieve spin flips in the aimed range of tens of microseconds. In this
case no significant loss of coupling strength occurs for spectral bandwidths in the
range between ~ 200 GHz and ~ 1000 GHz. In contrast, for less perfect frequency
blocking and for low available laser powers, operating with a narrow spectrum,
with an optimal bandwidth near 300 GHz, becomes important in order to achieve
the desired range of Raman coupling strengths. The simulations therefore show
that for achieving efficient beryllium ion qubit control it is mandatory to combine
efforts towards the generation of narrow-bandwidth UV pulses with a technique to
control the outer-lying frequency components.



3.3.  Beryllium ion qubit control using an optical frequency comb 61

T [kHz]
700
total
Raman
VY B 6 DR 1 O O I — Rayleigh
500
-200 -100 0 100 200 300 400 A [GHz

Figure 3.22: Simulation results of the total scattering rate for the superposition of qubit
states at an applied magnetic field of 5T, calculated for CW beams with 5.0 mW of
laser power. Shown is the total scattering rate in blue as a function of the detuning
referenced to the 2P /2 line center, being composed of Raman scattering in black (dotted)
and Rayleigh scattering in red (dashed).

The dependence of the achievable Raman coupling and 7-times on varying laser pa-
rameters can be estimated from the shown results. The dependence on the average
power can be approximated to be linear. A deviation of the available laser power by
a certain factor will reduce the 7-time by this factor. A deviation of the assumed
focal waist size can be approximated similarly with inverse quadratical behaviour.
Further a deviation of the pulse duration caused by temporal broadening reduces
the intensity at the ion, which effectively can be approximated by a respective
reduction of average power, while keeping the spectral bandwidth constant.

Whereas the data shown here have been calculated for the exemplary case of
positive detunings, the dependencies for negative detunings in general show the
same behaviour. For the chosen combination of Raman beam laser polarizations,
with atomic ot-polarisation coupling to |]) and atomic m-polarization coupling to
|1}, negative detunings however allow for slightly higher Raman couplings, due to
a small asymmetry of the scattering rate with respect to the maxima of the corre-
sponding Rabi frequency. The total scattering rate, composed of Raman scattering
and Rayleigh scattering, for the superposition of the qubits states is shown in Figure
3.22. The data are calculated for CW beams which results in a similar behavior
of the curve as for pulsed laser beams. The maxima of the corresponding Rabi
frequency are located at 20 GHz for coupling to the 2Py 5 level and at +240 GHz
for coupling to the 2Pj/5 level. Relative to these maxima, negative detunings allow
for slightly smaller values when tolerating a specific scattering rate and hence allow
for slightly stronger Raman couplings. The difference in required power for optimal
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Figure 3.23: Numerical simulation results demonstrating achievable Raman couplings
for different applied magnetic fields in the Paschen-Back regime for sech-shaped spectra
with frequency components being blocked at a spectral cutoff position of £ 1.5 Apwmm,
as shown in Figure 3.20. In the left graph the average power P, is shown, required in
order to achieve a spin flip within ¢; = 5 us and while ensuring the scattering probability
to be (Tiotall + Ctotal2) - 5 s = 1074, depending on the spectral bandwidth Avpwmy. On
the right side the corresponding required detunings A, are shown. The black data points
correspond to an applied magnetic field of 5T as to be set in the (anti-)proton experiment,
the blue data points correspond to an applied magnetic field of 1T and the red data
points to an applied magnetic field of 10 T. The dotted lines represent guides to the eye.

positive and for optimal negative detuning is below 10%, wherefor in case of an
asymmetric intensity distribution, the orientation of the detuning should instead
be chosen based on the specific given pulse envelope of the UV beam. Differing
amounts of power loss when spectrally blocking outer-lying frequency components
will most likely be more important than the effect of the sign of the detuning.

Simulation data - flexible quantum control

Once fulfilling the requirements for qubit control at an applied magnetic field of 5T,
the identical laser parameter settings allow for qubit control of beryllium ions at
lower magnetic fields with equal or higher efficiency. Also for higher magnetic fields
only a small drop of coupling strength occurs when operating with appropriate
spectral properties. Figure 3.23 shows a comparison of different magnetic fields
from 1T to 10T in the high-field Paschen-Back regime for a sech-shaped pulse
being cut at a spectral position of + 1.5 Apwmy. The lower the magnetic field
strength is, the smaller the required detunings are in order to control the scattering
rate and in consequence the lower the required power is in order to achieve a specific
m-time. Depending on the applied spectral bandwidth, Raman couplings for higher
magnetic fields than 5T are only slightly reduced, if operating with a spectral
bandwidth being larger than the corresponding qubit splitting.

If the interplay of scattering rate and Raman couplings are comparable, the identical
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Figure 3.24: Numerical simulation results demonstrating achievable Raman couplings for
different qubit transitions at different magnetic field regimes for unmodified sech-shaped
spectra (top) and for sech-shaped spectra with frequency components blocked at a spectral
cutoff position of + 1.5 Apwpm (bottom), as visualized in Figure 3.20. In the left graphs
the average power P,y is shown, required in order to achieve a spin flip within t; = 5 us
and while ensuring the scattering probability to be (Tiotall + tota2) - 5 s = 1074, as a
function of the spectral bandwidth Avpwmy. On the right side the corresponding required
detunings A, are shown. The blue data points correspond to an applied magnetic field of
5T as to be set in the (anti-)proton experiment. The red data points correspond to the
field-independent qubit transition ||) = |[FF = 2,mp =1) <> | 1) =|F =1,mp = 1) at an
applied magnetic field of 22.3mT, as discussed in Figure 3.9. The dotted lines represent
guides to the eye.

laser parameter settings further allow for qubit control of other qubit transitions
also in different magnetic field regimes without significant change of efficiency,
if spectral control is implemented. Figure 3.24 herefor shows a comparison of
simulation results for the discussed qubit transition at an applied magnetic field
of 5'T to simulation results for the first-order field-independent qubit transition
)y =|F = 2,mp=1) <|1) =|F =1,mp = 1) at an applied magnetic field of
22.3mT, as discussed in Figure 3.9. Results are compared for unmodified sech-
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Figure 3.25: Left: Simulation results of the total scattering rate for the superposition of
qubit states of the field-independent qubit transition |[|) = [FF =2, mp =1) <> | 1) = |F =
1,mp = 1) at an applied magnetic field of 22.3 mT, calculated for CW beams with 5.0 mW
of laser power. Right: Comparison of the dependence of the m-time on the detuning
referenced to the 2P, /2 line center, calculated for CW beams with 5.0 mW of power for
the high field qubit transition at 5T (blue data points) and the field-independent qubit
transition at 22.3m7T (red data points). The dotted lines represent guides to the eye.

shaped pulses as well as for ones being blocked at + 1.5 Apwpy. It can be seen that
the minimum required detuning for the low-field qubit is similar to the high-field
one for unmodified spectra, whereas it is smaller in case of spectral modification.
This is due to a lower scattering rate of the low-field qubit, as shown in Figure
3.25, calculated for CW beams, resulting in a similar behavior of the curve as for
pulsed laser beams. The smaller required detuning in general allows for stronger
Raman couplings. Nevertheless the low-field qubit also exhibits a lower Raman
coupling strength for relevant values of the detuning, as shown in Figure 3.25. In
consequence the slope of increasing power with increasing spectral bandwidth in
Figure 3.24 is steeper for the low-field qubit. Without spectral control the achievable
Raman coupling therefore is significantly reduced for spectral bandwidths exceeding
300 GHz, whereas with spectral pulse shaping, the required power is on the same
order of magnitude for both applied magnetic fields in the shown range of spectral
bandwidths. The simulation data hence show that in case of implementing spectral
modification, the optical frequency comb is a flexible tool allowing for qubit control
in multiple magnetic field regimes and for different qubit transitions.



CHAPTER 4

RAMAN LASER SYSTEM

In this chapter the development of a narrow-bandwidth ultraviolet (UV) frequency
comb providing sufficient power and spectral properties for coherent qubit control
of beryllium ions (at 5T) will be discussed. The system is based on a customized
femtosecond optical frequency comb operating near 626 nm, carried out using well
established erbium- and ytterbium-fiber technology. The output is then frequency
up-converted to the UV in order to generate the desired wavelength near 313 nm.
To selectively generate narrow-bandwidth pulses, a nonlinear spectral compression
technique is implemented during the second-harmonic generation process into the
UV. The method uses the second-order nonlinear process in presence of large
temporal walkoff to efficiently transfer the energy of the broadband fundamental
femtosecond pulses into narrowband second-harmonic ones. The spatio-temporal
coupling, induced by simultaneous spatial walkoff, further allows a simple subsequent
spectral pulse shaping in order to selectively screen out the outer-lying parts of
the generated UV spectrum. In this chapter the pulsed laser system providing a
wavelength near 626 nm, the generation of narrow-bandwidth UV pulses and the
following spectral pulse shaping will be separately presented and discussed.

4.1 System overview and requirements

Figure 4.1 shows an overview of the key parts of the Raman system. It is based
on an erbium-fiber master oscillator providing a wavelength near 1550 nm. Part
of the light is shifted to 1050 nm and is then recombined with the unmodified
light in a sum-frequency generation (SFG) unit, leading to an output wavelength
near 626 nm. The compression of the spectral bandwidth is controlled during the
following second-harmonic generation (SHG), producing the desired UV signal near
313nm. Subsequently the modification of the spectral pulse shape is carried out.
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Er-fiber SHG
master . spectral
oscillator SFG 626 nm with 313 nm pulse S8am
nonlinear spectra.l modification|
1550 nm shift compression
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Figure 4.1: Schematical overview of the key parts of the pulsed Raman laser system.
Based on a custom-built optical frequency comb generating pulses near 626 nm two further
key operations are implemented. The UV-generation with simultaneous control of the
spectral bandwidth is implemented during the second-harmonic generation process and
followed by the subsequent spectral pulse shaping.

System requirements

The pulsed Raman system is designed to be a versatile tool for qubit control of
trapped “Be™ ions under various experimental conditions. To keep the maximum
degree of flexibility, adjustability of the wavelength, the spectral properties and the
repetition rate are guaranteed. The required wavelength of the system is determined
by the intended detuning during the Raman process. To ensure supressing decoher-
ence induced by off-resonant light scattering for any spectrum, detunings of up to
several THz should be accessible. The corresponding wavelength range should hence
cover UV wavelenghts of 313nm +/— 0.5nm. The optimum spectral bandwidth
strongly depends on the pulse shape and the resolution of the cutoff when blocking
outer-lying spectral components, being close to the atomic resonance. To ensure
operating near the optimum range for any experimental condition, the bandwidth
should be selectively reducible to values between ~1THz and ~ 300 GHz. In the
optimal case the corresponding pulse durations are time-bandwidth limited, leading
to temporal durations in the (sub)ps regime. The repetition rate of the laser is
chosen to be around 100 MHz. This value arises from the compromise between
obtaining high peak intensities and hence high conversion efficiencies during the
nonlinear processes and providing a large comb line spacing, corresponding to a
large spectral range supporting the realization of motional sideband transitions, as
discussed in section 3.2.3. A tunability of the repetition rate is further required in
order to not adversely affect motional sideband transitions by accidently fulfilling
the carrier resonance condition or harmonics of it. For appropriate Rabi frequencies
the average power at the position of the ion should exceed a few mW per beam.
Further a high degree of stability of all laser parameters is required, whereas the
carrier envelope offset frequency in contrast is irrelevant. An overview of the system
requirements is shown in Table 4.1.
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parameter requirement explanation
A AN ~313nm : ~0.5nm realize and adjust different
’ ' Raman detunings of up to 5 THz
f‘_ep i AL > 100 MHz : > 0.2 MHz provide and adjust spectral range
P =~ y & . . R ..
resolving motional sideband transitions
Avee selective compression optimize ratio of Raman coupling
FWHM down to =~ 300 GHz strength and scattering rate
spectral envelope blocking of outer-lying reduce required detuning to
frequency components maximize Raman coupling strength
P, > few mW at ion achieve 7-times in the order of tens of us
feco not relevant comb mode separation relevant,

not a common shift

Table 4.1: Overview of the Raman laser system requirements for “Be™ ion qubit control
using an optical frequency comb

4.2 Erbium-fiber based customized frequency comb

In Figure 4.2 an overview of the customized pulsed laser system! providing an
output wavelength near 626 nm is shown. It is based on an erbium-doped mode-
locked fiber laser providing a wavelength near 1550 nm. The length of the fiber
ring laser resonator determines the repetition rate of the system according to
frep = ¢/ Leay and is set to generate a value near 100 MHz. A piezo-electric actuator
and a stepper motor allow to change the resonator length by up to &5 mm leading
to a tuning range of the repetition rate of ~ +0.2 MHz. The output signal is
divided into two paths, from which one part is coupled into a highly nonlinear fiber,
where the signal near 1050 nm is generated based on spectral broadening [85]. The
frequency-shifted and the unmodified pulses near 1550 nm are then independently
amplified according to the chirped pulse amplification scheme, in which the pulses
are stretched, amplified and then recompressed in order to lower peak intensities and
avoid damages of the gain medium during amplification. To ensure identical optical
path lengths in all optical fiber paths, the pulse stretching modules are thermally
stabilized. The power in each arm is boosted to levels near 1 W using high-power
amplifiers. A high-power erbium-doped fiber amplifier is used for the 1550 nm light
and a high-power ytterbium-doped fiber amplifier for the 1050 nm signal. The
complete path inside the amplifiers is based on polarization maintaining fibers,
ensuring linear polarized output signals. The compressors enable the compensation
of second- and third-order group delay dispersion (see section 4.3.1). The design is
based on high efficiency transmission gratings and prisms. For the erbium-based
path, pulses with temporal durations around 400 fs and spectral widths around

Mfabricated by Menlo Systems GmbH
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Figure 4.2: Schematical view of the erbium-fiber based custom-built laser system. The
system is based on a single master oscillator operating near 1550 nm. Part of the light
is shifted to 1050 nm and recombined with the unmodified pulses in a sum-frequency
generation process, generating pulses near 626 nm. To enhance the output power level,
the infrared pulses are separately amplified according to the chirped pulse amplification
scheme and synchronized in time.

12nm are achieved, while the frequency-shifted arm at 1050 nm generates pulses
with durations around 100 fs and spectral widths around 27 nm. The compressed
free space output signals at 1050nm and 1550 nm are then overlapped using a
dichroic mirror and focused into a nonlinear crystal for sum-frequency generation
leading to the output signal near 626 nm. The periodically poled lithium niobate
(PPLN) crystal is located inside a heated oven. By tuning the temperature, the
output wavelength can be set in a range between 623 nm and 628 nm. To ensure an
efficient conversion process, both fundamental signals are synchronized in time and
in space. For adjustment of the temporal overlap a time delay stage is implemented.
Any relative change of the optical beam path lengths affects the SFG process and
hence the output signal at 626 nm. To support stable operation, the temperature
of the baseplate is stabilized by water-cooling to 25 °C.

The average output power at 626 nm is up to P,, ~ 450 mW, corresponding to
a pulse energy of E, = P,/ fiep = 4.51nJ. A simple approximation of the pulse
duration is obtained by measuring the power generated during SFG as a function of
the delay stage position, controlling the temporal overlap between the fundamental
signals at 1050 nm and 1550 nm. The results are shown in Figure 4.3. The delay
stage consists of two orthogonally aligned prisms mounted on a linear translation
stage. A linear translation of the stage corresponds to a change of the optical beam
path length Al by a factor of two with respect to its movement. Assuming the
simple relation 7, &~ Al /c, the measured data yield an estimated full width half
maximum pulse duration in the range of ~ 420fs. Sample spectra for different
temperatures of the PPLN crystal are shown in Figure 4.4. The peak wavelength
is shifted for the different temperatures, whereas the spectrum is nearly unaffected.
Its shape exhibits substantial, asymmetric sidelobes and the spectral bandwidth is

A)N ~ 1nm.
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Figure 4.3: Average laser power at 626 nm generated during the sum-frequency generation
as a function of the absolute delay stage position, controlling the temporal overlap between
the fundamental signals at 1050 nm and 1550 nm. The solid line is a guide to the eye.
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Figure 4.4: Sample spectra at 626 nm for different crystal temperatures of the PPLN
crystal. The peak wavelength is shifted, whereas the spectral shape is approximately
unaffected. The spectral bandwidth is AX &~ 1 nm.

4.3 UV generation and spectral compression

In this section the generation of narrow-bandwidth UV pulses will be discussed. The
implementation is carried out by nonlinear effects simultaneously occurring inside
a nonlinear bismuth triborate (BiBO) crystal. For the generation of the UV light,
phase-matching conditions for frequency doubling of the output signal near 626 nm
of the previously described laser system are fulfilled by critical phase matching.
By choosing crystals of different lengths in combination with different focusing
strengths, the spectral bandwidth of the generated UV pulses is simultaneously
selectively compressed during the conversion process. The effect is based on
controlling the temporal broadening of the generated pulses, occurring due to the
group velocity mismatch (GVM) between the fundamental and the second-harmonic
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signal, being directly accompanied by a spectral compression. Efficient energy
transfer from the broadband fundamental pulses into narrowband second-harmonic
ones is achieved by simultaneously occurring intrapulse sum-frequency generation
(SFG) within the frequency comb structure. This compression technique has first
been demonstrated in [86] for the generation of narrow-bandwidth pulses in the
visible spectral region. Here the technique has been extended into the UV region. In
addition, the influence of substantial spatial walkoff and resulting spatio-temporal
effects has been investigated for the first time. In this chapter basics of nonlinear
and ultrashort optics will be reviewed, details on the spectral compression technique
presented and simulations as well as experimental results of a systematic survey
discussed.

4.3.1 Basics of nonlinear and ultrafast optics

In this section relevant basics of ultrashort laser pulses and pulse propagation in
nonlinear media will be introduced, required to understand the spatio-temporal
coupling effects, inducing the spectral compression presented in 4.3.2. In addition,
relevant basics on nonlinear frequency conversion with pulsed lasers are summarized.
Derivations and further details of pulsed and nonlinear optics can e.g. be found in
[87] and [88].

Pulse propagation in dispersive media

Ultrashort laser pulses are mathematically described either in the time domain or
in the frequency domain. Both descriptions are equivalent and coupled via Fourier
transformation. In the time domain the propagation of an electromagnetic wave at
a fixed position in space is in general described by the time-dependent electric field
E(t), which is composed of a time-dependent envelope Ey(t) and a carrier wave
with carrier frequency wy and temporal phase ¢(t). The complex representation is
given by

E(t) = Ey(t)e @t 4 e (4.1)

whereas the electric field F(t) is always real and c.c. denotes the complex conjungate.
The spectral profile is given by

E(w) = Ey(w — wp)e H@@=w0) 4 cc | (4.2)

with ¢(w—wy) being the spectral phase. The spectral phase is of special relevance for
describing nonlinear dispersion effects, as they occur for example during propagation
through nonlinear crystals. For an analytic description a Taylor expansion of the
spectral phase ¢(w) for a fixed position zj is performed:

(w — wp)?
21

Bw) = do + 61— + 6 T (4.3)
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The zero-order phase ¢q is the absolute phase between the envelope and the
oscillating carrier wave. The linear phase ¢; = %Luzwo is called group delay, GD,
and corresponds to a delay in time without affecting the pulse shape. The second-
order term ¢, = ij_g|w=wo is called group delay dispersion, GDD, and describes
the second-order dispersion, which in general causes a pulse modification during
propagation through a nonlinear medium.
The nonlinear interaction of ultrashort laser pulses with the medium they are
propagating through causes a phase distortion, where the spectral phase of the
output light is given by the sum of the initial spectral phase and the spectral phase
due to the medium. The additional spectral phase term due to the medium (m) is
given by

(W) = k()L (4.4)

with k(w) denoting the frequency-dependent wavevector and L the lenght of the
nonlinear medium. Dispersion effects are typically described by the frequency-

dependent wavevector
wn(w)

k(w) = par (4.5)

where n(w) is the frequency-dependent index of refraction. The Taylor expansion of
the phase due to the medium ¢,,(w), equivalent to Equation 4.3, therefore becomes:

k(w)L = k(wo)L + k' (wo)(w — wo) L + %k”(wo)(w —wo)?’L + ... (4.6)

The zero-order term corresponds to ¢y and is related to the phase velocity v, by

k(wo) =

. The phase velocity is the velocity of the carrier wave and given
Uph(Wo
by the velocity with which the phase fronts propagate in a medium:

(4.7)

)

The first-order term corresponds to ¢; and is related to the group velocity by

k’(wo =
) Vgr(wo)
envelope propagates in a medium. It is given by:

. The group velocity vg, is the velocity with which the wave packet

dw 1 B Uph
Ve T gk n(w) wdn(w) w dn(w) (48)
—t = 1+ ——
c ¢ dw n(w) dw

As the refractive index n(w) depends on the frequency w, the phase and group
velocities in general differ inside a medium. For normal dispersion, where n increases
with w, the phase velocity is larger than the group velocity.

The second-order term in Equation 4.6 corresponds to ¢o, where £”(w) =
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called group velocity dispersion, GVD. It describes the phenomenon that the group

velocity in a medium depends on the optical frequency and is typically expressed in
A3 d*n

5 02 e Due to the broad spectral bandwidth

e

of pulsed lasers, this term is responsable for dispersive temporal distortion of the
envelope during propagation in nonlinear media. The effect is accompanied by a
linear frequency variation called chirp. A positive chirp corresponds to normal
dispersion (GVD > 0) where the red components contained in a spectrum travel
faster than blue components, leading to a temporal broadening of the pulse. To
generate a negative chirp, as required for compensating the pulse broadening, the
use of prism or grating pairs or special customized mirrors is necessary.

