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Abstract

State-of-the-art optical clocks based on neutral atoms have already surpassed the
world’s best microwave atomic clocks in both accuracy and stability, paving the way
to high-precision measurements of elementary aspects of nature, like the search for
the drift of fundamental constants or the application of relativistic geodesy.

These clocks operate with ensembles trapped in an optical lattice. Normally,
high-power trapping laser fields induce a large AC Stark shift on the clock’s tran-
sition frequency, as the clock states have different polarizabilities. A key feature of
lattice clocks is the magic wavelength, for which the atomic polarizabilities of the
clock states are equal, therefore compensating a differential frequency shift on the
clock transition.

In the periodic potential of the optical lattice, the energy spectrum of motional
states features a band structure, analogous to electrons in a crystalline structure
well-known from solid state physics. Within this band structure, atoms can tun-
nel between adjacent lattice sites. As a consequence from tunneling motion, the
clock transition experiences a frequency shift and a broadening, which becomes pro-
nounced in the shallow lattice regime.

This work presents the first demonstration of a 2*Mg optical lattice clock in-
cluding the precise determination of the frequency of the clock transition, its magic
wavelength and its second-order Zeeman shift. Furthermore, the effect of tunnel-
ing in an optical lattice for magnesium has been extensively studied via optical
spectroscopy of Bloch bands and substantiated with theoretical models, that were
initially developed for a strontium optical lattice clock.

Measuring lattice light induced frequency shifts of the clock transition for vari-
ous lattice wavelengths and intensities, yielded a value of the magic wavelength of
the 1Sy — 3Py clock transition in ?*Mg of 468.463(207) nm. This value is in well
agreement with a recent theoretical calculation of 468.45(23) nm, using a refined
atomic structure model. The experimental value for the magic wavelength was in-
dependently verified with optical spectroscopy of Bloch bands carried out on the
clock transition. Here, the AC Stark modified band structure is directly probed by
a single frequency scan of the carrier resonance, featuring an asymmetric line shape,
that is strongly dependent on the lattice wavelength. This technique demonstrates
a novel method for the determination of the magic wavelength and could also be
applied to other atomic species.

In bosonic isotopes of alkaline earth(-like) elements, like 2*Mg, optical dipole
excitation of the spin-forbidden 'Sy — 3P, clock transition can be enhanced, e.g. by
applying an external magnetic field. While these bosons are insensitive to first-order
Zeeman shifts, the second-order Zeeman effect displays a dominant contribution to
the clock’s error budget. In this thesis, the magnetic polarizability 8 is measured
to be —206.6(2.0) MHz/T?, consistent with a theoretical calculation, and the clock
transition frequency was found to be 655 058 646 691(101) kHz.

Key words: Optical atomic clocks, Magic wavelength, Optical spectroscopy of
Bloch bands



Zusammenfassung

Hochmoderne, optische Uhren basierend auf Neutralatomen, haben die weltbesten
Mikrowellenuhren hinsichtlich ihrer Genauigkeit und Stabilitéat bereits iibertroffen
und er6ffnen damit die Moglichkeit, Grundaspekte der Natur in Hochprézisionsex-
perimenten zu testen. Als Beispiele seien hier die Untersuchung der Drift von fun-
damentalen Naturkonstanten, sowie die Anwendung der relativistischen Geodésie
genannt.

Diese Uhren arbeiten mit Ensembles von Atomen, die in einem optischen Gitter
gespeichert werden. Normalerweise induziert die dafiir verwendete Laserstrahlung
eine AC-Stark-Verschiebung in der Ubergangsfrequenz des Atoms. Wird jedoch
das optische Gitter bei der sogenannten magischen Wellenlinge betrieben, sind die
atomaren Polarisierbarkeiten der beteiligten Uhrenzustéinde identisch und eine Fre-
quenzverschiebung wird unterdriickt.

Im periodischen Potential eines optischen Gitters treten die Energien der Be-
wegungszustinde in einer periodischen Bandstruktur auf, analog zu der Betrach-
tung des Elektrons in einer Kristallstruktur in der Festkorperphysik. Innerhalb
dieser Bandstruktur konnen die Atome zwischen benachbarten Gitterplatzen tun-
neln. Diese Tunnelbewegung ruft eine Frequenzverschiebung sowie Verbreiterung
des Uhrentibergangs hervor und tritt verstarkt im Regime der flachen Gitter auf.

Diese Arbeit beschreibt die erstmalige Demonstration einer optischen Gitteruhr
mit 2*Mg. Im Rahmen dessen konnten die folgenden, atomaren Parameter prizise
bestimmt werden: die Frequenz des Uhrentibergangs, sowie seine magische Wellen-
lange und seine quadratische Zeeman-Verschiebung. Desweiteren wurden Tunnel-
effekte im optischen Gitter mit Hilfe von optischer Spektroskopie der Blochbinder
untersucht und mit theoretischen Modellen untermauert.

Die magische Wellenlinge des 'S, — 3P, Uhreniibergangs in Mg konnte zu
468.463(207) nm bestimmt werden und ist in guter Ubereinstimmung mit einem
kiirzlich berechneten Wert von 468.45(23) nm. Eine unabhéngige, experimentelle
Bestatigung lieferte die optische Spektroskopie der Blochbédnder der Uhrenzustéande:
die durch den AC-Stark-Effekt deformierte Bandstruktur duflert sich bei einer Spek-
troskopie des Trageribergangs in einer Asymmetrie der Resonanzlinienform, die
stark von der Gitterwellenldnge beeinflusst wird. Dieses Verfahren stellt eine neue
Messmethode zur Bestimmung der magischen Wellenlénge dar und kann auch fiir
andere, atomare Spezies eingesetzt werden.

Die optische Dipolanregung des doppelt verbotenen 'Sy — 3P Uhreniibergangs
kann in bosonischen Isotopen, wie im Falle von ?Mg, z.B. durch Anlegen eines
externen Magnetfelds verstarkt werden. Obwohl Erdalkali-(dhnliche )Bosonen in-
sensitiv auf den linearen Zeeman-Effekt reagieren, liefert der quadratische Zeeman-
Effekt einen dominanten Beitrag zum Unsicherheitsbudget der Uhr. In dieser Arbeit
konnte die magnetische Polarisierbarkeit 8 zu —206.6(2.0) MHz/T? bestimmt wer-
den und ist konsistent mit theoretischen Berechnungen. Mit Kenntnis der Zeeman-
Verschiebung wurde die Frequenz des Uhreniibergangs zu 655 058 646 691(101) kHz
vermessen.

Schlagworter: Optische Atomuhr, Magische Wellenldnge, Optische Spektroskopie
der Blochbander
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CHAPTER 1

Introduction

"But nobody measures anything
to one part in 10'7. [...] The
challenge is great and should
occupy experimental physicists
for some years."

Arthur L. Schawlow [I]

The development of atomic frequency standards

Being able to control the interaction of electro-magnetic radiation with matter in
molecular spectroscopy, it was Isidor I. Rabi and co-workers who created the pre-
requisites for today’s atomic clocks with their "Molecular Beam Resonance Method
for Measuring Nuclear Magnetic Moments" in 1939 [2]. Only ten years later, Nor-
man F. Ramsey, who was a former PhD student of Rabi, improved the beam
resonance method by introducing two separated oscillatory fields for state inter-
rogation, rather than a single field extending over the whole atomic distance of
flight, thus enabling measurements with higher precision [3, 4]. Both, Rabi and
Ramsey, have been awarded the Nobel prize in physics for their groundbreaking
works in 1944 and 1989, respectively [5].

In 1955, Louis Essen and Jack V. L. Parry used Ramsey’s method to inter-
rogate the ground state hyperfine transition in cesium. They reported about the
development of the world’s first atomic frequency standard, being more accurate
than any standard based on astronomical time [6]. In fact, these measurements
were taken with an uncertainty better than 1 x 107, representing the highest ac-
curate measurement of a physical quantity so far. At that time, the second was
defined as the fraction 1/86400 of the mean solar day. Nevertheless, this definition
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has been found to be dissatisfying as earth’s rotation shows irregularities. During
the 13th General Conference on Weights and Measures (GCPM[)) in 1967 [7], the
second has been re-defined to be

"the duration of 9 192 631 770 periods of the radiation corresponding to the tran-
sition between the two hyperfine levels of the ground state of the 3Cs atom’,

referencing one of the fundamental units in physics to an object, ancient Greek
philosophers already had considered to be "indivisible'. Atoms are basic compo-
nents of matter coming along in a rich diversity and -at the same time- can be
kept extremely well under control in the world’s laboratories.

As a consequence from the definition of the SI second, cesium clocks used for
time-keeping had been established by national metrology institutions all over the
world. With the invention of laser cooling [8, 9], existing Cs clocks based on a
thermal beam of atoms were further improved in both uncertainty and instability.
In atomic fountain clocks, a new type of interrogation geometry, laser-cooled atoms
are launched onto a trajectory under the influence of gravity, thereby passing twice
a microwave interrogation zone [I0HI2]. Today’s best cesium clocks have reached
statistical uncertainties close to 1 x 107!, which almost displays their fundamental
limit, [1316].

From microwave to optical domain - A boost in stability

Atomic clocks are characterized by their instability and the uncertainty of their
transition frequency. Instability is measured by the Allan deviation

o (t) ~ é;jS/lN\/? (1.1)

Here, Av is the atomic transition linewidth, 14 is the unperturbed transition fre-
quency, S/N is the signal-to-noise ratio, T is the clock’s cycle time (i.e., the time
required for atomic state preparation and determination of the line center) and
7 is the total averaging time [10, [I7]. The ratio vy/Av is called the transition’s
quality factor @) or line-Q.

According to Eq. [I.1], the clock’s instability could be further reduced, if tran-
sitions with higher frequencies 1 are used. Advancing into the optical frequency
domain increases the transition frequency by four to five orders of magnitude and
hence reduces the frequency instability by the same amount. Like for any other
atomic clock, the measurement of optical frequencies needs to be referenced to
the Cs atomic clock. However, this approach came together with an experimental
challenge: microwave frequencies could easily be detected with RF electronics, but
optical frequencies of a few 100 THz cannot.

L French: Conférence générale des poids et mesures



Finally, the frequency of optical transitions had been determined by connect-
ing the down-converted frequency of the optical oscillator with the up-converted
microwave frequency of the Cs clock using optical frequency chains. In this way,
Schnatz et al. demonstrated the first phase-coherent frequency measurement of an
optical transition in the visible domain in 1996 at PTB (Physikalisch Technische
Bundesanstalt), performed on the 'Sy — ?P; intercombination line at 657 nm in
laser-cooled “°Ca [18]. In a comparable experiment, even frequency measurements
in the ultraviolet regime had become accessible, like the spectroscopy of the 1.5—-25
transition at 121 nm in atomic hydrogen [19].

Operation of these phase-coherent frequency chains is a room-filling experiment,
probably comparable to the early start of computers by Konrad Zuse or Alan M.
Turing in the 1930s. If we have a look on the size of today’s available desktop
computers, the effort in measuring optical frequencies took the same remarkable
improvement thanks to the invention of the optical frequency comb, a "ruler in
frequency space' based on the Fourier spectrum of a mode-locked laser. This
unique tool, allowing for direct optical frequency comparisons, had initially been
proposed by Theodor W. Hansch and co-workers [20, 21] and has been rewarded
with the Nobel prize in physics in 2005, shared between John L. Hall, Theodor W.
Hénsch and Roy J. Glauber [5]. As the early frequency combs featured an optical
spectrum ranging from about 0.5pum to 1um [22], a frequency comb spanning
down to the ultraviolet domain was demonstrated in the same year of the Nobel
prize award [23].

The commercial availability of optical frequency combs gave a real boost to the
development of optical atomic clocks. The first optical clock to be reported was
the Hg" ion clock at NIST (National Institute of Standards and Technology)
in the group of D. J. Wineland [24]. Ions trapped in Paul or Penning traps [25]
feature long storage times and therefore allow for the clock’s Allan deviation to
average down in equal measure. Furthermore, the trapping potential provided by
the ion traps is in good approximation to the harmonic oscillator enabling a spatial
confinement of the ions known as the Lamb-Dicke regime [26]. In this particular
regime, clock spectroscopy can be performed being free of first-order Doppler shifts
and photon recoil shifts, as the clock laser photon recoil is absorbed by the trapping
potential. The energy of atomic motion in this trap is quantized by multiples of
the trapping frequencies Aiwry,p given by the harmonic potential [27], instead of the
continuous energy spectrum absorbers exhibit in free-space. If the potential depth
further satisfies the criterion, that the energy spacing between motional levels is
larger than the natural linewidth of the clock transition, spectroscopy is carried
out in the so-called resolved sideband regime, enabling active laser cooling to the
zero-point energy of atomic motion [2§].

However, the number of particles that can be trapped in an ion trap is limited
to just a few tens of ions [29], hence limiting the available S/N ratio in Eq. [1.1} In
optical clocks based on neutral atoms, ensembles composed of 103 to 10* particles



4 Chapter 1. Introduction

Electronic servo loop

A 4
Laser LA e - p E
i ’
[©]
Reference cavity SN | | T T— >

T UITIT
Frequency comb

Figure 1.1: Principle of optical clocks. A narrow-linewidth laser, which is pre-stabilized to a
frequency reference (e.g. a high-finesse optical cavity), interrogates the narrow clock transition
in ions or neutral atoms. The detected absorption signal of the laser is converted into an error
signal acting back on the laser frequency via an electronic servo loop. For determination of the
optical frequency, the laser is compared against an optical frequency comb. In analogy to the
traditional clock-face, a suitable device can display the "counted" clock frequency.

are confined in the interference pattern of a high-power standing wave realized by
at least one pair of counter-propagating laser beams [30]. The spatial confinement
of these optical lattices also satisfies the conditions for spectroscopy in the Lamb-
Dicke regime, as has been demonstrated by Hidetoshi Katori and co-workers [31].
Furthermore, the wavelength of this optical lattice was chosen such, that the AC
Stark shifts acting on the interrogated clock states canceled out in first order. This
work led to the proposal of the optical lattice clock, where the strongly forbidden
1Sy — 3P, transition is interrogated in alkaline earth(-like) elements confined to a
magic wavelength optical lattice [32]. Possible atomic candidates for optical lattice
clocks are Sr; Yb, Hg and Mg.

Optical clocks operating with ions or neutral atoms have the same basic working
principle, as depicted in Figure [I.I} the narrow, optical transition of the absorber
is probed by sweeping the frequency of an interrogation laser over the spectral
resonance. To provide an intrinsic narrow laser linewidth, being able to resolve
the atomic resonance, this laser needs to be pre-stabilized to an optical cavity with
a high finesse [33] or to a narrow resonance in a crystalline structure obtained via
spectral-hole burning [34]. If laser photons are absorbed by the atom or the ion,
their spontaneously emitted fluorescence can be detected (using a CCD camera
or a photo multiplier) for the generation of a dispersive error signal. Fed to an
electronic feedback loop, this signal will act back on the laser frequency for keeping
it resonant with the atomic line center. So far, this setup would be considered as
optical frequency standard [35]. If the laser frequency is determined by means of
an optical frequency comb and displayed with a suitable device, it will act as an
optical clock.

Improvement of the world’s optical clocks is continuously progressing, where ion
and lattice clocks are having a close neck-and-neck race for the highest accuracies.
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Figure 1.2: Fractional uncertainties of atomic frequency standards. Depicted are reported
accuracies of Cs standards (red circles, [0, 12, [16] 42-47]) and optical frequency standards (blue
squares, [I8), 19, 3840}, 48H55]), including ion and neutral atom clocks. The green triangles
denote the frequency measurements of the 1Sy — 3P, intercombination line in 2*Mg [56 [57].

In any case, the performance of optical clocks in both accuracy and stability has
already surpassed those of state-of-the-art cesium clocks. A systematic effect, that
had limited the accuracies of Sr and Yb clocks for a long time, is given by the black
body radiation (BBR) induced frequency shift for room temperature environment
at 300 K. The uncertainty related to the BBR shift could finally be reduced by pre-
cisely measuring its static contribution [36], 37], the environmental temperature [38]
or by operating the clock in cryogenic environment [39], therefore suppressing the
BBR effects. So far, the most accurate optical clock that has recently been re-
ported, is the Sr lattice clock in the group of Jun Ye at JILA (Joint Institute for
Laboratory Astrophysics) with a fractional uncertainty of 2 x 107'% [40]. Figure
1.2] gives an overview of several atomic frequency standards that were reported
within the last 60 years, starting with Essen’s Cs clock in 1955 and ending with
Ye’s Sr clock in 2015, showing a remarkable improvement of nearly nine orders of
magnitude in between and finally proving Arthur L. Schawlow to be only halfway
right [1]: the first optical clock to measure at the 1077 accuracy level was again
the 9Hg™ ion clock at NIST, but it took at least 25 years to demonstrate [41].

The record demonstration of 2 x 10718 accuracy enables the detection of differ-
ences in the gravitational potential on a very precise scale. If two identical clocks
of this kind were placed with a difference in height of Ah, the upper clock will run
slightly faster according to

Jv gk

140} c?

: (1.2)

where g ~ 9.81 m/s? is the local gravitational acceleration [58]. Consequently, two
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of the world’s most accurate Sr clocks would measure a clock shift corresponding to
a gravitational red-shift, if placed with Ah ~ 2 cm. This level of precision suggests
to "ask no longer what time it is, better ask how high I am" [59]. In fact, the
development of optical clocks suggests, that these highly sensitive quantum sensors
will improve measurements in relativistic geodesy, hence displaying a fundamental
application [60H62].

Among the candidates for optical lattice clocks, Mg features a total sensitivity
to BBR being an order of magnitude smaller as compared to Sr or Yb [63]. Al-
though laser-cooling techniques are not as advanced as for the other clock species,
which is mainly due to the narrow 'Sy — 3P, intercombination line at 457 nm as
well as the lack of adequate sub-Doppler cooling techniques, a continuous loading
scheme for optical dipole traps [64] 65] enabled the transfer of cold magnesium
atoms into an optical lattice for clock spectroscopy [66].

As in all bosonic alkaline earth(-like) isotopes, the 'Sy — 3P, clock transition
in 2*Mg is strongly forbidden. Optical dipole coupling of the two clock states can
be enhanced through a homogeneous magnetic field being applied during clock
interrogation [67H69]. Enabling ~ pHz linewidth, the clock transition in 2*Mg
offers the largest line-() among the candidates for optical lattice clocks.