Also higher-order dispersion effects occur, which are not relevant for this work.

terms of the wavelength by k" (w) =

Time-bandwidth product

Due to the Fourier connection between the time and frequency domain, the spectral
bandwidth and the pulse duration are inversely proportional. This yields the general
relation that the shorter the pulse duration, the broader the spectrum and vice
versa. The product of the time-domain width At and the frequency-domain width
Av is given by the time-bandwidth product

TBP = At Av, (4.9)

where the value depends on the specific pulse shape. In the full width half maximum
definition, the TBP for a squared hyperbolic secant (sech) pulse shape is for example
~ 0.315 and for a gaussian-shaped pulse =~ 0.441. A pulse which exhibits a pulse
duration at its lower limit according to the characteristic TBP of its spectrum is
called fourier-transform-limited. In this case it possesses a frequency-independent
spectral phase and therefore does not contain a chirp. Introducing a spectral
compression is always accompanied by a temporal broadening, with the minimal
pulse duration given by the corresponding TBP. In contrast, a temporal pulse
broadening caused by the influence of second-order nonlinear dispersion is not
accompanied by a spectral compression.

Nonlinear frequency conversion with pulsed lasers

Nonlinear frequency conversion describes the process where two photons of an
electromagnetic wave propagating through a suitable nonlinear medium can mix
together and generate a coherent output photon at higher harmonics, sum frequen-
cies and difference frequencies of the fundamental ones. The effect arises from
the nonlinear response of the medium to the electric field F of an intense optical
wave. The electric field excites dipole moments of the material to oscillate, which
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induces a polarization. For low fields the induced polarization depends linearly on
E. For high excitation intensities, it nonlinearly depends on E and the dipoles can
oscillate with a nonlinear response and radiate energy at higher frequencies than
the original one. This phenomenon is in good approximation described by a Taylor
series expansion of the induced dielectric polarization density P in terms of the
electric field F,

P=exVE+xPE?+xOE + ], (4.10)

where ¢, is the vacuum permittivity and x*) the optical susceptibility of k-th
order. The polarization density and the electrical field are considered as scalars
for simplicity. In this work second-order processes are relevant, where the induced
polarization depends quadratically on the field strength and the magnitude of the
nonlinear response of the crystal is described by x®). x® is a third-order tensor,
where the entries correspond to several possible orientations of the crystal axes and
the polarization of the propagating light. For a known nonlinear medium and for
a given working direction and polarization, all entries are known and the scalar,
effective susceptibility y.g indicates the second-order conversion properties of the
material. Often the nonlinear properties are instead expressed in terms of the
effective nonlinear coefficient d.g, which originates from a tensor of second order
being derived from Y due to symmetry considerations.

Assuming an electric field to be composed of two monochromatic sources with
frequencies w; and ws it can be written as E(t) = E €™ + Eye™?! + c.c., where c.c.
stands for the complex conjungate. The second-order polarization term of Equation
4.10 is then given by:

P = ¢\ P [E2ei21t 4 E2ei2nt | oF) Byel@itw2)t L op) Fyel@i=«2)t L] 4 OR

(4.11)
The oscillatory components in the first two terms in particular contain a new
frequency at the double of the fundamental frequencies. The generation of these
frequencies is known as second-harmonic generation, SHG. The third term refers
to a sum-frequency generation, SFG, leading to a new frequency given by the
sum of the driving ones. The difference frequency in the forth term describes
the process of difference frequency generation, DFG, respectively. OR stand for
optical rectification presenting non-oscillatory terms. All processes can be generated,
whereas they in general do not occur simultaneously due to material property and
phase-matching aspects.

Phase matching

For efficient generation of any second-order frequency conversion process, phase
matching between the fundamental frequency (FF) beams and the generated signal
(SIG) beam must be achieved. Only for perfect phase matching, given by ksig = krr,
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all generated signal contributions, from all oscillating dipoles at different positions
within the nonlinear crystal, coherently add up. In lowest order, this requires that
the generated signal field and the fundamental fields have the same phase velocity
inside the medium, vpn pr = Vpn sig. According to Equation 4.7 this is equivalent
to them having the same refractive indices npp = ngig. For materials exhibiting
normal dispersion, where n increases with the frequency, this condition cannot be
satisfied.

Critical phase matching

The most common way to achieve phase matching is to use birefringent crystals.
Such crystals exhibit two different indices of refraction, typically denoted as the
ordinary refraction index n, and extraordinary refractive index n., depending on the
polarization and propagation direction of the beam. The direction of the ordinary
beam, denoted by the unity vector 7i,, is defined by the dielectric polarization
with refractive index n, being invariant on the orientation of the direction of the
wavevector k within a principle plane of the crystal. The refractive index of the
extraordinary beam in contrast depends on the propagation direction. Its dielectric
polarization, specifying the direction of the extraordinary beam given by the unity
vector 71, is orthogonal to k and to 1,. The corresponding extraordinary refractive
index n, is given by the coordinate on the index ellipsoid [88, 89]. Due to the
sensitive angle tunability of the extraordinary index of refraction this technique is
called angle or critical phase matching.

Based on this behaviour various situations can be implemented allowing to match
the refractive indices of the FF beams and the signal beam, depending on the
specific birefringent crystal. In uniaxial crystals, one main crystal axis can be
identified providing the optical anisotropy, called optic axis. Such crystals can
be either positive or negative uniaxial. For positive crystals, with ne(w) > no(w),
type I phase matching can be achieved by implementing n.(wpr) = n,(wsic). For
negative crystals, with n,(w) > n.(w), polarizations and crystal orientation must be
chosen to fulfill n,(wpp) = ne(wsig). The type of the conversion process is specified
depending on the polarization of the fundamental beams. In type I, as relevant
for this work, the two fundamental mixing photons have the same polarization,
whereas in type II they are orthogonally polarized.

Biaxial crystals, as applied in this work, in constrast to uniaxial crystals have three
different refractive indices in all main crystal directions and no single crystal axis
can be identified providing the optical anisotropy. The assignment of ordinary and
extraordinary directions in the crystal is hence in general not useful. Nevertheless,
if phase matching is achieved with a propagation direction being within one of the
main crystal planes, two refractive indices can be identified analogous to the case
of uniaxial crystals. In this working plane the crystal can be described to behave as
a positive or a negative crystal. The angle fulfilling the respective phase-matching
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condition is typically denoted as © and encloses the beam propagation direction
given by the wavevector k£ and the main crystal direction providing the optical
anisotropy for the specific working plane.

Temporal walkoff and spectral acceptance range

A perfect phase matching with mismatch of Ak = 0 can only be achieved for a single
frequency. The spectral acceptance range, in which phase matching can be realized,
is limited due to chromatic dispersion. In first order, this limitation is based on
different group velocities between the fundamental beam and the generated signal
beam, which is called group velocity mismatch, GVM, and for SHG is given by:

1 1
GVM =

(4.12)

vngF UgrSH

As result, the involved frequency components, which initially are overlapping in
time, lose their temporal overlap after some propagation distance. This effect is
called temporal walkoff and in general limits the effective interaction length and
hence conversion efficiencies. Therefore typically crystal lengths are chosen, which
ensure temporal overlap over the entire length. An estimation for this is to ensure
that the temporal separation 6t due to the GVM stays smaller than the pulse
duration 7, according to 6t < 7,. The limit concerning the crystal length arising
due to the temporal walkoff described in the time-domain, is directly related to the
limited acceptance range, which denotes the limitations in the frequency domain
description. A simple approximation of the spectral acceptance range is hence given
by the Fourier transform of t.
A more accurate derivation of the spectral acceptance range, including also higher
dispersion orders, can be obtained from the wavevector mismatch Ak of the nonlinear
process. The intensity of the generated signal can be shown to be proportional
to the phase mismatch factor sinc?(Ak - L/2), where L denotes the crystal length
[88]. Tolerating a drop of intensity of 50 % yields the following condition for the
wavevector difference:

W{# <0.886m (4.13)
With 0.886 m denoting the full width half maximum of the phasemismatch fac-
tor. The corresponding spectral acceptance range is obtained by calculating the
wavevector mismatch Ak and resolving the spectral bandwidth.

Spatial walkoff

A further limitation concerning the useful interaction length in birefringent crystals
is given by the fact that the propagation direction of the intensity distribution, given
by the Poynting vector, of the extraordinary beam can differ from the direction
of its wavevector, denoting the normal of the wavefronts. This phenomenon is
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related to the angle dependence of the extraordinary refractive index and does
therefore not occur for the ordinary beam. For this beam the energy transport is
always along the beam axis being defined by its wavevector. As result the energy
flux of the fundamental beam and the generated beam will spatially drift away

from each other during propagation through the crystal. The angle between the

1 One
directions of energy transport of the beams is given by p = ——

Ne 00’

the extraordinary refractive index and # the phase-matching angle, being enclosed
by the direction of the wavevectors k and the optic axis of the crystal [90]. This
effect is called spatial walkoff and related to an angular acceptance range. The
effective interaction length depends on the beam size and decreases with smaller
the beam extensions. As a result the conversion efficiency drops and the spatial
beam profile may be broadened and the beam quality reduced.

where ne is

Quasi phase matching

Spatial walkoff can be avoided by using non-critical phase-matching techniques,
which do not depend on angle tuning in birefringent crystals. A so-called quasi
phase matching can be achieved with periodically poled crystals. Such crystals
face the problem of wavevector mismatch by periodically introducing a phase
jump of 7 between the polarizations of the fundamental and the generated signal,
with a period being matched to the coherence length [, = 7. Whereas for non-
periodically poled crystals the constructive add-up of the generated signal converts
into a destructive one after a propagation length of /., the implemented phase jump
in periodically poled crystals resets the phase mismatch between the fundamental
field and the generated field to zero after each time traveling the distance of the
coherence length. The implementation of the phase jump is realized by converting
the orientation of the crystal, such that the sign of the nonlinear coeefficient d.g is
alternating between positive and negative between each poling period. By this also
the direction of spatial walkoff is inverted, whereby spatial overlap between the
fundamental and the generated signal can be obtained over long distances. The
results which can be achieved with this technique do not conform to the case of
perfect phase matching, wherefore it is called quasi phase matching, but it allows
the signal of the generated light to grow monotonically over the entire length of
the crystal. For the generation of wavelengths near 313 nm the required poling
period is &~ 1 um. Crystals with such small period are commercially not available.
Alternatively operating with higher-order periods is possible, for example for UV
generation when using five times the typical poling period. Since the achievable
conversion efficiency is reduced respectively, the technique of quasi phase matching
is not profitable for UV generation in the spectral region of interest.
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4.3.2 Spectral compression process

Optical frequency combs based on the well established fiber technology typically
provide broadband femtosecond pulses. As several applications exist which require
narrow-bandwidth pulses, such as many time-resolved spectroscopy experiments
[91, 92|, a broad variety of spectral compression methods have been investigated in
the past [93, 94, 95|. Whereas simply increasing the pulse duration, by generating
a temporal delay between different frequency components, is not accompanied by
spectral compression, a straightforward method to obtain a narrow spectrum is
to apply linear operations, as for example a narrow-bandpass filter [96] or a slit
in the Fourier plane of a zero-dispersion 4f pulse shaper [97]. Linear techniques
are however very inefficient, as the loss of energy is approximately proportional to
the amount of spectral narrowing. Non-linear techniques instead allow to transfer
a large amount of the energy of broadband pulses into narrowband ones. The
technique applied in this work follows the method which has been demonstrated
by M. Marangoni and G. Cerullo [86] for a generated wavelength range of 720 nm
to 890nm. The simple method uses the SHG process in presence of large group
velocity mismatch to generate narrowband SH pulses derived from broadband FF
ones. Efficient results have been obtained with long periodically poled crystals.
For implementing the technique to our research an extension of the wavelength
range into the UV has been realized for specific laser parameters. One challenge
arises from the fact that for frequency doubling into the UV, practical solutions to
directly avoid spatial walkoff are lacking. Because of this, the influence of spatial
walkoff onto the spectral narrowing process had to be taken into account for the
first time, substantially influencing the process due to spatio-temporal coupling
dynamics.

Spectral compression without spatial walkoff

The spectral compression technique during the second-harmonic generation, without
appearance of spatial walkoff, can be easily understood in the time-domain picture.
The spectral compression directly results from the temporal broadening of the
generated signal, occurring due to the temporal walkoff between the fundamental
pulse (FF) and the second-harmonic pulse (SH) inside the nonlinear crystal. When
the fundamental pulse enters the crystal it will generate a SH pulse, if phase-
matching conditions for SHG are fulfilled. At this moment the FF and SH pulses
overlap in time. When the FF pulse has traveled through the crystal and exits the
end facet, the initially generated SH pulse lags behind in time due to its smaller
group velocity about

5t~ |GVM|- L, (4.14)

with the crystal length L and the group velocity mismatch GV M. As the FF
pulse continuously generates a SH wave while traveling through the crystal, this
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temporal separation corresponds to the temporal width of the resulting SH signal,
as depicted in Figure 4.5:
0t =~ Atsy (4.15)

The Fourier transform of this broad temporal pulse directly yields the narrow
spectrum. The spectral compression is hence directly linked to the amount of
temporal broadening of the generated SH signal.

Without the appearance of spatial walkoff the resulting SH temporal pulse profile
is approximated to be rectangularly shaped due to the one dimensional temporal
broadening as illustrated in Figure 4.5. The resulting width of the corresponding
spectrum is therefore given by |98, 86]:

0.886

Avgy ~
The spectral bandwidth of the generated SH pulse hence depends on the GVM and
the crystal length L. The longer the crystal and the higher the GVM, the narrower
the output spectrum. The approximation of a rectangular temporal profile also
determines the SH spectral shape, which in this case is given by a sinc-shaped
spectrum.

The spectral width, given by Equation 4.16, approximately also specifies the
spectral acceptance range of the SHG process. It corresponds to a wavevector
mismatch of Akspe = 2k(wrr) — k(wsny) = |GV M| - Aw, which can be derived by
applying a Taylor series expansion of each wavevector and letting the wavevector
of the FF vary by Aw/2 and hence the one of the SH vary by Aw [86]:

Aw
ksu(w) = k(wsn) + k' (wsn) Aw (4.18)
Inserting the resulting wavevector mismatch Akspg, with |GV M| = |k (wpr) —

k' (wsh)|, into Equation 4.13 and resolving the spectral width, the SHG phase
matching bandwidth can be derived:

0.886

GV T (4.19)

AVSHG ~

This width denotes the spectral components for which critical phase matching can
be simultaneously achieved. As a consequence of this limited acceptance range,
frequency doubling of broad spectra is typically performed using short crystals
featuring a low GVM. Here, on purpose, long crystals with large GVM are chosen,
such that the acceptance range, and hence the resulting SH output bandwidth,
equals the desired narrow SH bandwidth.
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Figure 4.5: Schematical illustration of the spectral compression process during second-
harmonic generation without spatial walkoff. If phase-matching conditions are fulfilled,
the fundamental frequency pulse (FF), shown in red, continuously generates a second-
harmonic wave (SH), shown in blue, while travelling through the nonlinear crystal. Due
to the smaller group velocity, the second-harmonic signal lags behind in time about
0t = GV M - L at the moment when the fundamental pulse exits the nonlinear crystal.
This temporal separation corresponds to the temporal broadening of the generated SH
signal, Atgy, which is directly accompanied by a spectral compression, as shown on the
right.

In terms of the SHG process therefore only a small fraction of the FF pulse
is used and converted into the SH one for the generation of narrow spectra. Based
on this, a very low conversion efficiency would be expected. However, to the first
order also phase matching for intrapulse sum-frequency generation is fulfilled, gen-
erating the same frequencies as resulting from the frequency doubling, as depicted
in Figure 4.6. The second-harmonic frequency, wsy = 2wpm, with pm denoting the
phasematched fundamental center frequency, is for the SHG process generated by:

Wpm + Wpm = 2Wpm (4.20)

With the fundamental frequency wpp = wpm. The corresponding phase-matching
condition
k(wpm) + k(wpm) = k(2wpm) (4.21)

is assumed to be fulfilled. The intrapulse SFG process generates the same frequency
wisk = 2Wpm = wsh by mixing spectral components of the FI' spectrum which are
symmetric around the phase-matching frequency wpy, about £Aw:

(Wpm + Aw) + (wpm — Aw) = 2wpm (4.22)
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Figure 4.6: Schematical representation of the energy transfer of broadband fundamental
pulses into narrowband, frequency-doubled pulses in presence of SHG and intrapulse SFG.
The SH frequency wsy = 2 wpm with pm denoting the phasematched fundamental center
frequency is generated by wpm +wpm = 2 wpm for the SHG and by (wpm + Aw) + (wpm —
Aw) = 2wpy, for the intrapulse SFG.

The SFG phase-matching condition
k(wpm + Aw) + k(wpm — Aw) = k(2wpm) (4.23)

is approximately simultaneously fulfilled.

The corresponding phase-matching acceptance bandwidth can be derived from the
wavevector mismatch of the process. Applying the following Taylor series expansions
of the corresponding mixing wavevectors with frequencies wy = wpm + Aw and
Wy = Wpm — Aw,

1
k(wy) = k(wpp) + kppAw + §ngAw2 + ... (4.24)

1
k(ws) = k(wpr) — kppAw + ngFAMZ + ., (4.25)
the wavevector mismatch Akgpg is found to be [86]
Akspg = k(w1) + k(ws) — k(wsn) ~ kppAw? (4.26)

with kfp denoting the group velocity dispersion of the fundamental frequency. From
this the spectral acceptance range for the intrapulse SFG process can be derived
according to Equation 4.13:

0.886
2w Lk

AVSFG =~ (427)

This acceptance range of intrapulse SFG is typically broader than the acceptance
range of the simultaneously occurring SHG process, wherefore this spectral com-
pression technique allows to effciently convert broadband FF pulses into frequency



4.8. UV generation and spectral compression 81

doubled narrowband pulses. The width of the resulting SH pulses is determined
by the acceptance range of the SHG process, which approximately equals the
corresponding bandwidth of the resulting SH spectrum.

This spectral compression method has been successfully demonstrated for the
generation of narrow-bandwidth pulses in the visible region [86|. Efficient results
have been achieved with long periodically poled crystals, which are effectively free
of spatial walkoff and therefore guarantee an overlap of the SH and the FF pulses
over the entire crystal length. As discussed in section 4.3.1 for the generation of UV
light near 313 nm no practical solutions exist to directly avoid spatial walkoff. The
spatial walkoff and the resulting spatio-temporal coupling effects strongly influence
the compression process and have to be taken into account in order to selectively
and effciently generate narrow-bandwidth UV pulses.

Spectral compression with spatial walkoff

In the presence of spatial walkoff, the FF and the SH pulses not only lose overlap
due to the temporal walkoff between them because of their different group velocities,
they are further separated in space due to their different propagation directions
based on spatial walkoff. This strongly affects the resulting SH pulse profile during
the SHG and hence also the spectral compression process. In general less temporal
broadening and therefore less spectral compression can be achieved for the same
crystal length, compared to the case without spatial walkoff. Furthermore the
resulting SH temporal shape gets distorted and cannot be approximated by a
rectangular pulse shape anymore. Due to the different propagation directions,
combined with the different group velocities, the resulting SH profile experiences a
pulse front tilt [99], as shown in Figure 4.7.

The generation of the temporal SH profile including the influence of spatial walkoff
can be understood in the time-domain picture, analogous to the simple picture
presented in Figure 4.5. When the FF pulse enters the crystal it will generate a
SH pulse, if phase-matching conditions for SHG are fulfilled. At this moment the
FF and SH pulses overlap in time and in space. When the FF pulse has traveled
through the crystal along its direction of propagation and exits the crystal end
facet, the initially generated SH pulse lags behind in time due to its smaller group
velocity. Due to the different propagation direction compared to the FF, the initially
generated SH pulse is not only located at a different position along the direction of
propagation, it is also located at a different transverse position inside the nonlinear
crystal. As the FF pulse continuously generates SH waves while traveling through
the crystal, the combination of temporal and spatial walkoff causes a tilted pulse
front of the generated SH signal when leaving the nonlinear crystal.

The precise temporal profile not only depends on the walkoft angle p, the GVM
and the propagation distance of the FF inside the nonlinear crystal. Furthermore
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Figure 4.7: Schematical illustration of the generation of the pulse front tilt of the second
harmonic (SH) signal, caused by simultaneous spatial and temporal walkoff during the
SHG. The initial FF propagation direction and hence the direction of both wavevectors of
the FF and SH inside the crystal is denoted as z-direction. The perpendicular orientation
of the nonlinear crystal, in which the direction of the spatial walkoff takes place, is denoted
as the z-direction. The fundamental beam direction is shown in red and experiences a
spatial walkoff about the angle p compared to the propagation direction of the SH beam,
shown in blue. The combination of different propagation directions and different group
velocities between the FF and the generated SH signal leads to a tilted pulse front of the
SH signal when leaving the nonlinear crystal, indicated by the blue ellipse.

the focusing strength is of great importance, influencing the temporal profile by
affecting the effective interaction length between the FF and SH signal. Whereas
in the case without spatial walkoff the interaction length is independent of the
focusing strength, leading to the same spectral results for any focusing conditions,
the interaction length is in general reduced by the effect of spatial walkoff. The
limitation of the interaction length becomes the stronger, the tighter the focusing
is. For weak focusing, corresponding to large beam sizes, the interaction length is
larger, whereas in the limit of very large beam sizes an interaction over the entire
crystal length can possibly be achieved, approximately leading to similar results as
in the case without spatial walkoff.