The scope of this thesis

In the frame of this work, important atomic parameters for magnesium were deter-
mined: the magic wavelength of the 1Sy — 3P clock transition and its second-order
Zeeman shift, both being fundamental for the realization of a future magnesium
optical lattice clock. Furthermore, the determination of these parameters allowed
a first direct spectroscopic measurement of the clock transition frequency.

This thesis is organized as follows: Chapter [2]| gives a short overview on the
setup of the experiment. The techniques that are used for state preparation of
atoms in the magic wavelength lattice are described in Chapter [3] followed by
a brief introduction of the clock interrogation scheme using a magnetic field for
enhancing the dipole coupling of the clock states. Chapter 4| provides the theo-
retical background for spectroscopy in the Lamb-Dicke regime, starting out from
the ideal potential of a harmonic oscillator. Introducing the potential of an optical
lattice, several effects having an impact on lattice Lamb-Dicke spectroscopy are dis-
cussed. The experimental results on clock spectroscopy and systematic frequency
shift studies are summarized in Chapter [5] This thesis concludes with an outlook
on the next steps to be taken towards a frequency measurement in lattice-trapped
magnesium in Chapter [6] including a perspective on future measurements.



CHAPTER 2

Experimental setup

In this chapter, I will give a brief description on the setup of our vacuum apparatus
(Section , the magnetic fields being available for experiments (Section and
how detection is carried out in our experiment (Section [2.3). For more detailed
information on each of these sections, I recommend previous theses of our work

group.

2.1 Vacuum apparatus

Experiments in atom optics are usually performed in ultra-high vacuum
(< 10719 mBar) requiring special apparatuses for each individual application. Vac-
uum pumps therefore are responsible for providing a stable environment that re-
duces the interaction of atoms under investigation with foreign particles. In the
Magnesium experiment, the main experimental chamber is separated from the
source chamber containing an oven filled with solid slices of magnesium. These
two chambers are connected through an aperture of 5mm diameter showing the
same effect as a differential pumping stage: while having a high vapor pressure in
the source chamber, the pressure in the main chamber is about 2.9 x 10~ mBar.
Although this does not display an ultra-high vacuum in this case, this setup is
sufficient for the applications in the Magnesium experiment that are described in
this thesis.

The source chamber contains the oven for sublimating solid magnesium which
has been designed in [70]. In principle it consists of a cylindrical steel reservoir
being filled with metallic slices. Applying an electric voltage, this reservoir heats
up to 450°C. At this temperature the vapor pressure inside the source chamber
enables sufficient loading rates into the magneto-optical traps and dipole traps.
Magnesium atoms being in the gaseous phase may exit the steel cylinder through
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tiny bores. The already above mentioned aperture between source and main cham-
ber has the additional feature of forming a collimated, thermal beam of magnesium
atoms. If necessary, the aperture can be closed via external computer control by
means of a shutter for reducing the interaction of optically prepared ensembles
with hot magnesium atoms.

The source chamber is connected to a metal bellow which is attached to the
main chamber using a DNG63CF flange. The main chamber, which has been de-
signed and set up in [71], consists of a cylinder made of stainless steel with 210 mm
diameter being oriented in the vertical plane. Opposite to the source chamber is
another DN63CF adapter flange going to a cross with a turbomolecular pump,
an ion getter pump, a vacuum sensor and a view port for irradiating the Zeeman
slowing beam and the triplet-MOT repumping beams. Furthermore, there are two
more DNG63CF and eight DN40CF flanges attached horizontally to the chamber
for optical access. Vertically, the chamber is closed with two DN200CF pot flanges
allowing for the pair of Helmholtz coils being close to the atoms. Figure [2.1| shows
a horizontal cut through the main chamber with the laser beams used for the
experiments. Those view ports marked with an "M" are used for the magneto-
optical traps at 285nm and 383 nm, respectively. The remaining two DN63CF
flanges are used for optical access of the optical dipole trap at 1064 nm, the magic
wavelength lattice at 468 nm, the transfer laser at 457nm and the clock laser at
458 nm. At the moment, these flanges are going conical to DN40CF flanges with
vacuum windows being sealed with indium. As it has been observed in a previ-
ous dissertation, these vacuum windows were contaminated (most probably with
residual magnesium condensing on the windows) from the vacuum side and thus
limiting the maximum power in the optical lattice enhancement cavity [66]. The
windows have been replaced in the frame of this thesis. New windows embedded
in DN63CF flanges have been purchased offering less absorption at 1064 nm and
thus less heating due to laser radiation as well as more space for optomechanics.

One of the remaining DN40CF view ports is used for fluorescence detection of
atoms on a CCTfY| camera. The window being opposite could be optionally used for
absorption detection of metastable atoms at 383 nm. The last window axis offers
additional space for the implementation of a photomultiplier and an additional
laser beam, respectively.

2.2 Magnetic fields

Magnetic fields play a major role in atom optics experiments, as they are used for
controlling atomic states (e.g. as a permanent magnet used in a Zeeman slower,
where atoms are kept on resonance with the applied slowing beam depending on
their spatial position), for trapping atoms (magnetic trap) or for compensating

Lcharge-coupled device
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Figure 2.1: Horizontal cut through the experimental chamber. Depicted are the relevant laser
beams for state preparation and optical trapping. View ports indicated with an "M" are used for
the operation of the two UV magneto-optical traps. The fluorescence of atoms is detected with a
camera located at the view port "Det". Not shown is the oven chamber, where solid magnesium
is sublimated and formed into a thermal beam by means of an aperture.
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parasitic fields like the earth’s magnetic field. According to this, one finds several
different magnetic field configurations in such an experimental chamber. In the
case of the Magnesium experiment there are four types of magnetic fields that can
be made use of and that shall be briefly described in the following.

Quadrupole field

To obtain a spatial enclosure for atoms, one needs -besides a near-resonant light
field- a magnetic quadrupole field featuring a local minimum of field strength
being ideally in the center of the experimental chamber. As the magnetic field
minimum defines the position of the atoms, all laser beams used in the experiment
are aligned with respect to it. The quadrupole field is generated with a pair
of coils being arranged parallel to each other. If the direction of current flow is
equal for both coils, one receives the so-called Helmholtz configuration generating a
homogeneous magnetic field between the coils. In the case of counter-propagating
current flow, one receives the already mentioned quadrupole field in Anti- Helmholtz
configuration. The coils have been wound in [71] and consist of a tubular copper
wire allowing for water cooling. As the coils are placed in the earlier described
pot flanges, they are only 4 cm away from the position of the atoms. The coils are
electrically connected in series to a power supplyﬂ giving a maximum current of
about 200 A. The current flowing through the wires can be regulated within 30 us
using an IGBT (Insulated Gate Bipolar Transistor), but the decay time of the
magnetic field is much larger being 2 ms, as eddy currents are induced in the steel
apparatuses preserving the magnetic field [72]. With a maximum current of 200 A,
magnetic field gradients of 1.3T/m (equivalent to 130 G/cm) can be achieved in
the strong axis and 0.65 T/m (65 G/cm) in the weak axis, respectively [71].

Homogeneous magnetic field for optical spectroscopy

In the case of the bosonic isotope 2*Mg, an external homogeneous magnetic field is
necessary for enhancing optical dipole excitation of the spin-forbidden 1S, — 3P
clock transition, as there is no natural coupling between the 3P, and ® P, states due
to the lack of a nuclear spin. In the experiment, this field is created by switching the
main coils of the quadrupole field from Anti-Helmholtz to Helmholtz configuration
by means of four IGBTs in a so-called H-bridge wiring, whereas the lower coil is
forming the bridge section.

Thus, we generate a magnetic field of 2.49(1) G/A, determined via optical Zee-
man spectroscopy of the 'So(my; = 0) —3P;(m; = £1) transitions. A maximum
current of 200 A therefore generates a maximum magnetic field of about 50mT
(500 G) which is sufficient for enabling clock spectroscopy in magnesium. The
coils have been calibrated by means of a current probe being attached to the wire

26682A, Hewlett Packard
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Figure 2.2: Calibration of the magnetic field coils. The current flowing through the coils (red
dots) as well as the response of a current probe (black squares) have been measured as a function
of computer control voltage.

going to the upper coil. The absolute current value was read on the display of the
power supply. As can be seen from Figure 2.2 the magnetic field strength grows
linearly, even at high currents of 200 A.

Homogeneous magnetic field for state selection

Another homogeneous magnetic field with amplitude of 1.05 G/A (105 uT/A) can
be applied to the apparatus through windings around the two DN200CF pot
flanges. The maximum current is limited to 4 A due to heating inside the coils [64].
This magnetic field is suitable for lifting the degeneracy of the 3P, m; substates by
means of the Zeeman effect and thus a controlled excitation of a certain magnetic
sub component.

Homogeneous fields for compensation of stray fields

To avoid perturbations induced by the earth’s magnetic field or by stray fields
arising from the ion getter pump, a cubic arrangement of each a pair of coils in
Helmholtz configuration per cubic axis is attached around the main chamber [73].
The center of this coil arrangement is identical with the position of the atoms,
generating a magnetic field of maximum 1 G (100 uT).