A comparison of the resulting SH temporal pulse fronts for the two cases of tight
focusing and weak focusing are exemplarily shown in Figure 4.8. It can be seen
that the resulting SH pulse profiles differ in space and in time for the compared
focusing strengths. In consequence also their spectra given by the corresponding
2D Fourier transformation will differ and hence the amount of spectral compression.
This focusing dependency, induced by the additional spatial walkoff, cannot be
neglected and is a substantial difference compared to previous work presented in
[86] and has been investigated for the first time in the framework of a prestudy as
presented in the next section.
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Figure 4.8: Schematical demonstration of the influence of the focusing strength of the FF
pulse during SHG on the pulse front of the generated SH signal. The upper two pictures
represent the electric field of the fundamental frequency (FF) pulse in a space-time (x,t)
diagram, Epp(z,t), when entering the nonlinear crystal. The arrows indicate the direction
of propagation and its length the propagation distance according to the length of the
nonlinear crystal. The FF beam is assumed to experience the spatial walkoff, wherefore
the arrow is tilted against the time axis t. The left picture presents the case of tight
focusing, indicated by a small extension of the FF field along the space axis z. The right
picture shows the case of weak focusing respectively. Below the corresponding generated
electric fields of the second-harmonic (SH) pulse profiles are shown, Esy(z,t), as they
have built up at the time when the FF pulse exits the nonlinear crystals. The differing
SH profiles in space and in time are accompanied by different spectra and hence different
amounts of spectral compression.

4.3.3 Simulations and experimental results

In order to be able to efficiently and selectively generate narrow-bandwidth UV
pulses near 313 nm despite the substantial, so far unexplored influence of spatial
walkoff, a systematic study has been carried out. Based on simulation results,
spectral compression induced in nonlinear BiBO crystals of different shape and with
different lengths have been investigated for varying focusing conditions. In this
section the crystal choice, simulations and experimental results of the systematic
study will be discussed.
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BiBO BBO

biaxial uniaxial
crystal type in YZ plane: positive negative

eeo ooe
refractive index n = 1.888 n = 1.667
spatial walkoff angle p="T3.12mrad p=280.63 mrad
effective nonlinear coefficient dog=3.36pm/V deg =1.91pm/V
group velocity mismatch GVM = 984 fs/mm GVM = 367fs/mm

Table 4.2: Table summarizing the relevant properties of BiBO in comparison to BBO for
the SHG from 626 nm to 313 nm, extracted from [100]. Of superior importance for the
implementation of efficient spectral compression is the large effective nonlinear coefficient
and the large amount of GVM.

Crystal choice

In order to achieve high conversion efficiencies during UV generation, a nonlinear
crystal with appropriate transparency range and a high effective nonlinear coefficient
degr must be chosen. Furthermore a small spatial walkoff angle p in general allows
for better beam profiles and a longer effective interaction length for a given crystal
length. These restrictions already strongly limit the amount of possible materials.
Due to their deep UV transparency range and high optical damage threshold
lithium triborate LiB30O5, LBO, and beta barium borate $-BaB304, BBO, are
established materials of choice. LBO has the advantage of offering a small spatial
walkoff angle, of p = 17.82mrad [100], but suffers from a low nonlinear coefficient,
deg = 0.51pm/V [100], wherefore BBO with its higher nonlinear coefficient is
popularly used for existing experiments requiring wavelengths near 313 nm despite
its larger walkoff angle. Here instead the relatively new nonlinear crystal BiBO
[101, 102, 103] is used due to multiple reasons. Its relevant properties for SHG
from 626 nm to 313 nm are shown and compared to BBO’s properties in Table 4.2.

BiBO is a biaxial crystal allowing for versatile phase-matching characteristics. The
most advantageous configuration for SHG from 626 nm to 313 nm is along the YZ
principle plane. In this working plane its nonlinear coefficient of deg = 3.36 pm/V
is nearly twice as high as for BBO. A further important advantage is its high GVM
which is required in order to achieve a strong spectral compression. Its value is
2.7-times higher than the GVM of BBO. This allows to achieve a certain amount
of spectral compression with a shorter crystal length, by which also problems
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Figure 4.9: Cartoon picture of a typical configuration of a bow-tie enhancement cavity.
The circulating light passes two plane and two curved mirrors. The two curved mirrors
generate a focus inbetween, where the crystal is placed in order to enhance conversion
efficiencies. The tilted impact of the beam on the curved mirrors generates an astigmatism,
which can be compensated by the tilted surfaces of the Brewster-cut crystal. For the
optimized distance between curved mirrors and crystal side facets, the focal position in
the sagittal and tangential plane are located at the same position, whereas the focus has
Wta,

an elliptical shape with ellipicity given by e = Kai = tan(fp) ~ n. as shown in Figure

4.10. The major axis lies along the tangential plane.

induced by spatial walkoff are reduced, as the spatial walkoff angle p is on the same
order of magnitude for both crystals. Also the damage thresholds are reported
to be comparably high for both crystals [102, 104]. Another benefit is BiBO’s
inertness to moisture which simplifies the treatment, especially beneficial for the
systematic survey with several crystals. BBO in comparison shows a hygroscopic
behaviour which requires special care. BiBO and BBO also differ in their crystal
structure. Within the YZ principle plane the biaxial BiBO crystal behaves as a
positive uniaxial crystal. Therefore the fundamental beam is the extraordinary
beam when conditions for critical phase matching are fulfilled. For this beam
the direction of energy flux differs from the direction of the wavevector. BBO in
comparison is a negative uniaxial crystal, where the generated SH signal experiences
the spatial walkoff and the fundamantal beam behaves ordinary. For a rectangularly
shaped crystal this difference is mostly irrelevant, as it only slightly affects the
orientation of the pulse front tilt of the generated signal. But the difference becomes
of importance in context of different crystal cuts as they are for example used in
enhancement cavities for astigmatism compensation.

Enhancement cavities are optical resonators which are used to enhance the optical
power of the circulating light [105, 106]. By placing the nonlinear crystal inside
the cavitiy, conversion efficiencies can hence be boosted. A typical configuration is
a bow-tie shape, where the cavity consits of two plane and two curved mirrors as
shown in Figure 4.9. The two curved mirrors generate a focus in between them
where the crystal is placed. The tilted incidence of the beam on the curved mirrors
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Figure 4.10: Schematic of the formation of the ellipticity of a beam passing through a
Brewster-cut crystal. Along the tangential plane (tag), the incident collimated beam of
size wq experiences an optical beam path difference, which causes an enlargement of the
beam size by a factor of wiae = tan(fp) - wo =~ n. - wo inside the crystal. In the sagittal
plane (sag) no beam path difference occurs and the waist size is unchanged.

introduces astigmatism. This results in differing focal distances in the vertical and
horizontal plane. One can either keep the angle of incidence as small as possible to
minimize this effect or compensate the astigmatism by using Brewster-cut crystals.
Such crystals have a tilted surface of entrance and exit relative to the incident
beam, as shown in Figure 4.10. The angle of the crystal cut is chosen such that
the reflective losses of the circulating light are zero, given at the Brewster angle
Op = arctan(n./ng), with n. denoting the refractive index of the crystal and ng the
one of the surrounding medium. This tilted surface also introduces an astigmatism,
through which the beam experiences different geometric paths in the vertical and
horizontal plane. This effect can be used to compensate for the astigmatism
introduced by the tilted incidence on the curved mirrors. By matching the distances
between the crystal and the curved mirrors, the position of the focus in both planes
can be brought to be located at the same point. This is relevant in terms of stability
considerations and advantageous for conversion efficiencies. Nevertheless the focal
width in the horizontal and vertical plane differ, leading to an elliptical focus. A
simple geometric consideration can be used to derive this ellipticity, as illustrated
in Figure 4.10. Assuming a collimated beam being incident under Brewster’s angle
onto the crystal surface, its direction of propagation will be changed according to
Snellius’s law. In the plane in which the tilted angle of incidence occurs, typically
denoted as the tangential plane, the beam width is enlarged by a factor of tan (6p)
due to the occurring optical path difference within the extension of the beam.
Under the approximation that the medium surrounding the crystal has a refractive
index of ng ~ 1 this factor is given by the refractive index of the crystal n.. In the
orthogonal plane, typically denoted as the sagittal plane, no change occurs, as no
optical path difference exists within the beam extension. This discrepancy between
the two planes causes the elliptical focus, with the ellipticity approximately given
by e =~ n..



4.8. UV generation and spectral compression 87

Of special interest is the orientation of the elliptic focus relativ to the direction
of spatial walkoff. For Brewster-cut crystals the major axis of the elliptic focus
can either lie within the plane of spatial walkoff or perpendicular to it, depending
on whether the FF or the SH beam experiences the spatial walkoff. This can be
shown by applying Maxwell’s equations. The direction of spatial walkoff, given by
the direction of the Poynting vector S , must lie within the plane spanned by the
electric field vector E and the wavevector k [89]. The spatial walkoff direction is
therefore always found to be along the direction given by the polarization of the
extraordinary beam. For Brewster-cut crystals the Brewster angle is chosen such
that the p-polarization? of the fundamental frequency is zero. This defines the
orientation of the polarizations of both, the FF and the SH, fields relative to the
crystal geometry. Depending on which beam exhibits the extraordinary behaviour,
the spatial walkoff therefore lies within the sagittal or within the tangential plane.
For negative uniaxial crystals, such as BBO, the spatial walkoff lies along the minor
axis of the elliptic focus, for positive uniaxial crystals, such as BiBO, it lies along the
major axis of the elliptic focus. As a certain beam size in the direction of the spatial
walkoff is required to maintain an effective interaction between the FF and SH and
to reach a certain amount of spectral compression, it is strongly advantageous that
the direction of spatial walkoff is orientated along the major axis of the elliptical
focus. The tighter focus along the minor axis then enhances the intensity by a
factor of n. for a given waist along the walkoff direction. In comparison, for negative
crystals for the same given waist along the walkoff direction, the intensity is reduced
by a factor of n. due to the enlarged waist in the perpendicular direction. Thus,
BiBO has a further great advantage compared to BBO when using Brewster-cut
crystals. As the use of an enhancement cavity might be an important tool for
improving conversion efficiencies, both, Brewster and rectangularly cut crystals,
have been investigated within the pre-study.

Simulation model

For analysis of the spectral compression process under influence of spatial walkoff,
a model is required including all possible second-order interaction processes as well
as phase matching, diffraction and walkoff for the involved pulses. Furthermore
spatio-temporal pulse dynamics must be taken into account. For this a suitable
(2+1)-dimensional simulation model developed by T. Lang [107] was applied. It
has been established for obtaining a deeper understanding of complex spatial and
temporal dynamics occurring during non-collinear ultra-broadband interaction in
optical parametric amplification processes and gives access to full information of
the intensity and phase of the involved pulses in space and time at every position

2The p-polarization exhibits an electric field being polarized parallel to the plane of incidence.
In context of the Brewster-cut geometry this polarization lies within the tangential plane of the
crystal.
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Figure 4.11: Schematical illustration of the principle of the calculation loop of the applied
split-step simulation model following [108]. For numerical calculation, the crystal is
divided in small steps dz and propagation and nonlinear interaction are successively
calculated for each dz, based on given starting conditions. Second-order nonlinear effects
are calculated in the spatial/temporal domain. Subsequently, dispersion, diffraction and
walkoff are calculated in the spectral domain. For the next propagation step, second-order
nonlinear effects of the new spectral fields are calculated again in the spatial /temporal
domain. The alternating calculations are applied to the instantaneous ordinary and
extraordinary fields, until the entire crystal length L is covered. Both Fourier domains
are connected by the two-dimensional Fourier transformation.

in the crystal. Unlike other typical approaches, this model handles the nonlinear
interaction with only two coupled differential equations for the two orthogonally
polarized ordinary F,(z,t) and extraordinary E.(z,t) electric fields within a bire-
fringent crystal. Due to phase-matching considerations the model can therefore
be restricted to one spatial transverse dimension including the direction of spatial
walkoff without substaintial loss of accuracy®. This transverse direction is denoted
as the z-direction and is orthogonal to the main direction of propagation along
the z-axis. The angle between the z-direction and the optic axis of the crystal is
chosen to fulfill phase-matching conditions, characterized by the angle 6.

For numerical calculations of the pulse evolution during the nonlinear conver-
sion process, the crystal is divided in small steps dz and propagation and nonlinear
interaction are successively calculated for each dz. The second-order nonlinear inter-
action, including temporal and spatial effects, is modelled in the temporal /spatial
domain, with temporal axis ¢ and the relevant spatial axis x. The pulse propagation,
including dispersion, diffraction and walkoff for each propagation step dz, is subse-
quently calculated in the spectral domain, with optical frequency f; and spatial
frequency f, revealed by the two-dimensional Fourier transformation of the complex

3The negligence of propagation and diffraction along the orthogonal transverse direction yields
a good approximation if the crystal length is shorter than the Rayleigh length of the laser focus.
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electric fields FT[E,/c(x,t)] = Eoe(fx, fi). Based on given starting conditions this
loop with alternating calculations in the different Fourier domains for each dz,
always applied to the current optical fields, is repeated until the entire length of the
crystal is covered. Based on this split-step Fourier algorithm, the model gives direct
access to the full spectral /temporal and spatial /angular information in amplitude
and phase at each point of the nonlinear propagation through the crystal. The
principle of the calculation loop is depicted in Figure 4.11. The corresponding
mathematical operations for pulse propagation and nonlinear interaction will be
described in the following.

The electric field orientation of a pulse at a certain z-position inside the birefringent
crystal can be expressed as a superposition of the ordinary and extraordinary
fields E, /e = €, /eAe““z, with the unity vectors é,_ e pointing in the direction of the
ordinary and extraordinary dielectric polarizations, with A being their complex
field amplitude, and e*** their accumulated phase during propagation along z. By
using a solution of the paraxial wave equation [109], the propagation of this wave in
space and time along the z-direction can be described by a superposition of a series
of plane waves, each with spatial frequency f, and optical frequency f; = ¢/A. The
propagation can therefore be handled by adding the accumulated phase e**+* to
each plane wave [110]. The z-component of the wavevector contains their particular
spatial frequency f, and optical frequency f; components. Under the assumption of
negligible diffraction and propagation in the y-direction (k, = 0), the z-component
of the wavevector is given by:

i f) ~ \/ (2Rt l ) oy (1.29

C

The linear evolution for each propagation step dz within the numerical calculation
loop can therefore be performed by applying two propagation equations for F, and
E. [107]:

Eo/e(ft, fxa zZ+ dZ) = E0/9<ft7 fX7 Z) ’ e(ikZdZ) (429>

With k, given by Equation 4.28 and with the refractive indices n,(f;) and ne(fe, fx)
given by the Sellmeier formalism and the index ellipsoid of the crystal [89].

As especially the extraordinary refractive index not only depends on optical fre-
quency fi, but further on the direction of propagation, expressed by fy, an iterative
algortithm is used for calculation of ne(f;, fx). The connection between the spatial
frequency f, and its propagation direction relative to the main propagation direc-
tion is depicted in Figure 4.12. This deviation is expressed by the angle o, which
describes a change of Af to the main phase-matching angle #, which is enclosed by
the z-axis and the optical axis of the crystal:

& c

fi ne(fta Qe + 6)

X

P ) (4.30)

ao( fy, fx,ne) = arcsin(—) = arcsin(
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Figure 4.12: Illustration of the connection between spatial frequency, derived from the
xz-component of k(A,n), and the propagation angle o towards the main propagation
direction z.

Because of the interdependence between ae( ft, fx, 1e) and ne( fi, e +6) the iterative
algorithm is used to calculate the extraordinary refractive index. Based on this
calculation, the phase term in Equation 4.29 automatically implements dispersion,
diffraction and walkoff in the spectral domain.

The nonlinear interaction between and inside each field, for each dz within the
calculation loop, is modeled in the time/space domain by two differential equations
for the two fields E,(z,t) and E.(x,t) [107]:

a Typel Typell
Eo t: . 5 % 5 % N
OE.(t,x) _ —ike 2E.E! + E,E.+2E E*+2E E' +2E_E)
E.(t, . |
a—( x) = —1 Re (EOEO + 2EOE: _|_ QEGES + 2E6E0 + 2E0E§)7
0z M~ Y>> Y>> Y>> Y——~

0o0—e ee—o eo—e eo—e €e0—o0

The different terms correspond to different types of conversion processes as de-
noted. Within the performed simulations only ee-o, type I processes are considered,
where both fundamental beams exhibit extraordinary (e) behaviour and the sig-
nal beam is the ordinary (o) beam. Since the nonlinear interaction parameter
Koje = T fedesr/(Nose( fr, fx)C), representing the strength of the nonlinear interaction,
depends on the optical frequency f; and the direction-dependent refractive index
ne(fs, fx), the factor is implemented in the spectral domain before continuing with
the calculation loop, where the next propagation step is then applied by Equation
4.29 to the new spectral fields. Due to the generalization of the three involved
pulses of the nonlinear conversion process, typically denoted as pump, signal and
idler, to only one ordinary and one extraordinary field, mixing products, temporal,
spatial and parasitic effects are automatically taken into account [107].
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Simulation results

As depicted in Figure 4.11, the numerical calculation loop requires certain starting
conditions concerning the field arrays E,/c(fx, f;) and the crystal properties. Here,
initially dispersion free, time-bandwidth limited pulses with gaussian intensity pro-
file are assumed propagating along the z-direction, which encloses a phase-matching
angle* of § = 50.23° in the YZ plane for BiBO. The field arrays are characterized by
their wavelength A, pulse duration 7,, pulse energy E,, and focal radius wy, related
by Imax = 2E,/(mwd > I(t)dt). Concerning the crystal properties, all dispersion
characteristics of BiBO are taken into account, its transmission 7(f;) as well as
the nonlinear interaction strength d.g. Furthermore only the length of the crystal
must be set.

Concerning the data analysis of the simulation results, the properties of the gener-
ated second-harmonic field are of special interest. As the simulation model directly
yields full spectral/temporal and spatial /angular information, the resulting SH
field after propagating the distance of the crystal length can be directly presented
in both applied Fourier domains (z,t) and (fy, f;). Each representation visualizes
different characteristics of the generated field. In the space/time domain resulting
pulse profiles can be seen, showing spatio-temporal effects of the process. An
illustrative way of interpreting the data in the spectral Fourier domain, given by
(fx, ft), can be obtained by plotting the generated field against A and «, derived
by applying Equation 4.30. Furthermore this representation allows to intuitively
extract the normalized spectrum, directly visualizing the spectral shape and the
spectral bandwidth of the generated pulses.

In order to obtain a qualitative understanding of the so far uninvestigated in-
fluence of spatial walkoff on the spectral compression process, simulations for BiBO
crystals have been performed comparing the cases of weak and tight focusing
in absence and presence of spatial walkoff. The spatial walkoff can therefore be
simply included or excluded in the calculations. Exemplary results of the generated
second-harmonic pulses are shown in Figure 4.13. For each case the results of the
generated SH pulses are represented in the (z,t), the (fy, f;) and the (A, a) domain.
Furthermore the corresponding normalized spectra are shown.

As discussed in section 4.3.2, the resulting SH profile is temporally broadened due
to the GVM between the FF and SH pulses. In absence of spatial walkoff the
resulting SH profile is approximately given by a rectangular shape independent of
the focusing strength. The broad extension along the t-axis transforms into a narrow
width along the optical frequency axis f; in the corresponding spectral Fourier
domain, and hence leads to a narrow spectrum. Different focusing strengths transfer

4Note that different conventions exist concerning the orientation of the phase-matching angle.
The convention referenced in [100] for example differs by m — 6. The value applied for the
simulations is obtained by Sellmeier coefficients following [111].
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Figure 4.13: Qualitative simulation results, showing the generated SH fields in different
representations, obtained by the split-step simulation model for different process assump-
tions. The upper two rows of plots exclude the influence of spatial walkoff, whereas the
lower two rows include the effect of spatial walkoff. The upper row each corresponds to
the case of tight focusing of the FF beam, indicated by a small SH field extension along
the z-axis and a broad extension along the f,-axis. The lower row each corresponds to
weak focusing of the FF pulses with inversed field extension behavior. For each condition,
the generated electric fields of the SH pulse are represented, from left to right, in the (x, )
Fourier domain, F(z,t), in the (f;, fi) Fourier domain, E(f,, f;), and in the (A, ) repre-
sentation, |E(a, \)|?, obtained by Equation 4.30. Further each corresponding normalized
spectrum is shown on the right. The simulations show that the spatial walkoff causes
a pulse front tilt in the (z,t)-domain, which is accompanied by an angularly dispersed
output of the generated SH pulses, as to be seen in the (fy, f;) Fourier domain and in
the (A, «) representations. Furthermore the amount of spectral compression in presence
of spatial walkoff depends on the focusing strength and compared to the case without
spatial walkoff, is reduced for tighter focusing.
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into different extensions of the spatial frequencies fy in the spectral domain. As
given by Equation 4.30, different spatial frequencies belong to different propagation
directions, denoted by the angle .. This distribution of angles can be interpreted
as an angular spread equivalent to the divergence angle within a focused gaussian
beam. For tight focusing the total angular spread of the beam in the far field is
large, while for weak focusing only small divergence angles occur. As the frequency
components are equally spread with respect to «, the focusing strength does not
affect the spectral results. The spectral shape and the spectral bandwidth of the
generated SH signals are hence independent of the focusing strength.

In comparison the results for the case with spatial walkoff strongly depend on the
focusing strength. Furthermore each representation gives rise to specific character-
istics of the generated SH fields. Regarding the fields in the space/time domain, it
can be seen that the generated SH pulses experience a pulse front tilt, occurring
due to spatio-temporal couplings, as discussed in section 4.3.2. The direction of
the pulse front tilt is maintained during transformation into the spectral domain
(fx, ft). The different spread of spatial frequencies f in the spectral Fourier domain
and accordingly the different spread of angles o, can again be interpreted in analogy
with the different divergence angles within differently focused gaussian beams. In
contrast to the case without spatial walkoff, different spectral components now cor-
respond to different propagation directions, denoted by the angle . This behaviour
is known as an angular chirp [112] and is an important qualitative result of the
simulations. The angular chirp causes the spectral components to spatially separate
after some propagation, which requires special care for applications. Furthermore
the pulse front tilt, caused by spatio-temporal couplings, directly affects the spectral
shape of the resulting SH spectrum. As the temporal profile strongly differs froms
a rectangular shape, also the spectrum deviates from a sinc profile. As a further
important qualitative result the simulations show that the resulting SH spectral
bandwidth depends on the focusing strength. The differing spread of wavelengths
A\, equivalent to the different spread of optical frequencies A f;, for the focusing
conditions compared, are related to varying temporal broadenings in the time
domain. This can be explained by different effective interaction lengths depending
on the focusing strength. For tight focusing the effective interaction length and
hence the amount of spectral compression is most strongly reduced. This reduction
of achievable spectral compression, compared to the case without spatial walkoff, is
the larger, the smaller the beam sizes of the involved pulses are.

In conlusion, the quantitative analysis shows that the spatial walkoff causes a
pulse front tilt due to spatio-temporal couplings, which is accompanied by an
angularly dispersed output of the generated SH pulses, where different frequency
components exit the crystal in different directions. Furthermore, the spectral
compression strongly depends on the focusing conditions and is, compared to the
case without spatial walkoff, the stronger reduced the tighter the focusing is.
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Figure 4.14: Quantitative simulation results concerning the spectral compression, showing
the resulting SH spectral bandwidth depending on the focal radius along the walkoff
direction for different crystal lengths. The points represent the simulation data, whereas
the solid lines are guides to the eye. Assumed are time-bandwidth limited fundamental
pulses with a spectral bandwidth of AXA =1.5nm, corresponding to Av = 1150 GHz. Only
for very large foci the results converge towards the bandwidths which would be expected
in absence of spatial walkoff according to Equation 4.16, illustrated by the dotted lines.
For tighter focusing the resulting SH bandwidths increases.

For quantitative analysis, simulations have been performed investigating the result-
ing SH spectral bandwidth as a function of the focal waist size along the direction
of spatial walkoff for BiBO crystals of different lengths. Exemplary results for
time-bandwidth limited fundamental pulses at 626 nm with spectral bandwidth of
1.5nm are shown in figure 4.14 for four different crystals lengths. Further shown
are the corresponding bandwidths, which would be expected in the case without
spatial walkoff according to Equation 4.16. It can be seen that only for very large
waist sizes, the calculated resulting SH bandwidth approximately converges to this
value. As previously discussed this is related to the large effective interaction length
which can despite spatial walkoff be ensured for very large beam sizes. For tighter
focusing the amount of achievable spectral compression accordingly decreases, the
stronger the tighter the focusing is. The resulting SH FWHM bandwidths therefore
increase for smaller beam radii and converge to a certain value, depending on the
initially assumed bandwidth of the fundamental pulses, for every crystal length.
Quantitative simulation results concerning the pulse duration of the generated
second-harmonic signal as a function of the focal waist size along the direction
of spatial walkoff for BiBO crystals of different lengths are shown in Figure 4.15.
Assumed are fundamental pulses at 626 nm with pulse durations of 400fs. The
resulting pulse durations are obtained by evaluating the intensity distribution in the
time-space domain. The resulting temporal width of the second-harmonic signal is
the broader, the longer the crystal and the weaker the focusing is.
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Figure 4.15: Quantitative simulation results for the pulse duration of the resulting SH
signal as a function of the focusing strength of the fundamental pulses for different crystal
lengths. Assumed is an initial fundamental frequency pulse duration of 400fs. The
resulting SH pulse durations are calculated from the generated intensity distribution in
the space-time diagram. The points correspond to simulation data, whereas the lines are
guides to the eye.

Experimental pre-study

Based on the quantitative and qualitative simulation results, a systematic survey
was performed, especially investigating the resulting spectral SH bandwidths and
conversion efficiencies during single-pass frequency doubling in BiBO crystals, for
different crystal lengths, crystal cuts and focusing strengths. Other than in the
case without spatial walkoff, focusing cannot be chosen to maximize the conversion
efficiency, as the focal size along the direction of spatial walkoff determines the
amount of spectral compression. Since, according to the quantitative simulation
results, different combinations of crystal lengths and focusing strengths are expected
to lead to identical resulting SH bandwidths, the systematic survey is carried out
to yield optimal conditions, allowing to selectively generate specific desired spectral
bandwidths with highest conversion efficiencies and with the best compromise
concerning the beam profile, spectral shape and chirp characteristics.

Based on the quantitative simulation results, crystals with lengths between 1.5 mm
and 6.0mm are investigated. As it can be seen in Figure 4.14, crystals longer
than 4.5mm do not significantly further reduce resulting spectral bandwidths,
whereas they in general are expected to increase problems due to spatial walkoff.
In addition the pulse durations are expected to increase as shown in figure 4.15,
reducing the achievable beam intensity. Shorter crystals do not bring sufficient
spectral compression and conversion efficiencies for reaching specific bandwidths
are expected to be below efficiencies being realizable with longer crystals, achieving
the same SH bandwidth in combination with a tighter focusing.
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Concerning the crystal cuts, rectangularly cut and Brewster-cut crystals have been
investigated within the pre-study, because the use of an enhancement cavity might
become an important add-on tool in order to boost conversion efficiencies when
setting up the (anti-)proton experiment. During the test experiments nevertheless
only single-pass frequency conversion experiments were performed, because the
focusing strength within a future enhancement cavity is given by design and cannot
be varied.

The geometry of the Brewster-cut crystals requires special attention for the as-
sociated simulations. Omne aspect occurs due to astigmatism. Whereas inside
an enhancement cavity the astigmatism introduced by the tilted side facets of
the Brewster cut crystal is used to compensate the astigmatism introduced by
the tilted beam incidence onto the curved mirros, it in single-pass configuration
causes the focal positions and the focal waist sizes to differ in the tangential and
sagittal plane. Concerning the configuration which maximizes the SHG conversion
efficiency during the experimental alignment, some approximations must therefore
be made. For a circular beam without astigmatism it is typically assumed that the
highest conversion efficiency is obtained for the focus being located in the middle
of the crystal with respect to the crystal length [113, 114]. Taking astigmatism
into account, only either the tangential waist or the sagittal waist can satisfy this
assumption. As the sagittal waist is tighter by a factor of approximately n., this
waist has been assumed to have a stronger influence on maximizing the conversion
efficiency, and thus to lie closer to the crystal center.

Brewster-cut crystals further exhibit higher Fresnel losses than rectangularly cut
crystals. The reflection losses for the generated SH signal with near 30% are approx-
imately three times as high as for rectangular cut crystals, due to the tilted impact
of the SH beam on the crystal end facet when leaving the crystal. A special coating
could prevent these losses, but for this pre-study, the focus has been put on the
qualitative understanding and qualitative optimization of the spectral compression
process.

Experimental setup

The concept of the experimental setup used to investigate spectral compression
induced during single-pass SHG in BiBO crystals of different lengths and different
cuts is shown in Figure 4.16. Broadband FF pulses near 626 nm are focused into
single BiBO crystals under varying conditions. Behind the crystal, a coated mirror,
highly reflective for 626 nm and highly transmittive for 313 nm, is used to separate
the fundamental light from the generated light near 313nm. The UV output beam
is then recollimated and focused into a Czerny—Turner spectrometer for analysis of
the generated spectrum. The spectrometer design has a slit in the entrance plane,
placed within the effective focus of a curved mirror, which collimates the incident
light onto a grating. The horizontally dispersed and diffracted light is then collected
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Figure 4.16: Setup applied to investigate the spectral compression induced during single-
pass SHG in BiBO crystals. Broadband fundamental pulses near 626 nm are focused into
BiBO crystals under varying conditions. A coated mirror behind the crystal separates the
fundamental light from the generated light near 313nm. A periscope is applied to rotate
the plane of spatial chirp into the vertical, before the collimated UV beam is focused into
a Czerny-Turner spectrometer for spectral analysis.

by another curved mirror, which refocuses each spectral component horizontally
separated onto a CCD camera. The horizontal plane therefore contains the spectral
information of the incident pulses, whereas the vertical plane can additionally
give information about the height distribution of the spectral components, if the
optics contained within the spectrometer setup compensate for aberration and
astigmatism effects. The angular chirp of the generated UV pulses requires special
care concerning the relative orientation with respect to the diffraction plane of
the grating. In order to obtain correctly mapped frequency separation along the
horizontal plane, the angular chirp must be orientated along the vertical direction
when entering the spectrometer. For this, the orientation of the initially horizontally
angular dispersed light coming out of the crystal end facet was rotated by 90° using
a periscope.

The input pulses near 626 nm in Figure 4.16 were obtained from different sources
within the pre-study. Part of the experiments have been carried out at the Politec-
nico di Milano in cooperation with G. Cerullo, M. Marangoni and C. Manzoni,
while the customized frequency comb described in section 4.2 was still under de-
velopment. As part of the facility “Laserlab Europe”, a laser system was available
offering suitable spectral properties at 626 nm, which allowed to obtain a first
experimental understanding of the spectral compression process including spatial
walkoff. The equivalent experiments have then been performed at a later date
with the actual Raman laser system. Both systems are based on an erbium-fiber
master oscillator, where part of the light is shifted to 1050 nm and then recombined
with the unshifted light at 1550nm in a SFG unit yielding a wavelength near
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626 nm. The system in Milano had a repetition rate of 100 kHz, pulse durations
of approximately 100fs and a spectral bandwidth of 10nm. In order to match
the spectral properties of the pulses near 626 nm, linear spectral filters have been
applied, reducing the spectral bandwidth to either 2.4 nm or 1.5 nm, according to
the expected bandwidth region of the Raman laser system. Thus, an evenly shaped
gaussian-like spectrum was obtained, which is the main qualitative difference to
the experiments performed with the Raman laser system, providing substantial
sidelobes of asymmetric intensity. Also the available diagnostic tools were different,
depending on the laboratory where the experiments were performed. At Politecnico
di Milano a 1D spectrometer® was used, which did not provide information about
the height distribution of different spectral components. In order to increase the
resolution, the UV spectrum was investigated in the third diffraction order of the
grating. This in general increases the spatial spread of spectral components at
the position of the camera by a factor of three, which effectively enhances the
resolution of the data. A correction factor, depending on the specific geomery of the
spectrograph, must be considered if the angle of incidence onto the grating changes
for the observations in different diffraction orders. For analysis of the spectral
compression induced by the Raman laser system, a 2D imaging spectrometer® was
applied, providing sufficiently high resolution of 0.03 nm for directly analyzing the
UV spectra in first diffraction order. The combination with the 2D pixel array
of an imaging EMCCD camera’ further allowed to extract information about the
vertical distribution of the contained frequency components, which has been of
special interest due to the expected angular chirp of the generated UV pulses.

Experimental results - spectral shape

For a gaussian-shaped fundamental input spectrum the generated SH spectrum
during spectral compression is expected to remain gaussian-like according to the
simulations. This behaviour could be confirmed with the laser system applied in
Milano, as exemplarily shown in Figure 4.17. As a linear filter has been applied
to narrow the FF spectrum to the desired width, its shape can be described as
approximately gaussian. Therefore the generated UV spectra nicely prove the
expected behaviour concerning the resulting spectral shape.

For comparison, the spectra obtained with the Raman laser system are shown. The
spectral shape of the fundamental pulses near 626 nm strongly deviates from a
gaussian shape and contains substaintial sidelobes of asymmetric intensity. This
dominant shape is transferred to the generated second-harmonic spectra, as shown
for an exemplary generated UV spectrum.

Princeton Instruments, Acton SP2150, =150 mm, grating 1200 1/mm
6 Andor, Shamrock 500i, =500 mm, 24001/mm
7Andor iXon3 885, 1004 x 1002 pixel, pixel size 8 ymx 8 pym
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Figure 4.17: Sample spectra obtained during the spectral compression process with the
laser system in Milano (blue/left) and with the Raman laser system (red/right). The
upper pictures each show the fundamental spectrum near 626 nm and the lower pictures
each a corresponding second-harmonic spectrum. Due to the application of a linear
spectral filter, the spectral shapes obtained in Milano are nearly gaussian-like, whereas
the generated spectra obtained with the Raman laser system exhibit substantial sidelobes

of asymmetric intensity.

Experimental results - spectral bandwidth

Concerning the spectral compression, a dependency on the crystal length and the
focal size along the direction of spatial walkoff is expected, according to the simula-
tion results shown in Figure 4.14. Experimental results of the generated SH FWHM
spectral bandwidth for exemplary crystal lengths of 2.0 mm and 4.5 mm measured
with the Milano system as well as with the Raman laser system in comparison
are shown in Figure 4.18. The relevant difference between the measurements is
the intitial bandwidth of the fundamental pulses near 626 nm. The shown results,
obtained by the Milano system, were performed with an initial FF bandwidth of
1.5nm, while the initial bandwidth of the pulses generated by the Raman laser
system was measured to be 0.9nm. It can be seen that the amount of spectral
compression which can be achieved in the limit of tight focusing clearly depends on
this value. Whereas for the laser system used in Milano the resulting SH spectra
were very insensitive to the adjustment of the critical phase-matching angle, special
care had to be taken for the alignment using the Raman laser system. Due to the
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Figure 4.18: Experimental results of the spectral compression process showing the resulting
SH bandwidth as a function of the focal waist size along the direction of spatial walkoff,
denoted as the horizontal direction. On the left results are shown obtained with 4.5 mm
long BiBO crystals and on the right results obtained with 2.0 mm long BiBO crystals. In
each plot simulation data (solid lines) and experimental results are compared for the laser
system in Milano with an initial fundamental pulse bandwidth of 1.5nm (blue) and for
the Raman laser system with an initial fundamental pulse bandwidth of 0.9 nm (red).

uneven spectral shape, the exact shape and hence the spectral bandwidth of the
generated UV pulses strongly depend on the critical phase-matching angle. A slight
change strongly affected the resulting spectrum, while no significant change in the
conversion efficiency could be measured. The results shown here are obtained by
carefully aligning to maximum peak count on the spectrometer, while still ensuring
highest possible conversion efficiency. With the restriction of this procedure, the
results show a good agreement with the simulations in both cases. Furthermore it
could be proven that the crystal cut does not influence the spectral results and the
amount of spectral compression only depends on the waist size along the direction
of spatial walkoff.

Experimental results - conversion efficiencies

For relaxed focusing strengths, conversion efficiencies are assumed to scale with
the intensity of the fundamental pulses as well as with the temporal and spatial
overlap between the fundamental and generated signal pulses. For a given pulse
shape and pulse energy this yields a strong expected dependence on the focal waist
size, with special attention to the focal size along the direction of spatial walkoff,
denoted as the horizontal direction. In Figure 4.19 measured conversion efficiencies
obtained with the Raman laser system at an average power of 400 mW are plotted
for 4.5 mm long crystals. Shown are results obtained by rectangularly cut crystals in
comparison to results obtained by Brewster-cut crystals of the same length, scaled
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Figure 4.19: Experimental SHG results obtained with the pulsed Raman laser system,
showing the conversion efficiency as a function of the horizontal radial focus (left) and as
a function of the mean radial focus (right) for an average input power of 400 mW. The top
graphs show measured conversion efficiencies, the bottom ones a comparison of simulation
data to the Fresnel loss corrected measured efficiencies. Plotted are data obtained with
4.5 mm long BiBO crystals, in blue for a Brewster cut and in red for a rectangular cut. For
the corresponding simulation data (solid lines) transform-limited gaussian input pulses
with a FWHM pulse duration of 400fs were assumed. The nonlinear interaction was
calculated with the simulation model, extended to three spatial dimensions in order to
account for the elliptical focusing conditions in Brewster-cut crystals. Deviations from the
measured data might originate from an deviating pulse duration or from to the strongly
deviating spectral shape. The uncertainty range of the calculated waist sizes results
from a non-perfect beam collimation and in case of Brewster-cut crystals from additional
astigmatism.

separately to the horizontal focal and to the mean focal radius. According to the
drop of intensity within the focus of the fundamental frequency beam, conversion
efficiencies decrease with increasing focal beam size. Scaled to the horizontal focal
size, Brewster-cut crystals in comparison clearly yield higher conversion efficiencies
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than rectangularly cut crystals of the same length, due to the elliptical focus with
larger extension along the direction of spatial walkoff. As it has been experimentally
proven that the resulting SH bandwidth only depends on the waist size along this
direction, the tighter focus in the orthogonal direction increases the intensity and
hence conversion efficiencies for achieving specific bandwidths. Also when scaling
the conversion efficiencies to the mean radial focus, and hence to equal intensities,
Brewster-cut crystals are expected to be advantageous for tight focusing, as evident
from the corresponding simulations. In order to account for elliptical focusing the
simulation model has been extended to three spatial dimensions. As Brewster-cut
crystals ensure a stronger overlap between the fundamental and generated signal
pulses, conversion efficiencies are higher than for corresponding circular focusing
conditions, as present in case of rectangularly cut crystals. Within the uncertainty
range of the measured data this difference could not significantly be resolved. In
contrast, the difference between the crystal cuts has been clearly proven when scal-
ing efficiencies to the horizontal radius, for which the achieved Fresnel loss-corrected
data show a good agreement with corresponding simulations. Deviations might
result from the spectral shape of the fundamental pulses, which strongly differs
from the assumed gaussian profile.

The attempt of introducing focusing conditions with even stronger ellipticity than
given by the Brewster cut geometry to further increase conversion efficiencies for
generating a specific bandwidth, did not yield significant improvements, whereas
beam profiles got strongly distorted.

Furthermore, the comparison of Brewster-cut crystals of different length has proven
shorter crystals to result in lower conversion efficiencies. With the longest investi-
gated Brewster-cut crystal of 6.0 mm length, slightly higher conversion efficiencies
could be observed, while a loss in beam quality occurred, most likely caused due to
a larger beam separation caused by the spatial walkoff. Based on these results, for
generating spectra with spectral bandwidths in the region of interest, Brewster-cut
crystals with 4.5 mm length yield a convincing compromise of spectral compression,
conversion efficiency and beam profile.

Experimental results - observation of the spatial chirp

During the experiments which have been carried out with the Raman laser system,
the available diagnostic tools further allowed to investigate the vertical distribution
of the contained frequency components. As the orientation of the spatial chirp has
been orientated into the vertical before entering the spectrometer, this feature allows
to qualitatively observe the spatial chirp, which was predicted by the simulations.
Different spectral components contained within the spectrum were found to be
positioned at different heigths on the 2D pixel array of the applied CCD camera,
forming a vertically tilted ellipse with respect to the wavelength axis.



4.4. Spectral pulse shaping 103

Conclusion pre-study

In conclusion, a convincing agreement of simulations and experimental results has
been achieved concerning the properties of the generated SH pulses. Based on
the results of the pre-study, efficient and selective generation of UV pulses with
a predictable bandwidth within the pursued spectral range between 300 GHz and
1000 GHz is possible. The uneven spectral shape of the pulses near 626 nm of
the customized laser system however requires special treatment concerning the
precise control of the resulting UV spectrum. As the formation of an externally
implemented elliptical focusing did not conveniently improve results, the use of
Brewster-cut crystals lead to highest conversion efficiencies for generation of the
desired spectral bandwidths. Within the investigated Brewster-cut crystals the
length of 4.5 mm lead to the best compromise between the spectral compression,
conversion efficiency and beam profile. Furthermore the predicted spatial chirp has
been proven, which allows a simple and efficient spectral pulse shaping as discussed
in section 4.4.

4.4 Spectral pulse shaping

As last key part of the Raman laser system the spectral shape of the UV pulses is
controlled. The spectrum of the customized frequency comb at 626 nm and hence
all generated UV spectra contain substantial sidelobes, as shown in the previous
section. In order to suppress spontaneous scattering and allow for appropriate Rabi
frequencies, blocking of the outer-lying frequency components close to resonance
with the excited states during the Raman process is essential, as discussed in section
3.3.3.

Adressing certain frequency components contained in a spectrum of a pulsed laser
beam usually requires special effort in spatially resolving them. A typically used,
established setup for pulse shaping is the so-called 4 f-configuration [115, 116]. It
consists of two gratings and two lenses. The collimated beam is sent on the first
grating by which the contained frequency components are angularly dispersed. The
first lens, located at a distance equal to its focal length f, focuses the components
to small diffraction limited spots at its back focal plane. The lens therefore converts
the angular dispersion of the grating into a spatial separation along one direction,
called Fourier plane. In this plane the separated frequency components can be
modified. The second similar combination of lens and grating then recombines
all frequency components into a collimated beam without introducing dispersion.
Such a setup is quite inefficient for UV beams since it requires passing UV gratings
twice, which typically have high losses when providing a strong dispersion.