2.3 Detection of atoms

Besides the preparation and manipulation of atoms in precision experiments, de-
tection plays an enormous role, giving knowledge about properties like number of
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atoms, atomic density and temperature of atoms. Atoms being in an excited state
(as a result of laser light interaction or a comparable suitable energy input) can
be detected through the spontaneous emission of photons, as they decay back to a
lower state. These photons can then be detected with a camera or a photomulti-
plier, so one would talk of fluorescence detection in this case. Another method of
detection is given by absorption detection, where atoms are resonantly illuminated
with laser light casting the atomic cloud on the camera chip. In the Magnesium
experiment, we are focussing on fluorescence detection, which shall be described
in more details in the following section.

Theoretical setting

To correctly determine the number of atoms, it is important to know the number
of photons being emitted during the detection process. Looking for a theoretical
description, atom-light interaction for a two-level atom is well described by the
stationary solution of the Optical Bloch FEquations. According to them, the excited
state fraction is given by

02/4
Pexcited = ) 2 2 /1
024+ 02/2+~2/4
with 2 being the Rabi frequency of the transition, v being the natural linewidth
and scattering rate, respectively, and ¢ is the detuning relative to the resonance

frequency of the transition [74]. Introducing the so-called resonant saturation
parameter

(2.1)

1 200 (2.2)
S0 = = — .
0 [sat 72
together with the saturation intensity of the transition of choice,
7w he
Isat - gﬁ, (23)

where ) is the wavelength and 7 = 1/v is the lifetime of the transition, Eq.

evolves into
1 S0

excited — 57 o 452 ° 2.4
Pexcited 280—|—1+% ( )

Eq. gives an intuitive dependence on the intensity I of the pumping laser. If
the laser is exactly tuned to the atomic resonance frequency and operated with
an intensity I = I, one will find a fraction of 0.25 of atoms being in the excited
state. For large laser intensities (so > 1) the system will reach a steady-state
equilibrium with an excited state fraction of pexcitea — 1/2. As the excited state
decays with v and the excitation rate equals the decay rate in the case of a steady-
state equilibrium, the total photon scattering rate vp, results to
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(2.5)

Y S0
TYPh = 7Y Pexcited = 5

so+1+%
with an equilibrium value of /2 for sy > 1 [75].

As the photon scattering rate is proportional to the linewidth of the atomic
transition, it is profitable to use cooling transitions with a linewidth of several

MHz for optical detection. In the experiment, usually the MOT beams are applied
to the atoms.

Optomechanical setup and digital processing

The fluorescence being emitted by the photons is detected on a CCD camera at
the viewport "Det" (see Figure . An iris located in front of the viewport can be
used for regulation of the detection solid angle and thus the level of illumination
of the camera chip. Furthermore, a lens system of two lenses with identical focal
length, which is placed between main chamber and camera, allows for original size
imaging of the atomic clouds. A computer controlled mechanical shutter is used
for regulating the illumination time of the CCD chip.

The recorded camera pictures are forwarded to the laboratory computer and can
be analyzed using various kinds of software. A specific Mathematica code has been
developed in [66] for distinguishing weak atomic signals, as they occur during lattice
measurements, from typical background noise. First, several pictures taken from
small atomic clouds are averaged before the same pictures are taken with no atoms
being present, but obviously are containing residual stray light etc. (background
pictures). As a next step, a kind of "model mask" is calculated, containing the
averaged cloud pictures and background pictures, before it is compared with any
freshly taken picture through a least square fit for calculation of the number of
atoms.
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CHAPTER 3

State preparation

This chapter treats the experimental procedures and challenges of atomic state
preparation as a prerequisite for clock spectroscopy. The relevant level scheme and
atomic properties of magnesium are discussed in Section Section treats
the two ultraviolet magneto-optical traps we are using for laser-cooling of 2*Mg.
The experimental scheme for loading cold atoms into optical traps is described in
Section [3.3] As the 1Sy — 3P, clock transition is strongly forbidden for bosonic
isotopes, Section discusses a scheme for operating a lattice clock with bosonic
24\Mg, based on magnetically enhanced dipole coupling of the two clock states.

3.1 Relevant level scheme of Mg

Magnesium belongs to the group of alkaline-earth metals that are categorized in
Group 2 of the periodic table of elements, as they possess two valence electrons in
their outer shell. The presence of two electrons, whose relative spin orientation can
be parallel (total spin S = 1) or anti-parallel (total spin S = 0), comes together
with a variety of electronic transitions. Those with changing multiplicity 25 + 1
are forbidden at a first glance due to general selection rules [76] and thus result
in a very narrow transition linewidth. They are referred to as intercombination
lines and are of high interest in frequency metrology for the development of optical
frequency standards.

Besides magnesium, there are the other alkaline earth metals calcium and stron-
tium as well as the alkaline earth-like elements ytterbium (lanthanide) and mercury
(transition metal) being object of scientific research on optical frequency standards
with neutral atoms as they all have similar properties e.g. like the level structure.

Naturally occuring magnesium shows a mixture of three stable isotopes: the
bosonic isotopes ?*Mg and Mg with a natural abundance of 78.99% and 11.01%,
respectively, and the fermionic isotope Mg with a natural abundance of 10% [77].

15
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Figure 3.1: Relevant level scheme of 2*Mg. Linewidths are given in I'/27.

Isotopes of a certain atomic species feature all the same proton number Z, which
is equivalent to the atomic number in the periodic table of elements, but differ
in the number of their neutrons N. The sum of protons and neutrons forms the
totality of core particles and is defined as nucleon number (or mass number) A
of an isotope [78]. For even Z and N, as it is the case for ?*Mg and Mg with
Z = 12, isotopes have a vanishing nuclear spin |I| = 0. Accordingly, for odd
nucleon numbers, isotopes have half-integer nuclear spins (**Mg: |I| = 5/2). The
interaction between nuclear spin I and total angular momentum J finally leads
to an energy splitting for each energy level E,;; into the respective hyperfine
components, by introducing the total angular momentum F = I + J [79).

Experiments described in this thesis have been carried out on bosonic *Mg,
having a relative atomic mass of 23.98504 [80]. As the two valence electrons of
magnesium occupy the third atomic shell (M shell), the electronic ground state
of Mg is (3s2)'S;. The nomenclature of term symbols 2*1L; goes back to LS
coupling (also called Russell-Saunders coupling) and includes information about
the total spin of the two electrons, the total orbital angular momentum L and the
total electronic angular momentum J of a given state [74]. In the following, I will
restrict myself in the description of atomic states to just the term symbol without
the atomic orbitals.

Figure shows an excerpt of the Mg level scheme with the transitions
being relevant for this work. The first magneto-optical trap (MOT) cooling stage
is carried out on the 78 MHz broad 'Sy — ' P; transition at 285 nm (and referred to
as "singlet-MOT"). In magnesium, the ' Dy state is energetically higher than the
1P, state. This is advantageous, as there is no natural decay channel from the ' P,
state to the 3P172 states via 1Dy, as e.g. in strontium. In essence, the singlet-MOT
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cooling transition displays a closed cycle therefore needing just a single laser for
stable MOT operation.

The pre-cooled atoms are then optically pumped to the triplet manifold via the
1Sy — 3P, intercombination line at 457 nm. A second-stage MOT is realized on the
26 MHz broad 3P, — 3D5 transition at 383 nm. Here, parasitic excitations to the
3D, o states may occur that decay to the 3P, states. Hence, two repumping lasers
are needed to close the cooling cycle of this MOT (referred to as "triplet-MOT").
Finally, a continuous loading scheme for an optical dipole trap at 1064 nm allows
for the accumulation of cold 2Py atoms [64] 65]. As it has been demonstrated in a
previous work, these atoms can be further transferred to an optical lattice at the
predicted magic wavelength of 469 nm [66].

3.2 Laser cooling of ?*Mg

In this section, I will discuss the essential experimental steps as well as the main
characteristics of laser cooling of 2*Mg. A detailed description can be found in
previous dissertations of our group [64], [66] [70H72] and shall not be repeated in the
scope of this thesis. For a theoretical treatment of laser cooling I refer to standard
works in atom optics of [74] [75].

As already mentioned in the previous section, laser cooling in the Magnesium
experiment is carried out in the ultraviolet regime of the electromagnetic spectrum.
Although the simple level structure of bosonic 2*Mg in principle is advantageous,
laser operation at 285 nm and 383 nm, respectively, displays a more complex exper-
imental effort, as laser diodes at these wavelengths are not commercially available
yet. A well established method of generating UV radiation is the resonant second
harmonic generation (SHG) in a cavity, going along with high-power laser systems
at 570nm (1140 nm) and 766 nm.

Another challenge to the experiment is given by the linewidths of the cooling
transitions in ?*Mg: the rather broad transitions in the singlet and the triplet
manifold limit the application of laser cooling to approximately 1 mK Doppler
temperature, whereas the 1Sy, — 3P, intercombination line is not suitable for MOT
operation. According to Eq. 2.5 only 6 photons would be scattered per second in
this case.