Here instead, a simple, innovative, space-saving and nearly lossless shaping scheme
is implemented, based on the spatial chirp generated by spatio-temporal coupling
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Figure 4.20: Schematical illustration of the applied pulse shaping technique. Razor blades
located behind the nonlinear crystal address the outer-lying frequency components of the
spectrum, enabled by the angularly dispersed output signal.

effects inside the nonlinear frequency doubling crystal. As discussed in the previous
section, the combination of substantial temporal and spatial walkoff inside the
nonlinear crystal causes an angularly dispersed UV signal. The red and blue
components exit the end facet of the crystal under different angles «, as to be seen
in the simulation data shown in Figure 4.13. This feature allows to simply use razor
blades located behind the crystal in order to directly and selectively block the outer-
lying parts of the generated UV spectrum, as schematically demonstrated in Figure
4.20. Exemplary modified UV spectra, for which the sides of the spectrum have been
cut with this technique are presented in Figure 4.21. Shown is a normalized UV
spectrum, for which each side of the spectrum has successively and independently
been blocked. The spectrum corresponding to the closest positions of the razor
blades, for which no drop of the intensity of the main peak occurred provides
much steeper slopes on the side of the spectrum compared to the unmodified
spectrum. This improvement is of superior importance for reaching the desired
Rabi frequencies during the Raman process, as it allows to set a significantly smaller
detuning without suffering from the scattering rate. This strongly improves the
achievable Raman coupling strength, as discussed in section 3.3.3. For this reason,
the successful implementation of this nearly lossless spectral modification technique
is a great feature of the Raman laser system.

In combination with the previously discussed spectral compression technique,
allowing for selective and efficient control of the spectral bandwidth as well as the
tunability of the repetition rate and the wavelength, all requirements for efficient
9Be™ ion qubit control are fulfilled.
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Figure 4.21: Measurement data of an exemplary modified UV spectrum, for which the
sides of the spectrum have independently been cut with razor blades located behind
the SHG crystal as depicted in Figure 4.20. The black spectrum corresponds to the
unmodified spectrum, the blue one to an intermediate position of the razor blades and
the red spectrum refers to the closest positions of the razor blades for which no drop of
the intensity of the main peak occurred.
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CHAPTER 5

DEMONSTRATION OF YBE" ION QUBIT
CONTROL

For verifying the successful operation of qubit control using the developed pulsed
Raman system, a trapped-ion experiment is required, which allows loading, cooling,
state preparation and detection of beryllium ions. Since the high magnetic field
(anti-)proton g-factor measurement experiment is currently still under progress,
the Raman system has been tested at a different ion experiment in the group,
allowing for the demonstration of beryllium qubit control. The trap, the setup
and the experimental conditions will be briefly described in the first part of this
chapter. The second and third part discuss the experimental implementation and
demonstration of quantum control using the pulsed Raman system with the focus
on single-beam spin control in section 5.2 and the focus on spin-motion coupling
using two separated beams of the pulsed Raman laser system in section 5.3.

5.1 Surface-electrode ion trap experiment

The key element of the experiment at which the pulsed Raman laser has been
tested, is a segmented surface-electrode trap, where different electrodes arranged in
a planar geometry provide a confining trap potential, by which ions are captured
above the surface. Instead of using a laser-based technique, the control of the
quantum states of the ions is implemented by a single microwave meander-shaped
structure integrated into the trap. This microwave conductor produces the required
field configuration by design and is optimized for a qubit transition of “Be™ near
1 GHz at an externally applied magnetic field of 22.3 mT. Spin-motion coupling is
achieved by using a gradient in the near-field of the dedicated conductors being
near-resonant with the ion’s spin flip frequency [58, 59]. The combination of this
integrated microwave near-field method with the surface-electrode trap geometry
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Figure 5.1: Photographic image of the segmented surface electrode trap mounted on
a filterboard providing the voltage supply. The chip is located inside a Faraday cage
shielding stray electric fields. As a source for neutral atoms a beryllium wire is fixed to
the cage. Gaps in the mounting and the cage provide laser access to the wire and free
access from the wire to the trap center.

allows a scalable approach to quantum information processing and simulation with
trapped ions [117, 8, 118, 119].

5.1.1 Trap setup

The experimental apparatus is located at the Physikalisch Technische Bundesanstalt
(PTB) in Braunschweig. Preliminary work on the design and installation has been
carried out by M. Wahnschaffe and M. Kohnen and is described in [120]. Here a
brief overview of the relevant setup will be given.

As shown in Figure 5.1 the key part, the micro segmented surface trap, is mounted
onto a filterboard providing the voltage supply for the electrodes in order to create
the desired fields. Axial confinement of the ions is achieved by the electrostatic fields
generated by six direct current (DC) electrodes, while radial confinement is provided
by the radio-frequency (RF) potential of a single segmented electrode. These fields
allow to trap the ions 45 ym above the surface. The microwave (MW) electrode
generates a fixed magnetic near-field above the surface, designed to control the
ion’s internal and motional degree of freedom. Its geometry is optimized for control
of a field-independent hyperfine qubit transition, shown in Figure 5.4. Currents
applied to a further, so-called microwave carrier electrode (MWC), allow transfer
pulses in the hyperfine ground-state manifold of beryllium. The 5 mm x 5mm large
chip on the filterboard is surrounded by a Faraday cage in order to block stray
electric fields. A gold mesh covering the cage further shields electric fields. As
a source for neutral atoms a beryllium wire is fixed in an extended mounting of
the shielding cage. Gaps in the cage at trap center height ensure laser access to
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Figure 5.2: Photographic image of the overall setup with the vacuum chamber and the
water-cooled magnetic field coils.

the beryllium wire. A further opening is pointing towards the trap center, also
necessary for loading of beryllium ions, as described in section 5.1.3.

The entire filterboard is embedded in an ultra-high vacuum chamber to reduce
background collisions and increase lifetimes. Outside the vacuum enclosure directly
water cooled magnetic field coils generate the magnetic field of 22.3mT at the
position of the ion, which defines the quantization axis. Optical Viewports in the
vacuum chamber allow optical laser access to the trap center along and perpendicular
to the magnetic field direction. The orientation of the trap axes, defined by the
axial and radial direction, is rotated about these directions. The magnetic field
direction and the direction of the radial modes enclose an angle of 12° as depicted
in Figure 5.3. This ensures all normal modes of the ion to have some overlap with
a single laser cooling beam.

Below the vacuum chamber an imaging system is attached for state detection.
The state-dependent fluorescence light of the ions is directed either onto a CCD
camera! for alignment purposes or onto a photomultiplier module? for quantitative
data analysis. Detected photons are counted by an experimental control unit.
This unit is based on field programmable gate arrays (FPGA) and was developed
at the National Institute of Standars and Technology (NIST) in Boulder, CO.
Reconfigurable digital logic devices, able to generate arbitrary logic functions,
control the communication between the computer and the hardware components, as
described in detail in [121, 122]. The same system also generates the DC voltages
as well as the frequencies and phases of the microwaves. Furthermore it controls
the operation of acousto-optic modulators (AOM), required to control the laser
interaction.

IElectron Multiplying Charge-Coupled Device Camera, iXonEM+ from Andor Technology
Ltd., Belfast, UK
2H8259-01 from Hamamatsu Photonics K.K, Japan
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Figure 5.3: Schematical illustration of the orientation of the radial and axial trap axes
with respect to the magnetic field direction and the available laser access directions.

5.1.2 Beryllium qubit

Experiments with the surface-electrode ion trap are performed in the electronic
ground-state hyperfine manifold of “Be™ at an externally applied magnetic field
of 22.3mT. The relevant atomic structure is shown in Figure 5.4. The hyperfine
manifold of the 25} 5 ground state consists of eight sublevels, labeled in the |F, mp)
notation. The transition frequencies all lie in the MW regime, allowing for direct
microwave adressing. Qubit operations performed by the designed MW meander-
shaped structure are implemented on the first-order field-independent transition
between |[|) = [2,1) and |1) = |1,1) with a frequency splitting of wy = 27 -
1082.55 MHz. Due to the first-order insensitivity to magnetic field fluctuations this
transition provides long coherence times. While in this system the coherence time
has not been characterized yet, similar setups have seen coherence times of up to
one minute [79]. Between the 25,5, |2,2) ground-state level and the *Ps s, |3, 3)
excited-state level a closed-cycle transition near 313 nm exists, which is used for
state preparation, cooling and detection as described in the next section. Unlike
the levels of the ground-state manifold, the states of the excited 2P;; level at an
applied magnetic field of 22.3 mT are correctly described by the quantum numbers
my and my. The excited state of the closed-cycle transition will in the following
therefore be denoted by *Pyo, |mr = +3/2,m; = +3/2).

5.1.3 Loading and cooling

The loading scheme applied to this experiment is based on the simultaneous gener-
ation of a neutral beryllium atom cloud and the ionization of single atoms. The
neutral atoms are generated by irradiating a beryllium wire with a pulsed laser as
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Figure 5.4: Illustration of the 25, /2 ground-state hyperfine manifold of 9Be™ labeled in
the |F, mp) notation. Qubit operations controlled by the MW meander-shaped structure
are performed on the field-independent transition between |]) = [2,1) and |1) = |1,1)
with a frequency splitting of 1082.55 GHz. For laser cooling and detection the closed-cycle
transition between the 251/2, |2,2) ground state and the 2P3/2, |mr = +3/2,m; = +3/2)
excited state near 313 nm is addressed.

shown in Figure 5.5. This ablation laser has a wavelength of 1064 nm and its pulse
energy density is set to reliably remove beryllium atoms with a single shot. A hole
in the Faraday cage guides the removed atom flux towards the trap center. At the
same time an ionization laser is pointed over the trap center as shown in Figure
5.5. Its wavelength of 235 nm allows the ionization of single beryllium atoms by a
two-photon process. A first absorbed photon excites an atom from the ground state
into an excited state, while a second absorbed photon then enables the ionization
of the atom. Since the ionization takes place above the trap center, the atoms
are trapped by the applied oscillating and static electric trapping fields as soon as
they are ionized. Depending on the laser power, a single ion or several ions can be
loaded in a chain above the chip surface within a few seconds with this technique.

In order to prevent the ions from escaping the trapping potential and to increase
their lifetimes cooling is necessary. The reduction of the ion’s kinetic energy is
achieved by the interaction with a Doppler cooling laser, which is focused onto the
ions as shown in Figure 5.5. The wavelength is near 313 nm and red detuned from the
closed-cycle transition 25y s, |F' = 2,mp = 2) <> *Pyj5, |m; = +3/2,m; = +3/2),
shown in Figure 5.4. The cooling technique (e.g. |[37]) is based on a velocity-
dependent absorption process, being accompanied by an effective momentum kick
in the direction of the wavevector of the laser. By choosing different detunings, ions
with different velocities moving towards the laser beam can be addressed and their
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Figure 5.5: Sketch of the laser beam paths required for the loading and cooling sequence.
The ablation laser generates a neutral beryllium atom flux being guided towards the trap
center, where the ionization laser enables the ionization via a two-photon absorption
process. As soon as ionized, the atoms are trapped above the trap center and cooled by
interaction with the Doppler cooling beam.

oscillations be damped. During the loading process a larger detuning is chosen in
order to cool hotter ions. In a next step a near-resonant Doppler beam is applied to
further cool slower ions. It is essential that every motional mode has some overlap
with the laser beam direction, which is ensured by the angle between the trap
axes and the laser direction, as shown in Figure 5.3. The cooling achieved by this
technique is sufficient for the experiments performed with the pulsed Raman laser.

All lasers required for loading and cooling are described in detail in [120]. The
wavelength of 235 nm of the photoionization laser is provided by a frequency quadru-
pled 940 nm diode laser, as described in [123]. The laser system near 313 nm is
based on the scheme presented in [124, 123]. Sum-frequency generation of two
near-infrared CW lasers, at 1050 nm and 1550 nm, generates light at 626 nm which
is then frequency-doubled by a second-harmonic generation process to generate
the desired wavelength near 313 nm. In order to generate the near-resonant and
far-detuned Doppler cooling frequencies, the UV beam is divided into two parts.
The frequency of each beam path is shifted using an AOM, being separately con-
trolled by the experiment control unit. Subsequently the beams are recombined
and coupled into a UV fiber ([125, 126]) for mode cleaning and beam pointing
stability. Behind the fiber, the polarization is set and the overlapping beams are
focused into the chamber, as shown in Figure 5.7.
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5.1.4 State initialization and detection

After loading and Doppler cooling the trapped ions are initialized in the |2, 2) state
of the 25 /5 ground-state manifold of beryllium depicted in Figure 5.4. From this
state the ion can be prepared into any state of interest relevant for the experiment,
by applying a suitable sequence of microwave carrier pulses resonant with the corre-
sponding hyperfine transitions. The oscillating magnetic field of the microwaves can
drive magnetic dipole transitions. This coupling results in Rabi flopping between
the two states. By applying the microwave radiation for a time corresponding to a
m-pulse, the population can be transferred. More details on this can be found in
[120].

Once an experimental sequence including the interaction with the pulsed Raman
laser is finished, the population of the prepared state is determined by transferring
its population back to the initial |2, 2) state of the ground-state manifold. A laser
beam resonant with the closed-cycle transition 2S) s, |F = 2,mp = 2) <> *Pys,
|m; = +3/2,m; = +3/2) induces a state-dependent fluorencence signal, which is
detected on a photomultiplier module and used for data analysis. If the |2,2) state
in the ground-state manifold is populated, the detection laser is resonant and the
ion will cycle between the ground and excited state and scatter photons. If the
state is not populated, the laser is far off-resonant and no scattered photons appear.
The state of the ion is therefore indicated by the presence or absence of scattered
light.

The detection laser beam is generated by adjusting the frequency of the near-
resonant Doppler cooling beam to resonance with the cycling transition.

5.2 Single-beam spin control

In this section the demonstration of spin control using the pulsed Raman system
will be presented. A single train of laser pulses fulfilling the Raman resonance
condition will therefor drive Raman transitions between two sublevels of the ground-
state manifold of “Be". The experimental implementation under given boundary
conditions of the existing experiment, measurements and results will be discussed.

5.2.1 Qubit choice

In order to perform stimulated Raman transitions between two ground-state sub-
levels of “Be™, a qubit must be chosen, for which the resonance condition can be
fulfilled by a single beam of the pulsed Raman laser. Furthermore the accessible free
laser ports of the existing setup must allow the realization of required polarizations
for reaching appropriate Rabi frequencies on the chosen qubit transition.
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Figure 5.6: Overview of all transitions frequencies between the hyperfine levels of the
25, /2 ground-state manifold of 9Be™ at an applied magnetic field of 22.3mT. Single-
beam spin control with the pulsed Raman laser can be achieved on transition e with
) =|F =2,mp =0) and |1) = |F = 1,mp = 0). The Raman resonance condition is
fullfilled by vg = 1397.562 MHz = q - frep = 14 - 99.826 MHz.

Resonance condition

As described in section 3.2.2, Rabi oscillations with a single pulsed laser beam can
occur if the qubit splitting is an integer multiple of the repetition rate of the laser:

Wy =¢q " Wrep ;4 EZL (5.1)

The frequency comb then contains teeth which are separated by the qubit splitting.
A photon can be absorbed by one comb tooth and emitted into another one, in
order to drive Raman transitions. The Rabi frequency will then be given by the sum
over the pairs of comb teeth contributing to the process. Fulfilling this resonance
condition is the most stringent requirement for demonstrating spin control. Due
to the limited tuning range of the laser’s repetition rate, frepmin = 99.82 MHz and
frep.max = 100.21 MHz, only one transition in the ground-state manifold of beryllium
at an applied magnetic field of 22.3mT exists, for which the resonance condition
can be fulfilled with a single train of pulses. This transition occurs between |2,0)
and |1,0), as shown in Figure 5.6. The frequency splitting of vy = 1397.562 MHz
can be achieved with a repetition rate of fe, = 99.826 MHz multiplied by ¢ — 14.

Magnetic field sensitivity

The |2,0) <> |1,0) qubit transition is magnetic field dependent. Its magnetic field
sensitivity is given by the derivative of the energy levels, described by the Breit-Rabi
formula in Equation 3.64, with respect to the magnetic field. While both states
of the field-independent transition |2,1) <> |1,1) exhibit the same slope at the
applied magnetic field of 22.3mT, on this transition the slope of each qubit level
has a different sign, as to be seen in Figure 3.9 discussed in section 3.3.1. The
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resulting magnetic field sensitivity of the transition is given by 1.253 MHz/gauss. As
consequence small fluctuations in the magnetic field change the qubit splitting. In
order to keep these fluctuations as small as possible, a current servo loop, controlling
the generation of the magnetic field, has been built. Further the temperature of the
water which is cooling the magnetic field coils has been stabilized to +0.01°C. For
this the existing water reservoir has been enlarged and an accurate temperature
sensor has been implemented.

Polarization and beam geometry

In order to identify the optimal polarization of the Raman beam maximizing the
Raman coupling strength, the sum over all excited state Raman contributions
must be calculated. Coupling of the |2,0) and |1,0) qubit states to excited states
of the p-orbital can in general be obtained by any atomic polarization. The
relevant matrix elements, scaled to the matrix element of the closed-cycle transition
2S1j9, |[F = 2,mp = 2) <> 2Py, Imy = +3/2,m; = +3/2), their detunings
and corresponding polarizations are summarized in Table 5.1. As discussed in
section 3.3.2, the existence of several excited states can lead to destructive quantum
interferences between different Raman contributions. A simple approximation can
be obtained by neglecting the accurate detunings of the p-levels and applying the
appropriate Clebsch-Gordan coefficients, given by the angular coupling coefficient
in Equation 3.68. Following the notations shown in Figure 3.12 the Rabi frequency
according to Equation 3.60 of the qubit transition |2,0) <> |1,0) is found to be:

Wis
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With gy being the time-averaged, resonant single-photon Rabi frequency of the
closed-cycle transition, wg the fine-structure splitting between 2P ;o and ?Pj 5, and
e_ and e, the left and right circular polarized components of the Raman beam.
The optimal polarization for achieving the maximum Raman coupling is hence
given by either a pure o™ or a pure o~ polarization. In contrast, the contributions
for a superposition of ¢t and o~ destructively interfere. As consequence the
Rabi frequency is reduced by three orders of magnitude compared to the Rabi
frequency which could be achieved under the same assumptions with a pure atomic
o polarization. Also the sum over the contributions of 7 transitions is nearly zero,
as the different contributions have nearly the same value, but different signs. For
demonstrating Rabi oscillations on the |2,0) <> |1,0) qubit transition it is therefore
strongly desirable to induce pure atomic o couplings. This can be achieved with a
circularly polarized laser beam whose direction is parallel to the quantization axis
of the ion, given by the magnetic field direction.
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ground state excited state emlea;tr:lreizt detuning polarization
1) 2Py fmy=—%,mr=—3% —0.41245  + 0.379 o
1) ’Py |mJ:f%,m1: +3) 4032207+ 0414 ™
) 2Py fmy= -3, +2) 4038071+ 0.460 ot
[4) 2P% me_+§,m1: 3 +0.58092  + 0.684 ot
I4) 2Py [my=+3,mr=-%) 047917+ 0.730 ™
) 2Py [my=+%,mr==%)  +0.11892  + 0.765 o
1) 2Py my=—3,my=+3)  +0.84989  +197.918 o
[4) 2P3 Imy=-%,my=+3)  —0.69331  +198.334 ™
1) QP% Imy=-13, m,773> +0.30565  +198.334 o~
[4) 2Py Imy=+3.mi=-3)  —043126  +198.750 ™
I4) 2Py [my=+%,mi=+3)  —0.48981 +198.751 ot
1) Py [my=+3,mi=~3 —0.52696 +198.166 ot
[T) 2Py fmy=—5,m1=~3 —0.66737 - 1018 o
1) 2Py [my=—3,my =+3)  —047917 — 0.983 7r
[ 1) 2Py fmy=—%,mi=+3)  —0.23529 — 0937 ot
[ 1) QP% Imy=+%,mi=+3%)  —0.35903 — 0.713 ot
1) 2Py fmy=-+3,mi=—13 —0.32207 — 0.668 ™
[1) 2P, |mJ:—|—%,m1:—% +0.19242 — 0.633 o
) 2Py Imy=—-%,mi=+3)  —0.52695 +196.520 o
[1T) 2P3 lmy=—%mr=+%)  +0.43126 +196.937 s
1) 2P; |my=— é,mz——% +0.48981  +196.937 o
[1) 2Py my=-+3,mr=-3)  —0.69331  +197.353 ™
[1T) 2Py [my=+3. mr=+3)  +0.30566  +197.353 ot
[1) 2Py [my=+3,my=~3 —0.84989 +197.769 ot

Table 5.1: Table of relevant Raman coupling contributions between the ground state qubit
levels, |[}) = |F =2,mp =0) = |my=—-1/2,m; =+1/2) and |[1) = |F =1,mp =0) =
|mj =+1/2,m; = +1/2), and levels of the excited p-states at an applied magnetic field
of 22.3mT. Shown are the corresponding transition matrix elements being > 10~2 scaled
to the matrix element of the closed-cycle transition between the 25, /25 2,2) and the ’p; /2
|lmr = +3/2,m; = +3/2) level as well as the respective detunings in GHz referenced
to the transition between the 2.5 /2 and ’p /2 line centers and the corresponding atomic
polarizations.
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Figure 5.7: Overview of the experimental setup for single-beam spin control. The spectrally
modified pulsed UV Raman beam is delivered free space from one opticle table to the
optical table where the ion experiment is located. Here the beam passes a single-pass
AOM setup for switching and a two-lens telescope for alignment purposes. The Raman
pulse train is then overlapped with the CW cooling and detection beam by entering the
side facet of an a-BBO Glan polarizer and focused onto the ion in counterpropagating
direction with respect to the magnetic field. The polarizations are set to o for the CW
and to o~ for the pulsed beam.

5.2.2 Experimental setup

An overview of the entire experimental setup is shown in Figure 5.7. The key
parts of the Raman system are placed on a separate optical table. The generated
and spectrally modified pulsed UV beam is then sent to the table, where the ion
experiment is located. Here the overlap with the cooling and detection beam, an
alignment telescope and an AOM for switching is implemented. In order to reduce
beam pointing instabilities, induced by separate vibrations on either one of the
tables, both optical tables have been unfloated.

Raman system

The Raman laser system, as described in detail in chapter 4, allows for adjustment
of the wavelength and the spectrum required for optimizing the performance of
Rabi oscillations between the |2,0) <+ |1,0) qubit states at the applied magnetic
field of 22.3mT. Based on simulation results presented in section 3.3.3, the optimal
Raman detuning and spectral properties have been estimated.

The exact output wavelength is tuned by changing the temperature of the SFG
process generating light near 626 nm. Due to the subsequent frequency doubling
this sets the UV wavelength and hence the detuning from the excited states during
the Raman process.

For second-harmonic generation a single-pass process in a 4.5 mm long Brewster-cut
BiBO crystal is applied. Here a focusing strength was chosen which results in a
compromise between a high SHG conversion efficiency and appropriate spectral
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properties. Due to the possibility of accurately blocking unwanted frequency
components, a broader spectrum with higher available average power has generally
been preferred. The subsequent spectral shaping is realized with a razor blade
mounted closely behind the BiBO crystal as discussed in section 4.4.

Switching

In order to control the experimental probe duration of the Raman laser, an AOM
in single-pass configuration is implemented. The switching is operated by the
experiment control unit. To ensure precise timing it is locked to an external 10 MHz
reference provided by the PTB. The frequency and orientation of the AOM are not
of importance, since the Rabi oscillations are driven by pairs of comb teeth of the
comb spectrum. An absolute shift of the entire comb structure due to the AOM
does not affect the spacing between the comb teeth and is therefore not relevant.
Due to availability a 110 MHz AOM? has been applied, implemented as down-shift
and enabling efficiencies on the order of 65 %.

Beam alignment

In order to not affect the existing setup, the alignment of the pulsed Raman laser
beam has been carried out by a two lens telescope, located before the a-BBO Glan
polarizer combining the pulsed Raman beam with the CW cooling and detection
beam. Besides generating a collimated beam with desired beam size, it has been
designed such that a translation of the telescope’s first lens results in a translation
of the beam at the position of the ion. The amount of the translation is given
by the ratio of the focal length of the second lens of the telescope and the focal
length of the lens before the vacuum chamber, fion., = 150 mm. In order to obtain
a sensitive movement the focal length of the second lens of the telescope should
hence be chosen as large as possible.

Beam overlap

The overlap of the beams is implemented by sending the pulsed laser beam through
the side facet of an a-BBO Glan polarizer, which is applied in order to clean the
polarization of the cooling and detection beam. The polarization of the pulsed
Raman laser beam needs to be orthogonally linear compared to the p-polarization
of the through going CW beam. By this up to 60 % of the light could be overlapped
with the cooling and detection beam. The following A/2 and \/4 waveplates are
set to generate ot light for the cooling and detection beam, in order to drive
transitions on the closed-cycle transition between the 2S5, |F = 2,mp = 2)
and ?Py)5, |m; = +3/2,m; = +3/2) level. The orthogonal, linear s-polarization

3Gooch and Housego, I-M110-2C10BB-3-GH27
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of the pulsed Raman beam is therefore converted into circularly polarized light,
corresponding to atomic o~ transitions.

5.2.3 Measurements

In order to measure Rabi oscillations the Raman beam is aligned onto the ion and
the resonance condition needs to be matched. A pre-alignment is carried out by
shortening the duration of level depletion induced by near-resonant components of
the spectrum. A more accurate alignment is subsequently performed by maximizing
the dephasing induced by the laser during a spin-echo based Ramsey experiment.
As an additional preparation step the accurate qubit frequency splitting under
experimental conditions is determined. Imperfect experimental conditions lead
to an offset of the frequency compared to the theoretical expected frequency
according to the Breit-Rabi formula. This frequency difference can be measured in
advance by using microwaves. A rough measurement is performed by scanning the
resonance, whereas a more precise resolution is achieved with a Ramsey experiment.
Furthermore the off-resonant laser field of the Raman beam induces a Stark shift of
the qubit levels, which has to be considered. The amount can be calculated by the
phase shift, measured with the spin-echo based Ramsey experiment used for the
beam alignment. Based on these measurements the repetition rate of the laser is
set. A scanning of the Raman resonance condition is subsequently implemented by
scanning over the detuning of an off-resonant MW field being simultaneously applied
with the laser irradiation. The parameter settings obtained by this procedure allow
the realization of Rabi oscillations, where the Raman resonance condition is fulfilled
by the simultaneous presence of the Raman laser beam and the MW tuning field.

Typical experimental sequence

For a typical experimental sequence a single beryllium ion is trapped and initialized
in the |2, 2) state as described in 5.1.4. In order to perform Rabi oscillations and
other preparation measurements on the |2,0) <> |1,0) qubit transition, the ion is
prepared in the |2,0) state by applying a sequence of two resonant MW pulses as
shown in Figure 5.8. The first one transfers the population to the |1,1) and the
second one to the |2,0) level. Following the application of the Raman laser beam,
the population of |2,0) is transferred back to |2,2) for detection, as described in
section 5.1.4. To avoid coexistent off-resonant transitions from the |2, 1) state into
the 2Py, manifold during detection, the population from this state is shelved to
either the |1, 1) state or the |1,0) state before applying the detection beam.

State depletion

Since the qubit transition is field sensitive and the transition frequency is not
stable over time, the beam is aligned by using a process which does not depend
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Figure 5.8: Hyperfine level structure and transitions of “Be™ relevant for the demonstration
of single beam induced carrier Raman transitions on the |]) =|2,0) <> |1) = |1,0) qubit.
After loading and cooling, the ion is initialized in the |2,2) state. A sequence of two
resonant microwave carrier (MWC) pulses transfers the population into the |2,0) state.
Subsequent to probing the ion with the Raman laser, the population of the |2,0) state
is transferred back to the initial |2,2) state and detected by collecting the fluorescence
signal induced by the detection beam, being resonant with the closed-cycle transition
between S /o, |F'=2,mp = 2) <> P39, Im; = +3/2,m; = +3/2).

on the frequency resonance condition. A simple pre-alignment has been carried
out by measuring the level depletion induced by near-resonant components of the
spectrum. For this the UV spectrum was completely uncut in order to contain as
many frequency components as possible close to resonance with the excited states.
The ion can be prepared in any state of the ground-state manifold from which
coupling to an excited state occurs at the applied laser polarization. Here the |2, 0)
qubit state was chosen. Illuminating the ion with the laser beam partially populates
the excited states, which then decay into multiple levels of the ground-state manifold.
By this the population of the prepared state decreases. By minimizing the time in
which the level population decreases, the beam can be aligned onto the ion. After
this pre-alignment the near-resonant components of the spectrum are blocked by
translating the razor blade behind the SHG crystal, until no depletion occurs over
a timescale of interest.

Ramsey experiments

As a further preparation step a Ramsey experiment is performed. This allows a
more precise alignment of the Raman beam onto the ion and also the measurement
of the Stark shift induced by the off-resonant laser beam. The amount of Stark
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Figure 5.9: Ramsey phase scan used for the alignment of the Raman beam and for the
calculation of the Stark shift. The solid line represents the level population of the |2,0)
state depending on the phase of the second applied §-pulse without influence of the Raman
laser beam. The data points correspond to the phase change induced by irradiation of
the Raman laser beam. The phase shift Ay between both curves has been maximized in
order to align the Raman beam.

shift is required for setting the correct repetition rate of the laser, fulfilling the
Raman resonance condition. It furthermore allows an estimation of the electric
field of the laser at the position of the ion. From this the expected Rabi frequency
and the expected w-time for Rabi oscillations can be calculated.

The measurement is based on a comparison of phase accumulation in a superposition
state of the qubit levels. The phase accumulated during a specific time without
laser irradiation is compared to the accumulated phase collected during the same
amount of time including the effect of the off-resonant laser light. Due to the energy
level shifts caused by the laser, the rate of phase accumulation is changed. The
dephasing therefore in conclusion allows the calculation of the Stark shift induced
by the Raman laser. The basic sequence of such an experiment is as follows: The
ion is prepared in the |2,0) state of the qubit. A Z-pulse, resonant with the [1,0)
qubit level, sets the ion into the superposition state. The off-resonant laser beam is
then applied for a certain time ¢;. Subsequently the accumulated phase is measured
by applying a second J-pulse and detecting the population of the [2,0) state. By
scanning over the phase of the second F-pulse and comparing the measurement
with laser irradiation to an identical measurement without the influence of the
laser, the dephasing Ay due to the laser can be calculated, as exemplarily shown
in Figure 5.9. The corresponding change of transition frequency is given by:

Ay

A pu—
f 27T't1

(5.3)

The sign of the transition frequency shift can be calculated separately as described
in section 3.1.4. The calculation of the equivalent Stark shift of the qubit transition
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Figure 5.10: Illustration of a Ramsey sequence applied for beam alignment and Stark shift
estimation, including a single spin-echo 7-pulse. The ion is prepared in state |a) of the
transition between |a) and [b). A first F-pulse resonant with the transition to |b) sets the
ion into a superposition state. Within the first time period of ¢*, the laser is applied for a
duration of ¢; < t*, whereas in the second time period of equal duration t*, dephasing of
the unperturbed atomic transition is collected. The spin-echo m-pulse inbetween cancels
out dephasing caused by the influence of magnetic field fluctuations and other sources.
The total accumulated phase is measured by applying a second F-pulse and subsequently
detecting the population of |a).

allows an estimation of the electric field of the laser at the position of the ion. With
this effective field the expected Rabi frequency can be calculated.

In order to reduce the influence of magnetic field fluctuations, spin-echo pulses are
applied during each Ramsey sequence. The implementation of a single spin echo
is depicted in Figure 5.10. The time between the Z-pulses is separated into two
parts of same length t*, whereas in between a resonant spin-echo m-pulse is applied.
During the first period of t* the laser is employed for a time t; < t*, whereas during
the second period of ¢* dephasing of the unperturbed atomic transition is collected.
Because of the m-pulse applied in between, dephasing due to other sources, such as
the drifts in the bias field, can be canceled out. By implementing several spin-echo
sequences, the total amount of time during which the laser is illuminating the
ion can be increased, without being limited due to the low coherence time of the
field-dependent qubit. The longer duration of laser interaction leads to a larger
phase shift, which allows a more accurate alignment of the beam.

Carrier transition resonance scan

Due to the magnetic field sensitivity of the qubit transition, its frequency and hence
the repetition rate required to fulfill the resonance conditions varies over time. Since
the repetition rate of the Raman laser cannot be changed on a fast timescale and
any adjustment requires realignment of the laser beam onto the ion, an alternative
approach to tune the resonance has been implemented. An off-resonant MW field
was applied simultaneously with the Raman laser interaction. The oscillating
magnetic field induces an AC Zeeman shift of the qubit levels, depending on the
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Figure 5.11: Calculated AC Zeeman shift for the |2,0) > |1,0) qubit transition, depending
on the detuning frequency of the off-resonant MW tuning field, for ¢ . = 3 us.

applied detuning [127, 59]. By scanning over the detuning within a reasonable
range, a resonance scan of the Raman carrier condition is implemented.

The dependence of the AC Zeeman shift on the MW detuning can be experimentally
obtained by performing a Ramsey experiment as described before. Instead of
applying the Raman laser for a duration ¢, and determining the Stark shift induced
by the laser, here the MW-field is implemented for a duration tyw and the AC
Zeeman shift is obtained. By scanning over tyw, the time required to implement
a phase shift of Ay = 7 was determined, denoted as ¢, for each applied MW
detuning. According to the relation given by Equation 5.3, the corresponding
transition frequency shift is given by:

™

ACZS =

ot (5.4)
The resulting calculated dependence of the AC Zeeman shift (ACZS) on the applied
detuning of the MW field Aywe is shown in Figure 5.11.

To not accidentally drive transitions with the applied MW field, the detuning
should not be chosen too close to resonance. The appropriate tuning range of the
ACZS for the applied power level of the MW field during the experiments was
approximated between the absolute values of 2kHz and 38 kHz. To make use of the
largest possible scanning range, the value corresponding to half of the maximum
ACZS tuning range, denoted as Avaczs, is taken into account when setting the
repetition rate of the laser:

frep = (VBreit-Rabi + AZ/Bl:{,of'fset + AI/Stark shift + AVACZS)/14 (55)

Here vpreitrabi 1S the theoretical expected level splitting according to the Breit-
Rabi formula in Equation 3.64, Avpg ofiset denotes the frequency deviation due to
imperfect experimental conditions and Avsiasnire 18 the Stark shift caused by the
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Figure 5.12: Resonance scan for a carrier Raman transition on the |2,0) <> |1,0) qubit.
Shown is the population of the |2,0) state as a function of the AC Zeeman shift caused
by the additionally applied off-resonant MW field. The solid line shows a fit of the data.
At a frequency near -26 kHz, the simultaneous presence of the MW tuning field and the
Raman laser beam fulfills the carrier resonance condition and the population of the |2, 0)
state drops.

Raman laser. For the resonance scan the Raman laser and the detuned MW field
are applied for a duration equal to the expected m-time of the Rabi oscillations,
estimated by the previously performed Ramsey experiment. By scanning over the
detuning of the MW field within the discussed range and detecting the population
of the prepared |2,0) state, the resonance for the carrier Raman condition was
obtained, as exemplarily shown in Figure 5.12. On resonance the simultaneous
presence of the MW tuning field and the Raman laser beam fulfills the carrier
Raman condition and the population of the prepared state drops.

Rabi oscillations

To drive Rabi oscillations the AC Zeeman shift is set to the value derived from
the previous resonance scan. The simultaneous presence of the corresponding MW
tuning field and the Raman laser beam then fulfills the carrier Raman resonance
condition and causes the population to oscillate between the two qubit states. The
resulting Rabi oscillations are demonstrated in Figure 5.13. Shown is the population
of the |2,0) qubit state depending on the laser probe duration. The 7-time of the
data is t, = 29.04 us £0.07 us. It has been optimized by continuously uncutting
the spectrum in order to include as many near-resonant frequency components
as possible, as long as no drop of contrast could be measured. The decoherence
time has not been influenced by this and is approximated to 233 us 423 us. The
repetition rate of the laser was measured to be fiep = 99.845515 MHz, fulfilling the
resonance condition with ¢ =14 and a qubit splitting of vy = 1397.837210 MHz.
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Figure 5.13: Carrier Rabi oscillations on the |2,0) <+ |1,0) qubit transition induced by
a single train of the pulsed Raman laser. Shown is the population of the |2,0) state
depending on the laser probe duration. The fit (solid line) corresponds to a m-time of
tr =29.04 us £ 0.07 pus.

5.2.4 Discussion

The realization of Rabi oscillations driven by a single beam of the pulsed Raman
laser system, demonstrates the successful control of the ion’s internal degree of
freedom. The data illustrate the first coherent spin control using a single train of
the optical frequency comb. In this section, the Rabi frequency will be compared
to simulations and sources of decoherence as well as improvement strategies will be
discussed.

Comparison with simulations

The Rabi frequency depends linearly on the average laser power and the inverse
of the focal beam size. Furthermore the detuning, the spectral bandwidth and
the pulse duration influence the rate of Rabi oscillations. In order to compare the
measurements with simulations these parameters have been extracted from the
experimental setup.

The average power of the beam has been measured before the beam overlap with
the cooling and detection beam is carried out. The measured value of 14.5 mW
at this position is reduced due to losses induced at the following two mirrors, the
a-BBO Glan polarizer, two waveplates, one lens and the vacuum window, such
that the power at the position of the ion is estimated to be 8.0 mW. The losses
are expected to be dominated by the a-BBO Glan polarizer showing a maximal
achievable efficiency of 60%. Since the optimized alignment onto the ion might
not coincide with perfect incoupling into the polarizer, an uncertainty range of +
0.5mW is estimated for the simulations.

In order to estimate the focal size of the Raman beam at the position of the ion, a
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Figure 5.14: UV spectrum of the Raman laser as present during the measurements of the
carrier Rabi oscillations on the |2,0) <> |1,0) qubit transition, shown in figure 5.13. The
peak wavelength of Ay = 312.785 nm corresponds to a Raman detuning of A = 1.260 THz
from the line center of the 2P, /2 level. The main peak of the spectrum is fitted by a
gaussian function (solid line) which corresponds to an effective spectral FWHM bandwidth
of Avpwam = 940 GHz. Within the gaussian fit of the main peak 73.5% of the measured
average power is contained.

flip mirror was placed at a free position before the Raman beam is overlapped with
the cooling and detecting beam. At the distance corresponding to the distance
at which the focal lens is positioned, the beam size and divergence angle were
measured using a beam cam®*. By adjusting the beam height to graze across the
chip surface, the extension of the beam in the horizontal direction could further
be visualized on the CCD camera attached to the imaging system. This allows
an additional estimation of the true beam extension at the position of the ion
by comparing its size to the segmented trap structure. The focal size along this
direction can in general be set as tight as possible for the applied focusing lens, but
is for the pulsed Raman laser beam limited by the size of the side window of the
a-BBO Glan polarizer. The focusing strength in the vertical is further geometrically
limited by the trap design, allowing for a minimum focal radius of approximately
15 pm — 20 pm. In order to obtain a tight focus, the beam profile was set to provide
an ellipticity of e~ 0.5, with a mean focal radius of 20 um + 5 um. The large
uncertainty range is assumed because the extension of the beam visualized on
the trap structure appeared to be larger than theoretically expected and due to a
non-perfect beam collimation.

The spectral properties of the beam can be extracted from the measured spectrum,
which is shown in Figure 5.14. The spectral bandwidth of the main peak at
Ao = 312.785nm is fitted by a gaussian function with an effective bandwidth of
Alpwam = 0.31 nm, corresponding to a spectral bandwidth of Avepwyy = 940 GHz.

4DAT-BladeCam-XHR-UV
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Figure 5.15: Numerical simulations comparing the measured data (green line) of the
single-beam carrier Rabi flopping with simulations. Shown is the calculated m-time for
three different detunings depending on the squared electric field amplitude Eg scaled to
the mean values resulting from the approximated average power, focal radius and pulse
duration, Eg / Eg. Assumed is a gaussian envelope function as shown in Figure 5.14 with
an average power of P,, =8.0mW 4 0.5mW, a focal radius of wg = 20 yum £+ 5 ym and a
pulse duration of 7ewinm = 2.0 ps £ 0.5 ps. The influence of the pulse duration in terms
of temporal broadening compared to the time-bandwidth limited pulse duration is taken
into account, by keeping the spectral width of Avpwpym = 940 GHz constant and reducing
the intensity respectively. The resulting lower limit according to the assumed uncertainty
range yields Eg / E’g ~ 0.5 and an upper limit of Eg / E’g ~ 2.5. The black data points
correspond to the measured detuning of A = 1.26 THz. The red data points correspond
to a detuning of A = 1.26 THz-0.15THz and the blue data points to a detuning of
A =1.26 THz+ 0.15 THz. The solid lines represent guides to the eye.

The Raman detuning is determined by the distance between the peak of the
spectrum and the line center of the *P /5 level at 313.1974 nm [83]. This detuning
is calculated to be A = 1.26 THz.

For the direct measurement of the pulse duration no diagnostic tools were available.
Assuming time bandwidth limited pulses a lower limit can be estimated from the
measured spectrum. For the fitted gaussian pulse this lower limit is near 0.5 ps.
According to the simulations presented in Figure 4.15, pulse durations near 2.5 ps
are expected for the applied crystal length and focusing strength. Based on an
estimation performed with the two-beam approach presented in section 5.3, a
minimum pulse duration of 1.6 ps is assumed leading to an expected pulse duration
of Tewum = 2.0 ps £ 0.5 ps for the simulations.

Figure 5.15 shows the calculated m-time for different detunings according to the
assumed uncertainty range, depending on the squared electric field amplitude E?
scaled to the squared electric field amplitude given by the approximated average
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laser power, focal width and pulse duration, E2/E2. A gaussian-shaped spectrum
has been applied, providing the effective bandwidth of the main peak of the
measured spectrum as shown in Figure 5.14. The power contained in the far
detuned spectral components has been neglected. The measured 7-time lies within
the assumed uncertainty range of the parameters influencing the squared electric
field amplitude for the measured detuning of 1.26 THz. Assuming an uncertainty
of 0.05nm corresponding to 150 GHz for the absolute frequencies determined with
the spectrometer, the simulation data for the lower boundary concerning the
detuning slightly disagrees with the measured data, whereas for the upper boundary
concerning the detuning an excellent agreement is shown. Not taken into account in
the simulations are possible deviations of the measured spectral bandwidth and the
chirp of the pulses. Based on the agreement between experiment and simulation,
the chirp seems not to significantly influence the quantum control of beryllium
ions for the single-beam approach. This might be supported by the low value
of ¢ =14 fulfilling the resonance condition. Compared to the entire width of the
spectrum, with almost 10000 contributing comb teeth within the FWHM and
about 22000 contributing comb modes in total, the spacing between the pairs of
teeth contributing to the Rabi frequency is quite narrow, which therefore possibly
eliminates the influence of the chirp.