3.2.1 The singlet-MOT at 285 nm

In our experiment, laser radiation at 285 nm is generated with SHG of the out-
put of a commercial laser system at 570nm[[] This laser unit consists of a diode
laser in ECDL (External Cavity Diode Laser) configuration at 1140 nm which is

'DL-RFA-SHG Pro, Toptica
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Figure 3.2: Generated laser power at 285 nm as a function of the quadruple fundamental at
1140 nm of the RFA. The maximum output power in the UV is approximately 350 mW.

further amplified using a Raman fiber amplifier (RFA) and, as a next step, fre-
quency doubled via SHG to 570 nm with a maximum optical laser power of 3 W.
A detailed documentation on this laser system can be found in [66]. For frequency
stabilization, we apply a Doppler-free polarization spectroscopy, similar as in [81],
by sending a small amount of yellow laser light through a polarization maintaining
(PM) fiber to an iodine spectroscopy setup. Further details on this locking scheme
as well as the used hyperfine transition in the R115(20-1) iodine line are given
in [64]. In general, an achieved laser linewidth of a few MHz would be sufficient
for adressing the 78 MHz broad 'Sy — ' P; cooling transition.

Laser light at 285 nm is generated using a self-built SHG cavity in bow tid? con-
figuration [82]. The cavity length is stabilized using the Pound-Drever-Hall (PDH)
technique [33], while the maximum output power is about 350 mW at 285 nm (see
Figure . As UV radiation acts quite aggressively on optical coatings, thereby
causing degradation of the SHG crystal surfaces, we operate the cavity in the ex-
periment with a maximum output power of 100 mW. The output beam is split
into two parts using an acousto-optical modulator (AOM): One part is needed for
Zeeman slowing (0" diffraction order), while approximately 50 mW are needed for
the singlet-MOT (-1%* diffraction order, corresponding to a detuning of —78 MHz,
which is -y). The cooling light is further split into the six MOT beams using

2The name "bow tie" is related to the four-mirror-setup the laser light is traveling along during
the SHG process.
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polarizing beam splitters (PBS) and is guided to the main chamber in counter-
propagating beam pairs for each direction in space. The Zeeman slowing beam
passes another AOM with a detuning of —220 MHz and is guided through a view-
port of the main chamber being opposite to the oven.

Operating the singlet-MOT with a loading time of 3s, we trap about 3 x 10°
magnesium atoms at a temperature of 3 mK, which is slightly above the theoretical
Doppler-limit of 1.9 mK [71]. In the same work, the singlet-MOT life time has been
determined to 4.7s.

3.2.2 Optical transfer at 457 nm

In magnesium, atoms being in the !P; state cannot decay to the metastable 3P
statesﬂ This means, in our experiment, metastable atoms can only occur via laser
excitation of the 36 Hz narrow 'Sy — 3P, transition at 457 nm. As already men-
tioned in the previous subsection, singlet-MOT cooled atoms have a temperature
of 3mK, thus one would expect a Doppler broadening [83] of the natural linewidth
of the intercombination line to ~ 5 MHz, according to

dwp = @”M_ (3.1)
c m

The laser system for this blue transition consists of a commercial ECDL at 914 nm,
which is amplified using a tapered amplifier and subsequently frequency doubled to
457nm in a SHG cavityf] As the 1Sy — ®P; intercombination line had been used as
clock transition in previous works [56] 57, [72], intrinsic narrow laser linewidths had
been required. A well-established method in this case is the frequency stabilization
of the laser to an optical cavity using the PDH technique. Here, the cavity is made
of ULE (Ultra Low Ezpansion) glass being coated for 457nm. ULE features a
low thermal expansion of the resonator at room temperature and hence reduces
its influence on laser frequency stability. The stabilized laser linewidth could be
estimated to be below 1kHz [56].

The typical output power of the laser is 200 mW at 457nm. A small amount
of laser light is used for the above mentioned frequency stabilization to the ULE
cavity. Therefore, the light passes a double-pass AOM and is fiber-guided to the
resonator setup. The main part of the laser light passes a control-AOM operated
at 79 MHz and is fiber-guided to the experimental main chamber. Here, 30 mW
of optical power in the blue are available for optical pumping the atoms from the
electronic singlet to the triplet manifold.

3In the case of strontium, the ' D, state has less energy than the ! P; state, hence atoms can
undergo parasitic decays via the former to the metastable states.
4TA-SHG-110, Toptica Photonics
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Figure 3.3: Fractional frequency instability of the beat note between the triplet-MOT cooling
laser and RP 2, with both laser frequencies being locked to the transfer cavity.

3.2.3 The triplet-MOT at 383 nm

Contrary to the singlet-MOT, which is operated on a closed transition, three lasers
are necessary for a metastable MOT (triplet-MOT) operated on the *P, —3Ds
cooling transition at 383 nm (see. Figure . After the application of the 457 nm
pumping laser, the short-lived 2P, state needs to be depopulated, otherwise atoms
would decay back to the ground state within a few ms [84]. A repumping laser (RP
1) driving the 3P, — 3D, transition finally transfers 3P, atoms to the 3P, state,
where the cooling laser is applied. As excitation to the 3D, state, with subsequent
relaxation to 3P, is very likely due to the small energy spacing of the upper >D;
states, a second repumping laser (RP 2), operating on the 3Py — 3D, transition,
closes the MOT cooling cycle.

Each of the three triplet-MOT lasers is a MOPA (Master Oscillator Power
Ampliﬁer@ of identical setup with 1 W optical power at 766 nm, but their fre-
quencies differ by more than 1THz (corresponding to the metastable transitions
at 383nm). They are stabilized to a Doppler-free saturation spectroscopy of 3K
at 766 nm via a transfer cavity. At first, the transfer cavity length is locked to
the 3°K probe laser. Afterwards, the triplet-MOT lasers are stabilized to a cavity
resonanceﬂ using the PDH technique (diode current modulation).

The locking performance of the transfer cavity was determined in the time

5A MOPA combines an ECDL seeding a tapered amplifier.

6Usually, the frequency distance between two longitudinal modes of a cavity corresponds to
the free spectral range (FSR), if the cavity is aligned to the optimum. For a cavity length of 7 cm
this would be ~ 2 GHz. However, clever alignment generates higher order modes with separation
of 112 MHz only. Read [64], 85] 86] for more information.
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as well as the fiber guiding optics. Blow-up: Bow tie cavity design for SHG. (PZT: piezo-electric
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domain by comparing the triplet-MOT cooling laser with RP 2, while being locked
to adjacent modes of the cavity. Their frequency difference was 200 MHz and
the locking servo bandwidth was a few 100kHz. The beat signal of the lasers
was recorded with a photo diode and fed to a frequency counter with zero dead
time (gate time 1s). From the time series, the corresponding Allan deviation was
calculated and is depicted in Figure 3.3l The relative frequency instability reaches
a flicker floor of o, & 2 x 107! at 100s integration time resulting from jitters in
the laser frequency servo loop.

The generation of UV light at 383 nm is realized in three independent SHG
bow tie cavities, whose lengths are stabilized to the incident red light at 766 nm
using the PDH locking scheme. Here, the same modulation frequency, that has
been imprinted on the corresponding laser diode current, is used for the deduction
of the SHG locking error signal. Each SHG cavity generates about 100 mW optical
output power. Figure shows a reduced schematic of the laser system. Further
details on this laser system can be found in [64] [72, R7].

The 383 nm cooling laser passes a control-AOM before being split into six paths
using PBSs with fiber coupling to the experimental main chamber. There, the
383 nm light is overlapped with the 285 nm light for each MOT direction in space
and irradiated to the atoms. At the position of the atoms, each triplet-MOT
beam has an optical power of about 1.5mW. The alignment of the beams is
optimized to a maximum spatial overlap between triplet-MOT and the optical
dipole trap at 1064 nm. The result is a very compact and highly fluorescent triplet-
MOT featuring life times of more than 1s (see Appendix |A|for the corresponding
measurements). Both UV repumpers are guided to the experiment sharing the
same optical fiber, after each passing a control-AOM for fast switching of the laser
light. The lasers are irradiated through one optical view port only (the same port
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Figure 3.5: Loading curve of the triplet-MOT as a function of 457 nm irradiation time and a
time constant of 7 = 2.56 ms. The maximum number of atoms is 1.6 x 108.

used for Zeeman slowing), both having an optical power of about 5 mW at 383 nm.

The typical, experimental sequence for loading of the triplet-MOT is as follows:
The singlet-MOT is being loaded for 1s with all 383 nm lasers being irradiated (ex-
citation to the metastable states does not yet occur), followed by a pumping phase
where the 457 nm transfer laser is applied. Finally, a pure triplet-MOT sequence
of 10 ms duration takes place, where no singlet atoms are present anymore.

Figure shows the number of atoms being captured by the triplet-MOT as
a function of 457 nm transfer pulse time. The loading rate of the triplet-MOT is
6.3 x 101% atoms/s. Hence, the pulse time is chosen to be 15 ms in the experiment,
where we capture about 1.6 x 10® atoms in the triplet-MOT.