Sources of decoherence

The amplitude of the Rabi oscillations measured with the frequency comb decreases
on an unexpectedly short timescale. A dominant source of decoherence during
Raman transitions is typically given by scattering induced by the off-resonant
laser irradiation. The scattering is mainly caused by the near-resonant frequency
components of the spectrum. This effect has been applied for the pre-alignment
of the Raman beam. By the subsequent blocking of the near-resonant spectral
components, the Raman scattering should have been eliminated on the chosen
timescale, which by far exceeds the measured decoherence time. Since furthermore
no change of the decoherence could be obtained by varying the amount of blocked
near-resonant spectral components between different measurements of Rabi flopping,
the limiting effect during the Raman process is expected to have a different source
than the off-resonant laser irradiation. Simulations further conform this assumption.
The calculated probability of scattering during the corresponding 7-time is between
0.71-107* and 3.34 - 10~ for the assumed values within the discussed uncertainty
range.

For comparison, Rabi flopping with the MWC electrode has been performed, under
conditions providing a comparable sensitivity to decoherence as expected for the
pulsed Raman laser. For this the MWC drive has been attenuated in order to
result in a similar 7-time near 30us. Thus the MWC drive is expected to exhibit
a comparable susceptibility to frequency fluctuations as the pulsed Raman laser.
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Figure 5.16: Measurement data of carrier Rabi flopping on the |2,0) <> |1,0) qubit
transition induced by a slow MWC pulse for decoherence demonstration purposes. Shown
is the population of the prepared |2,0) state depending on the probe duration of the
attenuated MWC pulse. The solid line shows a fit of the data. The attenuation has been
set to result in a comparable 7w-time to the one obtained by the Raman laser induced
carrier Rabi flopping shown in Figure 5.13, being near 30 us. On these time scales the
decoherence time for the use of microwaves is found to be limited by the same amount as
observed during measurements with the Raman laser. The Raman laser beam can hence
be excluded as the main source of the observed strong decoherence.

The measured qubit evolution under these conditions is shown in Figure 5.16. The
data prove the MWC drive to suffer from a similar amount of decoherence. The
Raman laser can therefore be excluded as main source causing the strong observed
decoherence.

Decoherence of the qubit states can also be caused by fluctuations in the local
magnetic field. A possible reason could be changes in the geometry of the coils
induced by fluctuations of the cooling water temperature flowing around them. To
test the dependency of the qubit splitting on the water temperature, a systematic
test series has been performed. The qubit splitting has been measured for different
temperatures of the cooling water, as shown in Figure 5.17. The measurements lead
to a dependency of —48.4kHz/°C for the |2,0) <> |1,0) qubit transition. Compared
to the observed temperature fluctuations of £0.01 °C, this can also be excluded as
main source of decoherence.

Summarizing, the actual dominating source of decoherence could not be identified.
The limiting effect could nevertheless be caused by fluctuations in the local magnetic
field having a different origin than the cooling water temperature, as for example
noise on the currents to the coils or other ambient field fluctuations, such as from
near-by transformers in power supplies. Nevertheless, within the severe experimental
constraints, these results successfully demonstrate control over the internal states
of the ?Be™ ion using the pulsed Raman laser system.
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Figure 5.17: Experimental data of the magnetic field dependence on the water temperature
cooling the magnetic field coils measured on the |2,2) <> |1,1) qubit transition. The
data fit (solid line) yields to a frequency change of -48.4kHz/°C for the investigated
|2,0) <> |1,0) qubit transition, wherefor the observed temperature fluctuations of £0.01°C
can be excluded as main source of decoherence.

Improvement strategies

Improvements could in general be pursued in terms of reaching higher Rabi fre-
quencies and longer coherence times. A reduction of the magnetic field sensitivity
for the existing experimental setup reducing decoherence could be achieved by
operating with a different magnetic field strength. This modifies the qubit splitting
itself as well as the magnetic field sensitivity of each state. This approach has not
been pursued, since only a factor of two could be gained for choosing appropriate
settings still allowing qubit control with a single pulse train of the Raman laser
and further because a change of magnetic field requires readjustment of several
components of the existing experiment.

Strong improvements can instead in general be expected for enhancing the Rabi
frequency, by which also the sensitivity to field instabilities would be reduced. Here
a systematic survey of the optimal detuning and the optimal spectral distribution of
comb modes gives room for strong improvements. Since a change of wavelength is
slow and requires a realignment of the beam, no systematic optimization has been
performed so far. Also an increase of intensity at the position of the ion would lead
to stronger Raman couplings. Here an independent beam line, allowing for tighter
focusing, a shorter optical path length and less power losses due to additionally
required optical components would enhance the intensity. By additionally applying
a special crystal coating, the UV Fresnel losses of 31 % for Brewster-cut crystals
could also be strongly reduced. Further, once optimal parameters concerning the
spectral bandwidth have been found, the UV power could possibly be increased
by applying an enhancement cavity during SHG [105, 106], as widely established
for CW lasers [123, 128] and also for pulsed lasers [129] in order to enhance the
generated UV power.
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5.3 Multiple-beam qubit control

This section deals with the demonstration of qubit control implemented by two
separated beams of the Raman laser. By introducing a relative frequency shift
between both beams, carrier and sideband transitions are driven by beat notes
between both combs. The absorption from a photon from one beam tooth and
emission into a tooth originating from the other beam causes a momentum change,
allowing to couple to the ion’s motion. The implementation of spin control and
spin-motion coupling under given boundary conditions of the existing experiment,
measurements and results will be discussed.

5.3.1 Qubit choice

In contrast to the single-beam approach, discussed in the previous section, the
two-beam configuration in general allows qubit control of any beryllium ground-
state sublevel transition. The Raman resonance condition is fulfilled by a relative
frequency shift between both beams, being controlled by two AOMs. Still, the
geometry of free optical ports limits the polarizations being realizable and sets the
direction of possible motional coupling.

Resonance condition

Raman transitions can be driven by an optical frequency comb if pairs of comb teeth
exist, which are separated by the qubit frequency. For the single-beam approach
these teeth were provided from one frequency comb. For the two-beam approach
the resonance condition is fulfilled by shifting the beam’s frequencies relative to
each other, such that teeth from the one beam paired with teeth from the other
beam are resonant with the qubit splitting, as discussed in section 3.2.3. The
resonance condition is given by:

J* Jrep £ Anom = Vaubvit ,J € Z (5.6)

With j being an integer, f.p, the repetition rate of the laser and vgum; the qubit
splitting. Aaownm is the relative frequency shift between both combs, fulfilling the
resonance condition. As it can be arbitrarily set by sending each beam through an
AOM, any transition of the ground-state manifold of beryllium can be chosen as the
qubit. Due to the immense advantage of the first-order field-independent transition
in terms of coherence times, it is convenient to choose the |2,1) <» |1, 1) transition.
The qubit is illustrated in Figure 5.4, its frequency is vy = 1082.547 MHz.

Beam geometry and polarization

In order to maximize the achievable Raman coupling strength, the polarization
of both beams needs to be optimized for the field-independent qubit transition.
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ground state excited state g}:ﬁgﬁt detuning polarization
[4) 2Py fmy=—%,mi=+%)  —0.52589 + 0.257 o
[4) 2Py [my=—§,mr=+3)  +0.11768 4+ 0.303 ™
I4) 2Py lmy=+4,my=+3)  +0.57735  + 0.400 ot
I4) 2P, Imy=+3%,my=+1) —0.56523 + 0527 7
) 2Py fmy=+4,mr=—3% +0.23828 4+ 0.572 o~
I4) 2Py lmy=—3,mi=+3)  —0.70623  +197.759 o
I4) Py [my=—g,my=+3)  +0.57591  +198.176 ™
I4) 2Py fmy=—§,mr=+3)  —040977  +198.177 o
[4) 2Py [my=+3,mr=-+3)  —057879  +198.593 ™
1L 2Py fmy=+%,mi=+%) 040672  +198.594 ot
) Py [my=+35,my=+%)  +0.70799 +199.010 ot
1) 2Py [my=—%,mr=+%)  +0.52589 - 0.826 o
[T) Py fmy=—g,my=+3)  +0.56523 - 0.780 n
[1) 2P, [my=+3%,m;=+3 +0.57735 — 0.682 ot
1T 2Py lmy=+5,my=+3)  +0.11768  — 0.556 ™
IT) 2Py fmy=+g,mr=-%)  —023828  — 0510 o
1) Py [my=—5,my=+3)  —0.70799 +196.677 o
1) 2Py |my=—5,mr=+3)  +0.57879  +197.094 ™
[1) 2Py [my=—§,mr=+%) 4040672  +197.094 o~
1) Py [my=+g, mr=+3)  +0.57591  +197.511 ™
IT) 2Py [my=-+g,my=+3)  —040978  +197.511 ot
1) 2Py fmy=+3,mr=+%) 070622  +197.927 ot

Table 5.2: Table of relevant Raman coupling contributions between the field-independent
qubit levels, [}) = |[F = 2,mp = 1) = |my = —1/2,m; = +3/2) and 1) = |F =
1,mp =1) =|my=+41/2,m; = +3/2), and levels of the excited p-states at an applied
magnetic field of 22.3 mT. Shown are the corresponding transition matrix elements being
> 1072 scaled to the matrix element of the closed-cycle transition between the 25, /25
|F=2,mp = 2) and the 2Py 5, [m; = +3/2,m; = +3/2) level as well as the respective
detunings in GHz referenced to the transition between the 25, /2 and ’p /2 line centers
and the corresponding atomic polarizations.
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Besides the optical trap access used for the single-beam approach, as discussed
in section 5.2.2, the experimental setup offers one additional free laser port. The
direction is orthogonal to the previously implemented beam and to the magnetic
field direction, as shown in Figure 5.18. The polarization of the Raman beam being
overlapped with the cooling and detection beam cannot be changed. The beam is
circularly polarized, corresponding to atomic ¢~ transitions. In order to identify
the optimal polarization of the second Raman beam, the sum over all possible
Raman couplings must be evaluated. As discussed before, a simple approximation
can be obtained by neglecting the precise detunings from the p-levels and applying
the Clebsch-Gordan algebra. Following the notations shown in Figure 3.12 the
Rabi frequency according to Equation 3.60 for the qubit transition [2,1) <> |1,1) is

found to be:
1 Wrts

Oote = ——guge(b_r —byry)— 8
f 2\/§gbg( ++)A(A_wfs)

With ¢, and g1, being the time-averaged single-photon Rabi frequencies of the closed-
cycle transition of the designated red and blue beam, wg the fine-structure splitting
between 2Py /o and 2Py5, and b_,r_ and by ,r, the left and right circularly polarized
components of the red and blue Raman beam respectively. As the polarization of
the first Raman beam is fixed to induce o~ transitions, the optimal polarization of
the second Raman beam also corresponds to an atomic ¢~ polarization.

Since the beam geometry of the second free port, being orthogonal to the magnetic
field direction and therefore to the quantization axis of the ion, does not allow
for pure o transitions, the laser’s polarization of the second Raman beam is set
to result in a superposition of o7 /o™, achieved with a linear laser polarization,
as shown in Figure 5.18. Thus only 50% of the second Raman beam’s power
effectively contributes to the Raman process. An overview of all relevant matrix
elements, scaled to the matrix elements of the closed-cycle transition 25, /2, |F =
2,mp =2) <> ?Pyjo,lm; = +3/2,m; = +3/2), their detunings and corresponding
polarizations is shown in Table 5.2.

(5.7)

Motional coupling

As derived in section 3.1 the Raman coupling strength for motional sideband
transitions in the Lamb-Dicke regime is proportional to the Lamb-Dicke parameter

n:
Qg =1 Qe - /N> (5.8)

With the motional state being n- = (n + 1) for blue and n- = n for red sideband
transitions, with (2. denoting the carrier Rabi frequency and with the Lamb-Dicke

parameter 7 given by:
/| h
= Ak -4/ ——— 2.9
" 2 Mion Wy, ( )
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Figure 5.18: Illustration of the orientation of the wavevector difference Ak between both
Raman beams relative to the direction of the radial and axial trap axes. The angles
enclosed are 33° for the radial and 57° for the axial mode direction. The Raman beam
1 being counterpropagating to the direction of the magnetic field is circularly polarized,
inducing atomic o~ transitions. The Raman beam 2 propagating from an orthogonal
direction to the magnetic field direction is linearly polarized, inducing a superposition of
ot /o~ atomic transitions.

Coupling to the ion’s motion hence requires the interaction of two Raman beams
being directed onto the ion under different angles. The absorption of a photon from
one beam and emission into the other one causes a momentum change of AAk along
the direction of wavevector difference Ak between both beams. Thus, motional
states of the ion can be addressed if their mode oscillations have an overlap with
the direction given by Ak. For a given beam geometry, determining the value of
Ak, the achievable Raman sideband coupling is the stronger, the larger the overlap
between the motional mode direction and the direction of Ak is and the smaller
the motional trap frequency w, is.

The orientation of the radial and axial mode directions relative to the direction of
the wavevector difference is shown in Figure 5.18. The angle enclosed is 57° for
the axial and 33° for the radial mode. In addition the radial mode is tilted in the
vertical direction by ~ 20 °, which leads to the following projections onto the mode
directions:

radialag/Ak = Cos(33°)Cos(20°) ~ 0.788 (5.10)

axialag/Ak = Cos(57°) ~ 0.545 (5.11)
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The trap frequency of the axial mode oscillation is on the order of 1 MHz, the
radial mode oscillations exhibit frequencies near 10 MHz. The resulting Lamb-Dicke
parameter for the axial mode is hence a factor of V10 ~ 3.163 larger than for the
radial mode. For the discussed geometry of orthogonal beams the values are:

27 h
radial = 10 MHz) ~ v2 : ~ 0.213 5.12
racial = 11( )~ VI g (27 10 MHz) (5.12)
27 h
TNaxial = 77(1 MHZ) =v10- Nradial ~ \/5_ : ~ 0.673 (513)

ABe 2mpe(2m 1 MHz)

With Ag. being approximated by 313 nm for both Raman beams and mpg, being
the mass of a single beryllium ion.

The resulting achievable Rabi sideband frequency of the axial mode is more than
twice as large as for the radial mode and therefore chosen for implementation:

Qup radial = radialag/Ak - n(10 MHz) - Q. - /N~ =~ 0.168 - Q. - /N~ (5.14)
Qb axial = axialag/Ak - (1 MHz) - Q. - \/n> ~ 0.366 - Q. - /N> (5.15)

5.3.2 Experimental setup

An overview of the experimental setup for the two-beam approach is shown in
Figure 5.19. The key parts of the Raman system, as described in section 5.2.2; are
placed on a separate optical table. The pulsed UV beam is sent free space to the
experiment table and separated in two arms using an a-BBO Glan polarizer. The
through-going beam, in the following denoted as Raman beam 1, is overlapped
with the CW cooling and detection beam by entering the side facet of another
a-BBO Glan polarizer, as described for the single-beam approach. Further, a two
lens telescope is applied for alignment purposes and AOM1° is implemented in
single-pass geometry for switching and frequency adjustment. The second beam, in
the following denoted as Raman beam 2, is focused onto the ion from an orthogonal
direction. It passes AOM2° in single-pass geometry for switching and frequency
adjustment and further a time delay stage, in order to match the optical beam
path lengths of both Raman arms.

Whereas the AOM within the single-beam approach has only been applied for
switching, both AOMs now are additionally used to fulfill the Raman resonance
condition. The frequency of AOM1, set near 112.9696 MHz, has been implemented
as down shift, whereas the frequency of AOM2, 270.6590 MHz, is set as an up
shift, leading to a net relative frequency shift near Axom = 383.6286 MHz. In
combination with a set repetition rate of 99.8455 MHz and a value j=7, only small

5Gooch and Housego, 110 MHz, I-M110-2C10BB-3-GH27
SIntraaction, 270 MHz, ASM-2702AF5
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Figure 5.19: Experimental setup for multiple-beam qubit control, implemented by two
beams of the pulsed Raman laser. The UV beam is aligned free space from one optical
table to the optical table where the ion experiment is located on. Here it is separated into
two beam paths using an a-BBO Glan polarizer. The through-going beam is overlapped
with the CW cooling and detection beam by entering the side facet of a further a-BBO
Glan polarizer. Before a two lens telescope is set up for alignment purposes and AOM1
is passed for switching and frequency adjustment. The second Raman beam is focused
onto the ion from an orthogonal direction. It passes AOM?2 for switching and frequency
adjustment as well as a time delay stage in order to match the optical beam path lengths
of both Raman arms.

deviations on AOMI1 are applied, in order to fulfill the resonance condition for
either carrier or sideband transitions:

7 frep + [2706590 MHz — (—1129696 MHz + Vaxial)] = 10,BreitRabi + Vaxial (516)

5.3.3 Measurements

As preparation the two beams are separately aligned onto the ion and temporal
overlap between both arms is ensured. Matching the optical path lengths is
implemented by scanning the position of the optical delay stage, while ensuring the
resonance condition for carrier Raman transitions to be fulfilled. Once temporal
overlap is guaranteed, carrier Rabi oscillations are observed. Prior to driving
sideband transitions, an accurate determination of the axial trap frequency is
carried out and a resonance scan is implemented by scanning over the frequency of

AOMI.
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Figure 5.20: Hyperfine level structure and transitions of Be™ relevant for the multiple-
beam qubit control of the field-independent qubit transition |}) = [2,1) < |[1) = |1,1),
implemented by two beams of the pulsed Raman laser. After loading and cooling the
ion is initialized in the |2,2) state. A resonant microwave carrier pulse (MWC) transfers
the population into the |1,1) state. Subsequent to probing the ion with the Raman
beams, the population of the |1,1) state is transferred back to the initial |2,2) state
and detected by collecting the fluorescence signal induced by the detection beam, being
resonant with the closed-cycle transition between 25’1/2, |F' = 2,mp = 2) < 2P3/2,
|m1 = +3/2,mJ = +3/2>.

Typical experimental sequence

For a typical experimental sequence a single beryllium ion is loaded and initialized in
the |2, 2) state, as described in section 5.1.4. In order to perform Raman transitions
on the field-independent transition |2,1) <> |1,1) the ion is prepared in the |1, 1)
state by applying a single resonant MWC pulse, as shown in Figure 5.20. Following
the interaction with the pulsed laser the population of the prepared |1,1) state
is transferred back to the |2,2) state for detection. In order to avoid coexistent
off-resonant transitions from the |2, 1) level, this population is shelved to either the
|1,1) or [1,0) state, before applying the detection beam.

Beam alignment

As preparation for the measurements both beams are independently aligned on
the ion. The procedure for Raman beam 1 is the same as for the single-beam
approach. The alignment is performed by first maximizing level depletion induced
by near-resonant spectral components, followed by maximizing the Stark shift
during a spin-echo based Ramsey experiment.

Due to polarization dependent cancellation effects, the amount of Stark shift being
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Figure 5.21: Resonance scan for a carrier Raman transition on the |2,1) <+ |1,1) field-
independent qubit, driven by two beams of the pulsed Raman laser. Shown is the
population of the |1, 1) state as a function of the position of the delay stage. The solid line
shows a fit of the data. At the position denoted by 11.42 mm the simultaneous presence of
both Raman beams at the ion fulfills the carrier resonance condition and the population
of the prepared |1, 1) state drops.

achievable with the second Raman beam is reduced by more than two orders of
magnitude for any adjustable polarization. This beam is therefore only aligned by
shortening the duration of level depletion induced by near-resonant components of
the spectrum, as described in detail in section 5.2.3.

Temporal overlap - carrier transition resonance scan

In order to ensure temporal overlap between both pulsed Raman beams at the
position of the ion, both optical path lengths need to be matched to a few hundred
micrometers, approximately given by c - 7,, with 7, being the temporal pulse
duration. For this purpose a temporal delay stage is implemented in the second
Raman beam, as shown in Figure 5.19. The stage consists of two orthogonally
aligned mirrors mounted on a motorized, linear translation stage”. The mirrors are
accurately adjusted such that the input beam onto the first mirror is reflected back
parallel to itself when passing the second mirror. A linear translation of the delay
stage along the direction of the input and output beam therefore does not affect
the subsequent beam alignment onto the ion, but changes the optical beam path
length by of factor two with respect to its movement. In order to find the required
position of the delay stage, ensuring temporal overlap, a resonance scan for carrier
Raman transitions is performed, while scanning the delay stage position along the
translation axis. For this the frequencies of the AOMs are set to fulfill the carrier
Raman resonance condition and the probe duration of both Raman beams is set

“Combination of manual translation stage, Newport M-462-X-M, with motorized actuator,
Thorlabs Z825B and DC servo motor controller, Thorlabs KDC101
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Figure 5.22: Carrier Rabi oscillations on the |2,1) < |1,1) field-independent qubit
transition induced by two orthogonal beams of the pulsed Raman laser. Shown is the
population of the prepared |1,1) state as a function of the laser probe duration. The data
fit (solid line) corresponds to a m-time of 1.26 ms.

to the expected m-time. To speed up the scanning process, an automized routine
has been implemented, successively performing the experimental sequence, while
continuously and slowly moving the delay stage. The velocity of movement has
been adjusted in order to ensure the expected resonance dip to be resolved. Figure
5.21 shows an exemplary resonance scan, where the population of the |1, 1) state
was measured as a function of the absolute position of the delay stage. At the
position denoted by 11.42mm the simultaneous presence of both Raman beams at
the ion fulfills the carrier resonance condition and the population of the |1,1) state
drops.

Carrier Rabi oscillations

Setting the position of the delay stage to the position obtained during the res-
onance scan directly allows the performance of carrier Rabi oscillations. The
resonance condition, vy = j - frep + Aaom, was fulfilled by setting the frequency
of AOMI1 to 112.9696 MHz, leading to a net relative frequency shift of Axom =
270.6590 MHz — (—112.9696 MHz) = 383.6286 MHz. Together with the repetition
rate of firep = 99.8455 MHz and j = 7 this yields the expected qubit frequency of
vg = 1082.5471 MHz, obtained by the Breit-Rabi formula in Equation 3.64. The
measured Rabi oscillations are presented in Figure 5.22. Shown is the population
of the |1, 1) state as a function of the laser probe duration. The oscillation shows
an apparent decoherence, the m-time is approximated to be 1.26 ms.
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Figure 5.23: Secular frequency measurement (axial direction) performed by resonantly
driving the ion’s motion using an oscillatory field. The solid line shows a fit of the data.
On resonance a loss of the count rate occurs due to Doppler shifts, induced by motional
excitation.

Sideband transition resonance scan

In order to address motional sideband transitions, the offset frequency between
the two combs Aprom needs to be detuned from the carrier resonance condition
by the trap frequency. The instantaneous axial trap frequency was measured,
as exemplarily shown in Figure 5.23. By applying an oscillatory electric field
near the expected secular frequency, the ion’s motion can be driven resonantly,
resulting in a loss of the count rate on resonance due to Doppler shifts. Based on
this measurement the frequency of AOMI1 is set to fulfill the sideband resonance
condition Vgupit £ Virap = J - frep + Aaom. Due to fast fluctuations of the axial
trap frequency a resonance scan is subsequently performed, scanning over the
frequency applied to AOM1 within the range of a few kHz. The resonance dip for
a red motional sideband transition on the axial mode is presented in Figure 5.24.
Shown is the population of the |1,1) state as a function of the frequency applied to
AOMI1 for a laser probe duration of 3ms. On resonance the frequencies match the
condition for red sideband transitions and the population of the |1,1) state drops.
The transition frequency for the measured axial trap frequency of via, = 0.892 MHz
was given by vqunit = Vo — Vgrap = 1081.6551 MHz. It has been obtained with the
adjusted repetition rate of fi, = 99.8455 MHz, j = 7 and relative frequency shift
of Axom = (270.6590 MHz — (—112.0776 MHz)) = 382.7366 MHz.

Sideband Rabi oscillations

Based on the identified resonance position, Rabi flopping on the sideband transition
can be attempted. The frequency of AOM1 is herfore set to the value derived from
the previous scan. The simultaneous presence of both beams at the ion, fulfilling
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Figure 5.24: Resonance scan for a red sideband Raman transition on the |2,1) <> |1, 1)
field-independent qubit, driven by two orthogonal beams of the pulsed Raman laser.
Shown is the population of the |1,1) state as a function of the frequency applied to
AOM1. The data fit (solid line) yields a resonance frequency of § f = 3.7 kHz, at which the
simultaneous presence of both Raman beams at the ion fulfills the red sideband resonance
condition and the population of the |1,1) state drops.
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Figure 5.25: Red sideband Rabi oscillations on the |2,1) <> |1, 1) field-independent qubit
transition induced by two orthogonal beams of the pulsed Raman laser. Shown is the
population of the |1, 1) state as a function of the laser probe duration. The data fit (solid
line) corresponds to a m-time of 1.55ms
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the resonance condition for red sideband Raman transitions on the axial mode,
causes the ion to oscillate between the qubit states, as exemplarily presented in
Figure 5.25. Shown is the population of the |1, 1) state as a function of the laser
probe duration. The oscillation shows an apparent decoherence, the m-time is fitted
to 1.55 ms.

5.3.4 Discussion

These measurements demonstrate the first ever shown spin-motion coupling of a
single beryllium ion using a pulsed Raman system. The data successfully prove the
concept introduced in chapter 3. In this section a comparison with simulations will
be presented and improvement strategies discussed.

Comparison with simulations

Comparing the experimental results with simulations requires the extraction of
several parameters from the experiment as discussed in section 5.2.4. The spectrum
which has been applied is shown in Figure 5.26. The main peak has been fitted by a
gaussian function. The effective spectral bandwidth is given by Avpwuym = 840 GHz
and the detuning to the 2Py 5 line center by A = 1.68 THz. While the mean focusing
strength of both beams is comparable to the one applied during the single-beam
experiments and assumed as wy = 20 um + 5 um, the power level during these
experiments has been much lower. The upper limit of power contribution per beam
is estimated to be 0.8 mW. For the simulations an uncertainty range of + 0.2 mW is
assumed, based on estimated losses occurring in the beam path behind the point of
power measurement. The estimated power is the optimum value, which each beam
could contribute in case of perfect overlap of all contributing comb mode pairs.
This implies that the teeth of both beams which together bridge the qubit splitting
arrive simultaneously at the position of the ion. The duration of the effective
temporal overlap can be extracted by evaluating the resonance scan of temporal
overlap in dependency of the delay stage position, shown in Figure 5.21. A linear
translation of the stage corresponds to a change of the optical beam path length
loptical by @ factor of two with respect to its movement. Assuming the simple relation
Aloptical /€ R Toverlap, the time of effective overlap Toverap can be calculated. For a
FWHM of the resonance dip of 240 pum, corresponding to an optical path of 480 pm,
the duration of constructive temporal overlap is Toverap =~ 1.6 ps. This value gives
a lower limit for the pulse duration. The correct pulse duration might be longer,
as the chirp might prevent the generation of a signal in case the relevant pairs of
comb teeth are not at the position of the ion at the same time. Based on simulation
results shown in Figure 4.15, a temporal duration of Tpway = 2.0ps£0.5ps is
assumed as for the single-beam approach.
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Figure 5.26: UV spectrum of the Raman laser as present during the measurements of the
carrier Rabi oscillations on the |2,1) <> |1,1) qubit transition, shown in figure 5.13. The
peak wavelength of \g = 312.649 nm corresponds to a Raman detuning of A = 1.68 THz
from the line center of the 2P, /2 level. The main peak of the spectrum is fitted by a
gaussian function (solid line) which corresponds to an effective spectral FWHM bandwidth
of AVFWHM = 840 GHz.

Figure 5.27 shows the calculated m-time for different detunings according to the
assumed uncertainty range, depending on the squared electric field amplitude E?
scaled to the squared electric field amplitude given by the approximated average
laser power, focal width and pulse duration, E2/EZ. A gaussian-shaped spec-
trum has been applied, providing the effective bandwidth of the main peak of
Avpway = 840 GHz. The power contained in the far detuned spectral components
has been neglected. For the mean values of the assumed uncertainty range of the
parameters influencing the squared electric field amplitude, the measured 7-time
exceeds the corresponding simulation data by a factor of 2.2. Within the estimated
uncertainty range, the measurement agrees with the simulation results for the
detuning of A =1.68 THz + 0.15 THz. Not taken into account in the simulations are
a possible deviation of the spectral bandwidth and the chirp of the pulses. While
the chirp for the single-beam approach has been discussed to be nearly negligible,
it now can hinder the availability of all possible pairs of comb teeth, due to the fact
that both beams are directed onto the ion from different directions. As the chirp
involves that the spectral components of each beam cannot be focused to the ion
simultaneously, the setting of the temporal overlap might only optimize a certain
fraction of the spectra of both beams to overlap. As a result only a fraction of the
power contained in each beam would then contribute to the process.

The Rabi frequency for the sideband oscillations can be derived from the car-
rier Rabi frequency and is further determined by the Lamb-Dicke parameter and
the motional state of the ion. For the applied beam geometry and for a red motional
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Figure 5.27: Numerical simulations comparing the measured data (green line) of the two
beam carrier Rabi oscillations with simulations. Shown is the calculated 7-time for three
different detunings depending on the squared electric field amplitude Eg scaled to the
mean values of the approximated average power, pulse duration and focal radius, E’g / Eg .
Assumed is a gaussian envelope function with an average power of Py, =0.8 mW 4+ 0.2 mW,
a focal radius of wg = 20 pm 4+ 5 um and a pulse duration of 7ewum = 2.0 ps + 0.5 ps.
The influence of the pulse duration in terms of temporal broadening compared to the time-
bandwidth limited pulse duration is taken into account, by keeping the spectral width of
Avpwnam = 840 GHz constant and reducing the intensity respectively. The resulting lower
limit of the uncertainty range yields E3/E3 = 0.4 and an upper limit of E3/E3 ~ 3.0.
The black data points correspond to the measured detuning of A = 1.68 THz. The red
data points correspond to a detuning of A = 1.68 THz-0.15 THz and the blue data points
to a detuning of A = 1.68 THz + 0.15 THz, according to the assumed uncertainty range.
The solid lines represent guides to the eye.

sideband transition the sideband Rabi frequency is given by €y, = 0.366 - 2. - v/n,
as discussed in section 5.3.1. Comparing the measured 7-times for the carrier
and sideband Rabi oscillations yields a motional state corresponding to n = 5,
which is roughly consistent with Doppler cooling at the given Doppler cooling
beam geometry. Since the actual motional state is unknown, no simulations are
performed. The sideband oscillations are nevertheless affected by the influence of
the chirp in the same way as discussed for the carrier oscillations.

Besides the long 7-times, the experimental measurements of Rabi oscillations
exhibit a very strong decoherence. For the given beam geometry, the decoherence
is expected to be caused by the ion’s thermal state of motion and results from the
averaging of individual experiments each with a different Rabi rate.

Simulations for the probability of scattering during the corresponding 7-time yield
values between 0.59 - 107® and 1.77 - 1075 for the assumed uncertainty ranges.
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Off-resonant light scattering caused by the Raman beams is therefore, as for the
single-beam approach, excluded as a major source of decoherence.

Besides the error sources discussed within the single-beam approach, the low power
level at each beam makes the process strongly susceptible to drifts of the axial trap
frequency and beam pointing instabilities at the ion. Any relative change of the
refractive index between the beams, induced for example by temperature drifts
or air currents, leads to a change of the optical beam path length and hence to
pointing instabilities at the ion, as discussed in detail in [130]. Furthermore strong
mechanical vibrations, which have been observed, can hinder the optical beam
overlap at the position of the ion.

Improvement strategies

Improvement strategies should focus on enhancing the Rabi frequency to move
beyond the proof-of-principal stage realized so far.

As discussed for the single-beam approach, a systematic survey investigating the
optimal spectral properties and the optimal detunings gives room for strong im-
provements. According to the simulations concerning the calculated scattering
probability within the two-beam experiments, it is expected that a significantly
smaller detuning can be chosen without suffering from off-resonant light scattering.
Due to the strong influence of the detuning on the achievable Raman coupling
strength, it is most likely to achieve similar or marginally higher m-times as for
the demonstrated single-beam approach, for which a smaller detuning has been
set. Additionally readjusting and further maximizing the available power will most
likely provide m-times on the order of tens of microseconds or below, as desired
for the (anti-)proton Penning trap experiment. A further increase of available
power might be achieved by applying an enhancement cavity for the SHG process
and applying a special crystal coating, reducing the UV Fresnel losses of 31 % for
Brewster-cut crystals.

Aside from increasing the power, a stronger signal could possibly be achieved by
optimizing the constructive overlap of relevant spectral components of the Raman
beams. Since the Raman transitions are performed by the combination of teeth
originating from different beams, it is essential for them to arrive the ion simul-
tanously. Assuming that the presence of the chirp reduces the amount of total
available teeth pairs, one could either try to manipulate the chirp itself in order to
optimize the overlap or one could adjust the spectral properties in order to reduce
the influence of the chirp.

Assuming only a small fraction of the spectrum to effectively contribute to the
signal due to effects induced by the chirp, it might be more advantegous to generate
a very narrow spectrum. Since near-resonant components induce a stronger Raman
signal, a lower overall power, but located in a narrow near-resonant peak, could
possibly optimize the signal, since not only a fraction but the entire spectrum would
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contribute to the process.

A further way to improve the constructive overlap might be given by rotating the
orientation of the spatial chirp. During the experiments the orientation has been set
to be horizontal. In this configuration an imperfect beam alignment could affect and
possibly enhance the chirp by accidently introducing different optical beam path
lengths for the red and blue components. In consequence the difference between the
arrival times of different spectral components within the beams could be extended
and hence the achievable Raman signal reduced. Further it is important to ensure
the frequency components temporally arriving the ion first to be synchronized for
both beams in order to maximize the number of contributing comb tooth pairs.
In both aspects, a rotation into the vertical might lead to an improvement when
assuming a horizontal beam alignment. Nevertheless the temporal aspect, of not
being able to focus all spectral components simultaneously onto the ion, is not
solved by the rotation of the spatial chirp.

Systematic compensation or in general manipulation the chirp alternatively requires
a setup which allows to precisely control and modify the optical path lengths of
different components of the spectrum. This might also compensate temporal pulse
broadening and therfore enhance the intensity at the position of the ion. The
manipulation of the chirp nevertheless would be accompanied by additional losses
and might therefore not bring an overall improvement. Since the optimization of
the power, the detuning and spectral components is expected to provide the desired
values of coupling strengths, additional efforts in terms of chirp modification are
not mandatory.

A reduction of sensitivity to beam pointing instabilities might further be performed
by tubing the entire beam path. In [130] this has been demonstrated to strongly
affect and improve results. An independent beam setup, possibly with shorter
optical path lengths and fewer required optical components would simplify the
realization of a completely enclosed beam path and the optimization in terms of
supressing error sources.

In conclusion, the measurements for spin-motion coupling are evaluated to be
improvable towards achieving target values concerning the Rabi frequency when
optimizing the available power, the detuning and the spectral distribution. Due to
comparable coupling strengths as for the chosen qubit at an externally applied mag-
netic field of 5T, the pulsed laser approach is expected to fulfill all requirements for
9Be™ ion qubit control within the planned high-precision Penning trap experiment.



CHAPTER 6

CONCLUSION AND OUTLOOK

Within the framework of this thesis the first Be™ ion qubit control using an optical
frequency comb has been realized. The qubit operations providing spin-motion
coupling are important steps required for ground-state cooling of beryllium and for
implementing sympathetic cooling and quantum logic inspired spin-state detection
of single (anti-)protons in Penning traps. The work presented in this thesis covers
numerical simulations concerning the requirements and the application range of
coherent “Be™ ion control, the development of an appropriate Raman system, which
in addition provided novel insight into and application of occurring spatio-temporal
coupling dynamics in nonlinear BiBO crystals as well as the experimental im-
plementation and demonstration of coherent laser control in a surface-electrode
radio-frequency trap. In this chapter the scientific achievements will be summarized
and reviewed in the context of our future high-precision Penning trap experiment
and beyond.

The implementation of *Be™ ion qubit control has been carried out using two-
photon stimulated Raman transitions. The ground-state sublevel coupling was
obtained by a coherent sum of comb mode pairs, each with a frequency difference
equal to the qubit splitting. For spin control the comb teeth of each pair can
be provided by a single beam, while for coupling to the ion’s motional degree of
freedom the comb teeth of each pair must originate from separated beams being
directed onto the ion from different directions and synchronized in time. The
Raman resonance condition in this case was fullfilled by a relative shift between the
beam’s frequencies implemented by AOMs. Other than for the CW-laser approach,
the required shift is only in the range of one-third of the laser’s repetition rate
near 100 MHz and does not need to cover the entire qubit splitting. This is one
convincing aspect of the pulsed-laser approach which might in future prove useful
for the general implementation of sideband cooling in Penning traps, where atomic
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ions with hyperfine qubit transitions exhibit large Zeeman splittings due to the
high applied magnetic fields.

In order to examine specific requirements for “Be™ ion qubit control in the envi-
ronment of an externally applied magnetic field of 5T, numerical simulations of
the relevant atomic processes have been performed. A particular challenge arises
from beryllium’s small excited state fine-structure splitting near 200 GHz, which
requires a Raman detuning to be chosen outside the p-level manifold in order to not
resonantly excite the p-levels. Due to conflicting demands for achieving high Raman
coupling strengths and simultaneously guaranteeing reasonably low scattering rates,
the optimal combination of the Raman detuning and spectral properties of the
pulses has been evaluated. The simulations presented in this thesis have shown that
the optimal spectral bandwidth is very narrow with a value being only slightly big-
ger than beryllium’s qubit splitting near 140 GHz. For broader spectra a strong loss
of Raman coupling occurs because the required detuning for keeping the scattering
rate below a certain threshold significantly increases. A significant improvement of
this decrease of coupling strength has been found to be achieved by blocking the
spectral components close to resonance during the Raman process. The absence of
these outer-lying frequency components allows for much smaller detunings, which
has a strong impact on maximizing the achievable Rabi frequency. For implement-
ing qubit control for beryllium ions, it was shown to be mandatory to combine
efforts towards the generation of narrow-bandwidth UV pulses with a technique
to control the outer-lying frequency components in order to obtain appropriate
Raman coupling strengths. Simulations showed that for a sharp cut during spectral
pulse modification, broader spectra with bandwidths of up to 1 THz can be applied
without significant loss of coupling strength, while for a non-perfect, smeared fre-
quency distribution during pulse shaping operating with narrower spectra is more
profitable, showing an optimum bandwidth near 300 GHz for the estimated lower
limit of pulse shaping resolution. Once operating in the range of these spectral
properties, the optical frequency comb was shown to provide enormous flexibility
allowing for qubit control at nearly any experimentally relevant conditions in the
high-field Paschen-Back as well as in the low-field Zeeman regime. Raman coupling
strengths enabling 7-times in the range of tens of microseconds were evaluated to
be achievable when providing an average laser power in the range of a few milliwatts.

For the realization of the pulsed-laser approach, a narrow-bandwidth ultravio-
let frequency comb has been developed. The system is based on a custom-built
femtosecond frequency comb operating near 626 nm. It has been designed to provide
a tunability + 0.2 MHz of the repetition rate near 100 MHz, which allows to adjust
the range in which motional sideband transitions are well resolved and a tunability
of the wavelength, allowing for different Raman detunings of up to nearly 5 THz.
The mandatory control of spectral properties was realized by the combination of a
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nonlinear spectral compression technique, implemented during the SHG into the
UV near 313nm, and a subsequent blocking of outer-lying frequency components.
The wavelength range of this compression technique has been extended into the
UV for the first time, where the unavoidable effect of spatial walkoff strongly
affects the properties of the generated UV pulses. A model accounting for the
spatio-temporal coupling dynamics in second-order nonlinear BiBO crystals has
been applied for theoretical investigation. By choosing crystals of different lengths
and different focusing conditions, a selective and efficient spectral compression to
target values between 300 GHz and 1000 GHz has been achieved, with excellent
agreement between simulations and experimental results. The spatio-temporal
coupling was further shown to result in angularly chirped output pulses, which
allowed the use of razor blades located closely behind the nonlinear BiBO crystal in
order to address and block the unwanted outer-lying frequency components. This
novel and simple combination of techniques might find use in other applications
requiring pulses with similar spectral properties, as for example the cooling of
molecules or time-resolved spectroscopy experiments.

Since the (anti-)proton g-factor measurement experiment is currently still un-
der development, the demonstration of spin control and spin-motional coupling
has been carried out using an operating planar surface-electrode beryllium ion
trap at an externally applied magnetic field of 22.3 mT. Simulations have shown
that resulting Raman coupling strengths for both experimental conditions are
comparable, despite the vastly different qubit splittings. The experiments per-
formed in this thesis therefore provide a meaningful evidence for the planned
high-precision Penning trap experiment with a magnetic field of 5T. The first
ever shown single-beam spin control of beryllium ions has been demonstrated
on the field-dependent |F = 2,mp = 0) <> |F = 1,mp = 0) transition. The
measured m-time of the Rabi oscillations near 30 us was shown to coincide with
corresponding simulations within the uncertainty range under given experimen-
tal conditions. The first spin-motion coupling of beryllium ions applied by two
orthogonal beams of the developed pulsed Raman laser were performed on the
field-insensitive |F = 2,mp = 1) <> |F = 1,mp = 1) transition. The achieved
m-times of sideband Rabi oscillations were measured to be 1.55ms. The 7n-time of
the corresponding carrier Rabi oscillations with 1.26 ms were shown to be within
the uncertainty range of expected values according to the simulation data. A
general deviation from the mean expected value is assumed to be caused by effects
associated with the chirp of the UV pulses, which have not been accounted for in the
simulations. It is expected that a significantly smaller detuning can be chosen for
the experiments providing spin-motion coupling without suffering from off-resonant
light scattering. Due to the strong influence of the detuning on the achievable
Raman coupling strength, it is most likely to achieve similar or marginally higher
m-times as for the demonstrated single-beam approach, for which a smaller detuning
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has been set. Additionally readjusting and further maximizing the available power
will most likely provide 7-times on the order of tens of microseconds or below, as
desired for the (anti-)proton Penning trap experiment. Special attention during
the implementation in the high-field regime might nevertheless be necessary with
regards to the chirp. Due to the larger separation between comb mode pairs
contributing to the Raman coupling, the influence of the chirp on reducing the
achievable coupling strength might be enhanced, wherefore a systematic optimiza-
tion of the spectral distribution is recommended.

In conclusion the pulsed-laser approach is expected to fulfill all requirements for
9Be™ ion qubit control within the planned high-precision Penning trap experiment.
The achieved results therefore provide strong evidence towards the possibility of
realizing ground-state sideband cooling of beryllium ions in Penning traps. The
work will support the implementation of sympathetic cooling and spin state transfer
of single (anti-)protons and therefore the quantum logic inspired measurement of a
single (anti-)proton’s g-factor. The pulsed-laser approach might further be applied
in the context of other precision experiments and become an important tool for the
implementation of quantum logic operations in Penning traps.
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