3.3 Optical trapping of ?Mg

The presence of broad cooling transitions as well as the lack of adequate sub-
Doppler cooling techniques in 2*Mg define an experimental challenge for a future,
lattice-based frequency standard with magnesium. Compensating these disadvan-
tages, a continuous loading scheme for an optical dipole trap has been imple-
mented [64] [65], which shall be briefly discussed in the following subsection, before
I will describe the setup as well as the loading procedure of the magic wavelength
lattice.
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3.3.1 Continuous loading of an optical dipole trap at 1064
nm

Laser light for the 1064 nm optical dipole trap is provided by an ytterbium doped
fiber laserl’| with 48 W maximum output power. The laser is focused down to a beam
waist of 72 um, hence we achieve a maximum trap depth of U/kp = —142 uK. The
dipole trap beam is spatially overlapped with the triplet-MOT, while the latter one
has been optimized for ideal mode-matching, as already mentioned in the previous
section.

As it has been demonstrated in [64] [65], light-assisted two-body collisions limit
the triplet-MOT density and hence the transfer efficiency to the optical dipole
trap, as only the coldest atoms, whose kinetic energy is smaller than the potential
depth, can accumulate in the trap. This is the case, if the triplet-MOT is operated
as described in Subsection [3.2.3] As a consequence, only 1,000 atoms being in the
3P, state will be captured in the dipole trap.

However, if a loss channel for cold atoms is introduced to the 3P, state by
turning off the corresponding repumping laser (RP 2), those atoms are not returned
to the cooling cycle of the MOT. Irradiating every other laser (285 nm singlet-MOT,
457 nm transfer laser, 383 nm cooling laser, 383 nm RP 1 and 1064 nm dipole laser),
continuously pumps pre-cooled singlet atoms from a quasi-infinite reservoir to the
triplet manifold. The dipole potential now serves as energy filter for 3P, atoms, as
they are released from the cooling cycle. With this scheme, we were able to increase
the number of atoms in the optical dipole trap by two orders of magnitude to 10°
atoms at a temperature of 100 uK.

There are related schemes like the continuous loading of a dipole trap with
ground state calcium atoms via spatially selective optical pumping [88], as well as
the continuous loading of a magic wavelength lattice with strontium atoms [89].
In the latter case, the lattice has a trap depth of 200 uK and is directly applied
to the mK-hot singlet-MOT. Through selective optical pumping to the metastable
states, a loading rate of ~ 10° atoms/s has been achieved. However, there are two
reasons why a direct loading of a magic wavelength lattice is impossible so far in
our experiment:

(i) To load the lattice directly from the 3 mK-hot singlet-MOT, high trap depths
are required. As an example, for the generation of a 250 uK deep trap at
the magic wavelength, 24 W at 468 nm would have to be applied and fo-
cused down to a waist of 79 um. Here, the challenge is given by laser light
generation.

(ii) The continuous loading scheme, as described further above for the optical
dipole trap, cannot be applied to the magic wavelength lattice (even for a

"YLM, IPG Photonics
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Figure 3.6: Schematic of the lattice setup. The clock laser is transmitted by the dichroitic
mirror. Two more dichroics are used to guide in (out) the dipole laser. All optics are located
outside the vacuum.

shallow trap requiring less laser power), as a lattice photon carries enough
energy to cause photo ionization of atoms being in the 3Dj states.

As a consequence, the continuous loading scheme for the dipole trap is applied for
a duration of 1s to 3P, atoms, which are afterwards optically pumped to the 3D,
state and decay to the electronic ground state via 2P;. After this, the 1D optical
lattice, which is spatially overlapped with the dipole trap, is adiabatically switched
on before the dipole trap is rapidly switched off.

3.3.2 Transfer to the optical lattice at 469 nm

The lattice light is generated by a frequency-doubled titanium—sapphireﬂ (Ti:Sa)
laser giving 230 mW optical output power at 469 nm, which was an ab-initio cal-
culation for the magic wavelength of the clock transition in **Mg [90]. To generate
sufficient laser power for optical trapping of magnesium atoms, the "magic" light
needs to be further enhanced to several watts of power using a 1D horizontal build-
up cavity passing through the vacuum chamber. The cavity length is stabilized
to the incident light field using the PDH technique. The mandatory modulation
is applied to the blue laser by means of an electro-optical modulator (EOM) after
exiting the commercial SHG stagd’] The intra-cavity power of the optical lattice
is stabilized using a photo diode detecting light leaking out of the optical cavity.
A servo loop gives feedback to an AOM before the fiber coupling. After passing all
optics, including the AOM and EOM, 160 mW at 469 nm remain for fiber coupling
to the vacuum apparatus with an efficiency of ~ 60%.

We use a folded resonator design with a dichroic mirror (469 nm HR, 458 nm
HT) for reasons of impedance matching of the cavity (see Figure . Two more
dichroics inside the resonator are used for spatially overlapping the 1064 nm dipole
trap with the optical lattice. Reaching a cavity enhancement factor of about 25, we
obtain a maximum circulating intra-cavity power of ~ 2.5 W with 100 mW input
power, being mostly limited by the Ti:Sa output power (and degrading pump

8TIS-SF-07, Tekhnoscan
9SHG Pro, Toptica
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Figure 3.7: Interrogation of the clock transition in 2Mg. (a) Atoms in the ® Py state, that have
been captured by the optical dipole trap, are optically pumped to the 3D, state and decay to
the 1Sy ground state via 3P;. (b) Ground state atoms are transferred to the optical lattice and

interrogated on the magnetic field enhanced clock transition. (c) The excited state fraction is
detected using the triplet-MOT.

laseIF_U] power, respectively). Together with a lattice waist of 79 um, we achieve a
maximum trap depth of about 14.5 Eg (or U/kg = —26.3 uK), where Ey is the
recoil energy of a lattice photon.

After the atoms have been transferred from the dipole trap to the optical lattice,
we adiabatically ramp down the lattice intensity within 100 ms to a few Eg for
removing the hottest atoms out of the trap (purification sequence). Hence, we
create the same initial temperature conditions for the atoms in each measurement
cycle. Afterwards, the lattice intensity is ramped up again to the final trap depth
within 100 ms.

More detailed information on the setup of the lattice laser, the build-up cavity
as well as the locking schemes can be found in previous works of our group [66], O1].

3.4 Scheme for a bosonic clock with ?*Mg

In the frame of this work, clock spectroscopy is performed starting out with atoms
in the 1Sy ground state followed by laser excitation to 3P, (see Figure . The
excited state fraction is detected with the triplet-MOT, as this scheme allows
background-free detection of metastable atoms with a sensitivity to a few tens of
atoms [57, 65]. So far, normalization of the number of atoms is not executed yet,
as the current detection scheme using the CCD camera is too slow['] for taking a
second picture of the ground state fraction of atoms, that have not been excited
by the clock laser.

In the following, I will briefly discuss the mechanism of magnetic field enhanced
spectroscopy together with typical parameters used for the experiments presented
in this thesis. This chapter closes with a description of the clock laser setup.

10Verdi V-10, Coherent
1The camera has a data processing time of approximately 500 ms.
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3.4.1 Magnetic field enhanced spectroscopy

If treated as a three-level system, optical dipole excitation of the strongly forbidden
1Sy — 3P, clock transition can be enhanced by applying a homogeneous magnetic
field that couples the Py, state to 3P, with Rabi frequency Qp [67]. In addition,
the clock laser couples the weakly-allowed dipole transition 'Sy — 3P, (natural
linewidth is ) with Rabi frequency €),. The Rabi frequency for dipole excitation
of the clock transition is then given by

Q1,0
chock = %7 (32)

where A is the frequency splitting between 3Py and 3P;. As a consequence of the
magnetic field induced admixture of the 3P, state to the excited 3Py clock state,
as well as power broadening induced by the clock laser intensity I, the forbidden
clock transition will feature a linewidth of

O /4 + Q3
Yelock 7~ 'YL/AQB (33)

However, this excitation scheme is paid at the expense of a clock laser induced AC
Stark shift

Qz
Ay =kl = ﬁ (3.4)
and a second-order Zeeman shift
Q2
Ap = B?* = AB, (3.5)

where xk and [ are the respective shift coefficients. Combining the constant terms
in a prefactor a, Eq. turns into

Qelock = a\/T|B| cos, (3.6)

where 6 denotes the angle between the linearly polarized clock laser field E and
the magnetic field B.

For increasing the dipole coupling of 1Sy and 3P, we operate the MOT coils in
Helmholtz configuration, as described in Section We normally use a magnetic
field of 249 G, which yields a predicted linewidth of 8.07 uHz and a Rabi frequency
of chock/zﬂ' = 205 Hz.

3.4.2 The clock laser at 458 nm

Clock spectroscopy is carried out with a home-built ECDL in Littman configura-
tion, stabilized to an ultrastable ULE cavity with finesse F ~ 600,000 at 916 nm,
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' : SHG to 458 nm .
ULE cavity @ 916 nm Mg experiment

Figure 3.8: Schematic of the clock laser setup. The clock laser is stabilized to a high-finesse ULE
cavity at 916 nm. Laser light is fiber-guided from the resonator laboratory to the Magnesium
laboratory using a 30 m PM optical fiber link. There, the laser is amplified and frequency-doubled
to 458 nm and further fiber-coupled to the experimental apparatus.

similar to [92, O3]. The infra-red light is fiber-guided to the spectroscopy setup,
a tapered amplifier chip, and a commercial SHG stageE| using a PM optical fiber
link of 30 m length (see Figure . The system generates 10 mW of 458 nm light
at the position of the atoms. Spectroscopy is performed by irradiating the atoms
for 100 ms with a pulsed, Gaussian shaped laser beam that is aligned collinearly
with the optical lattice beam. It has a waist of 300 um and a peak intensity of
7.07W /em?. Up to 1,000 atoms are resonantly excited to 3P, which are detected
with 80 ms of fluorescence from the triplet-MOT. The line center and profile of the
atomic transition are obtained by recording the number of excited atoms as the
frequency of the 916 nm laser is stepped. Initial drifts of the clock laser are deter-
mined via spectroscopy of the clock transition’s carrier frequency and compensated
using a feedforward of an AOM that shifts the laser frequency with respect to a
resonance of the ultrastable ULE cavity.

12SHG pro, Toptica
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CHAPTER 4

Theoretical discussion of
Lamb-Dicke spectroscopy

From free-space to bound states

The precision in frequency spectroscopy has increased tremendously within the last
decades. A valuable measure is the line quality factor @ (line-Q)) of the atomic
transition of choice. As can be seen from Eq. , Q = vy/Av is defined as the
ratio of the resonance frequency vy and the observed full width at half-maximum
(FWHM) linewidth Av [35]. As Eq. suggests, the smaller the Allan deviation
of a frequency standard, the more stable it is, the ultimate goal of spectroscopy
is to increase the line-() as much as possible. The first big step towards a large
() has been made by choosing optical transitions for spectroscopy, rather than
microwave transitions, therefore automatically increasing the ) by at least four
orders of magnitude simply due to the higher resonance frequency vy. As this, at
some point, cannot be increased further, one has to start reducing the transition
linewidth Aw.

As mentioned in Section [2.1], atoms are usually prepared in an oven, where solid
materials have to be sublimated. Hence, the atomic vapor exiting the oven is often
more than 600 K hot, thus facing an enormous Doppler broadening on each atomic
transition (see Eq. . However, in early experiments on optical clocks, people
overcame this problem by collimating the atomic vapor to a thermal beam traveling
in just one direction of space. As the atomic resonance frequency is Doppler-shifted
(0vp ~ kwv) only for laser interrogation having a component k = (k,, k,, k.) along
the direction of atomic velocity, this shift goes to zero if the atoms are probed
transversely. Unfortunately, the interaction time between the applied interroga-
tion laser and the atoms is finite, as the atomic beam is continuously traveling.
Thus, the corresponding frequency spectrum shows a finite homogeneous FWHM

29
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linewidth ~ 0.9/7 [94]. The implementation of a Ramsey sequence [4] or, similarly,
a Ramsey-Bordé interferometer in the optical domain [95] lifts the requirement on
long interrogation times as the single pulse has been replaced by interaction zones.

The first frequency measurement of the 1.5, — 3P, transition in ?*Mg has been
carried out on a thermal beam of magnesium atoms being probed in a Ramsey-
Bordé sequence [56]. The achieved uncertainty of this measurement was 2.5 x 10712
being limited by residual first-order Doppler effects. After the successful demon-
stration of laser cooling at 285 nm [96], 97], the same frequency measurement could
be repeated for laser-cooled atoms featuring a total uncertainty of 7 x 107! (or
47 Hz in absolute values, respectively) [57]. As the atoms are transversely probed
during free-fall, it is the imperfection of the clock laser’s wavefront curvatures and
a mismatch of the beams themselves as well as power imbalances, that still induce
a residual Doppler shift on the clock transition frequency. As this was, in our case
and also in other experiments [98, 99], the limiting contribution to the clock un-
certainty budget, the question was, how to eliminate the first-order Doppler effect
for further improvement of the clock accuracy.

Scattering in free-space

As the most relevant process in optical clock spectroscopy is the optical pumping
itself, I will briefly specify the significant aspects in free-space interrogation and
the resulting limitations. In principle, optical pumping always comes along with a
change in temperature of a specific degree of freedom in the atom, that can either be
heating or cooling: For each scattering event, the atom receives a momentum kick
hk during absorption. Accordingly, this will lead to a change of atomic velocity
Av = hk/m,, where m, is the atomic mass [I00]. The atomic absorption and
emission frequencies are given through

1
Wabs = Wo + kabsv - 5(4)052 + ERec/ha (41)

1
Wem = Wo + Kem®' — 5%52 — FRee/h. (4.2)

Here, wy = 271, |kabs| = Wabs/C; |Kem| = Wem /¢, v (v’) is the atomic velocity in
the ground (excited) state, 8 = |v|/c and Ere. = (hk)?/2m, is the photon recoil
energy. The second term on each right-hand side of above equations is the first-
order Doppler shift, the third term is the second-order Doppler shift (also referred
to as time dilation shift) and the last one is the recoil shift. In the following,
the situation shall be treated in the non-relativistic approximation, therefore the
second-order Doppler term may be neglected. Furthermore, it is well known that
spontaneous emission has a random direction [I01], thus, by averaging over all
possible directions, the first-order Doppler term in Eq. may also be excluded.
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The average change in energy of a photon per resonant spontaneous scattering
event results to the difference of above equations [100]:

AEiphoton = h(wem - wabs) = —hkapsv — 2FRec- (43)

As energy and momentum have to be conserved in the overall process, the atom
will feel a change in kinetic energy according to

AEatom = _AEphoton = hkabsv + 2ERec- (44)

Drawing a first conclusion, free-space scattering is always related to changes in
the atom’s kinetic energy. Even at zero velocity, the atom’s energy at least has to
change by the recoil energy.

Recoil-free scattering in the Lamb-Dicke regime

Facing the fact that the Doppler effect directly results from the recoil momentum,
R. H. Dicke postulated in 1953 a recoil-free regime for spectroscopy, if the atom
could be confined to a region with spatial extent being smaller than the confining
wavelength A [26].

Here, he assumed atoms to be confined in a 1D square potential of width a.
From quantum mechanical point of view, any atom hence possesses two types
of energy: internal energy (corresponding to the internal electronic states) and
external energy, which is the quantized vibrational energy of the atom’s center-of-
mass motion in the potential. If the atom undergoes a transition as a consequence
of photon absorption or emission, both the internal and external states may change.
The photon frequency can hence be written as

Vom = Vo + [h/(8mea?)](n® — m?), (4.5)

with n and m being integer numbers, indicating the vibrational states. Now, two
facts have to be considered: First, vibrational states will always be present as
long as the confining potential is alive. Second, as the atom possesses thermal
energy, several atomic energy levels may be occupied due to a Maxwell-Boltzmann
distribution, hence a frequency spectrum with several lines v, can be observed.
Only for low zero-point energies (< kgT', see Subsection of atomic oscillation
in the potential well, the degenerate frequency v = v, is emitted with highest
intensity.

Coming back to the original idea of R. H. Dicke to create a recoil-free regime
for spectroscopy, he gives the probability for the photon recoil to interact with the
potential wall, rather than with the atom (see Eq. [4.4)), as follows [26]:

sin?(wa/\) .

(ra V7 (4.6)
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Figure 4.1: Illustration of the Lamb-Dicke regime. The probability for the photon recoil to be
absorbed by the potential, rather than by the atom, is plotted as a function of the parameter
a/\. TIf the confining potential is of smaller extent than the wavelength A, the probability is
enhanced that excitation of external atomic motion is suppressed (shaded region).

Figure illustrates this probability as a function of the parameter a/A. If
the potential width is smaller than the wavelength A\, photon recoils tend to be
absorbed very likely by the potential walls. An intuitive understanding for this
fact is given by comparing the vibrational frequency in Eq. with the photon’s
recoil frequency, which is the further above introduced recoil energy Fge. reduced
by Planck’s constant h:

h/(8mga?) = h/(2X*m,).

If we want the probe photon not to excite vibrational states of the atom, the
vibrational frequency has to be larger than the photon recoil frequency, thus the
potential width has to fulfill the condition @ < A/2. This particular regime has
been named the Lamb-Dicke regime.

Early experiments on trapped particles in the Lamb-Dicke regime have been
performed on the '®Hg™ ion at NIST in the group of D. J. Wineland [27]. The
trapping potential provided by the Paul trap is in good approximation with that
of a harmonic oscillator [I02]. Wineland and co-workers have created a broad
framework of theory and experiments concerning Lamb-Dicke spectroscopy, I will
mainly refer to in the following section. Understanding the importance of this
framework, it is no surprise that D. J. Wineland has been awarded the Nobel
Prize in physics in 2012 "for ground-breaking experimental methods that enable
measuring and manipulation of individual quantum systems" [5].

The first optical clock was the YHg" ion clock at NIST [24]. Having again
a look at Eq. , although single-ion clocks feature a poor S/N ratio, they
definitely benefit from long storage times lasting up to several days. But is there
any perspective for neutral-atom frequency standards featuring a large ensemble
of N atoms on the one hand and spectroscopy in the Lamb-Dicke regime on the
other?
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It was already known that neutral atoms can be trapped in so-called optical
lattices [30], a configuration of retro-reflected laser beams causing the dipole po-
tential to interfere. The result is a "box of eggs-like" potential (see a detailed
discussion on this in Sec. . H. Katori and co-workers were the first to demon-
strate Lamb-Dicke spectroscopy on laser-cooled Sr atoms being trapped in such an
optical lattice [31]. However, this dipole potential usually causes a large differential
AC Stark shift on the clock transition frequency as the polarizabilities of the clock
states differ. Nevertheless, atomic polarizabilities are wavelength-dependent. It
was also H. Katori suggesting in 2003 to use an "engineered light shift trap" for the
atoms [32], where the differential AC Stark shift vanishes at a particular lattice
wavelength. That was the hour of birth of the magic wavelength optical lattice
clock.

This chapter is structured as follows: In Sec. [M.I T will discuss the basic
features of Lamb-Dicke spectroscopy in an ideal harmonic potential. Sec.
treats lattice-based Lamb-Dicke spectroscopy. As in reality, potential depths are
finite, several effects influencing clock spectroscopy will be discussed, in particular
the tunneling-related Doppler effect on the spectroscopy signal, as referred to in

Sec. [4.3

4.1 Lamb-Dicke spectroscopy in harmonic con-
finement

4.1.1 Preparing the quantum mechanical tools

The harmonic oscillator is probably one of the purest systems in quantum mechan-

ics and a good approximation of the trapping regime described in the previous

section. The center-of-mass motion of a harmonically bound atom is described by

the following Hamilton operator

-7 4 Ma 252 (4.7)

= —wWxr s .
2my, 2

where w is the oscillator’s frequency and p and & are the momentum and position

operators, respectively. Introducing non-Hermitian and adjoint operators @ and a'

as a function of p and Z, the above Hamiltonian transforms into

Hzfuu(n—i—;) (4.8)

with 7 being the number operator 7 = a'a. In return, the position and momentum
operators are given by

&= wo(a+al), P = —izgmew(a — ab), (4.9)
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with the zero-point amplitude xy = \/h/(2m,w) (similarly for y and z) [100] [103].
Suppose |n) being an eigenstate of the number operator, the following equations
can be proven to be valid:

nin) =n|n), (n|my = 0pm, (4.10)
atln) =vn+1|n+1), (4.11)
aln) =+nn—1). (4.12)

Eqgs. [4.11] and [4.12| visualize, why &' and @ are called the raising and lowering
operators. According to Eq. , |n) is not only an eigenstate of the number
operator 7, it is furthermore an eigenstate of the Hamilton operator of the harmonic
oscillator. Following the Schrédinger equation

Hn) = E, |n), (4.13)

directly gives the eigenenergies

1
En:hw<n—l—2>, n=0,1,2,... (4.14)

of the quantum harmonic oscillator, which is a discrete energy spectrum of vi-
brational states with equidistant separation Aw. In the classical treatment, the
harmonic oscillator (being a spring feather or a pendulum) will have its lowest
energy at rest

E=0,p=0,x=ux,

while in the quantum mechanical treatment, the zero-point energy is different from
zero 100, 103]:

Eo=". (4.15)

This fact suggests a pure quantum mechanical treatment of bound atoms in har-
monic confinement. Doing so, the following assumptions will now be made [100]:

(i) Atoms are harmonically bound in all three dimensions with oscillation fre-
quencies w,, wy, and w, with w; < wy for i = x,y, z. In the following, I will
restrict myself to the z direction, as for the remaining ones the situation can
be deduced analogously.

(ii) Motion in these three dimensions is independent from each other.

(iii) The time required for the atomic kinetic energy to thermalize with the outside
environment is extremely long (equivalent to a long vacuum-limited life time).
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(iv) The internal atomic level structure features a two-level system with
E. - E, < kpT, where E,. (E,) is the excited (ground) state energy.

(v) The relaxation rate v (natural linewidth) of the excited state shall be small
compared to the trap frequencies: v < w;.

(vi) Incident radiation interacting with the atoms is highly monochromatic (spec-
tral width < 7) and its intensity is well below the saturation level of the
transition.

(vii) The total Hamilton operator of the system is composed of a free Hamiltonian
Ho and an interaction Hamiltonian V: H = HO +V (interaction transforma-
tion) [104].

4.1.2 Atom-light interaction in harmonic confinement

If an incident plane wave, that is irradiated along the z axis with |k| = k., in-
teracts with an atom being confined according to the assumptions of the previous
subsection, the atom will see the light in its own rest frame with

E = Eysin(kz — wt), (4.16)

where z is the atomic position coordinate and k£ and w are the wave vector and
frequency of the incident light field. As the atom is bound in a potential, its
position z will oscillate with

2 = zg sin(w,t + ¢.), (4.17)

with z, being the oscillation amplitude and ¢, is a phase factor. Setting ¢, = 0
and combining Eqs. and results in

E = Eysinlkz, sin(w,t) — wt]. (4.18)

The atom will see the incident light field being frequency modulated at frequency
w, with modulation index kz, [I00]. Eq. [4.1§ can be expanded into a series of
Bessel functions J,,,(kz,) featuring a radiation spectrum of equidistant lines (see
Fig. . In tight confinement, the spectral feature on resonance w = wy will have
the highest intensity. Here, assumption (v) of Subsection plays an important
role: as the linewidth ~ of the excited state is much smaller than the trap frequency
w,, the sidebands are clearly resolved and could be addressed with a narrow-line
laser. Hence, this situation is called the strong binding regime or the resolved
sideband regime [28].

For the quantum mechanical treatment, the total Hamiltonian of the system
(assumption (vii)) can be re-written as
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Figure 4.2: The radiation spectrum in harmonic confinement features a carrier transition on
resonance w = wy and multiple sidebands separated by mw, (m = +1,+£2,...). The smaller the
modulation index kz,, the more the sideband intensities will be suppressed featuring a higher
carrier intensity.
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H=0" 4 [g© 4 g, (4.19)

with Hy = H™ + H© and V = @) A™) is the motional Hamilton operator
along a certain trap axis as given by Eq. 4.8 H(© describes the internal two-level
structure of the atom and is of the form

A = 1= (Je) (el = |g) {g]). (4.20)

where wy = we — wy [104]. The interaction Hamiltonian is given by

N Q -
At — i (le) (] e™ + H.c.), (4.21)

where 2 is the Rabi frequency of the atomic transition [I02]. As it has already been
mentioned in the introduction of this chapter, absorption and emission of photons
is related with momentum kicks hk, acting on the atomic momentum. This effect
is now described via the operators e***. Written in the basis of vibrational states
|n), this is equivalent to transitions |n) — |m), whose probability amplitudes are
defined through the Franck-Condon factors

Frym = | (m]e™|n) |. (4.22)

This means [102], a given ground state |g,n) will be coupled to several excited
states |e, m) with Rabi frequencies QF,,_,,, and transition frequencies

Winen = wo + (M — n)w,. (4.23)

Using the expression of the position operator in Eq. [£.9) above transition’s Rabi
frequencies can be written as [100} [105]

Qun = QP = Q (mle™|n) | = Q| (me*=@+ D n) |, (4.24)

Here, n = kzy is the Lamb-Dicke parameter. Confinement in the Lamb-Dicke
regime is given for the criterion 1 < 1, hence

0= kzo = ky/l/(2mw.) = \/Bree/ (hw.) = Jwree/w: < 1, (4.25)

or, equivalently, wre. < w, putting a constraint on the required trap depth in
comparison to the recoil frequency of the probe light (see introduction to this
chapter). This means in particular, the exponential function in Eq. may be
Taylor-expanded in first order as ¢ ~ 1 + in [106], giving

Qum = Q (m|1 +in(a + a')n) |

! . (4.26)
= QI (m[1|n) | +n(| {mlaln) | + | (m]a’|n) ])].
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Figure 4.3: Possible transitions in the Lamb-Dicke regime. (Left) The expected frequency
spectrum features a strong carrier transition and sidebands being separated from the first by the
trap frequency w,. Due to the transition strengths, the first blue sideband is of larger amplitude
than the first red sideband. (Right) Scheme of the harmonic potential of the ground and excited
states of the clock transition. Optical excitation can be purely internal or include a change in
the motional quantum number. In both pictures, the carrier transition is indicated in black, as
well as the red and the blue sidebands in their respective colors.

Using Eqs. [£.10] [A.17] and .12, as well as operating to the right, this expression
further simplifies to

Qn,m ~ Q(am,n + n\/ﬁé‘m,nfl + nvmn + 15m,n+1)- (427)

Due to the nature of the Kronecker delta, it is clearly visible that only one term will
survive during each transition |n) — |m), hence the following types of transitions
are of particular interest: those, being purely internal without influencing the
motional quantum number (m = n), are called carrier transitions. Resonances
with m = n — 1 are called the first red sideband, contrary, transitions increasing
the motional quantum number (m = n+ 1) are called the first blue sideband [104].
According to Eq. [£.27] their Rabi frequencies are given by

Qo =, (4.28)

)

Qn,n—l = Q?’]\/ﬁ, (429)

Qoni1 = OV + 1. (4.30)

Figure summarizes the features of transitions |n) — |m) if atoms are lo-
calized in the Lamb-Dicke regime. The left part shows the expected frequency
spectrum with the carrier transition (black curve) and the resolved sidebands (red
and blue curves) being separated from the carrier by the trap frequency w,. This
plot also demonstrates that the blue sideband has a slightly stronger amplitude
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than the red sideband, which is a consequence of Egs. and [£.30f The right
part of Figure shows the harmonic potential with bound states for each the
ground and the excited state of the clock transition. The carrier is indicated with
a black arrow, the red and blue sidebands in their respective colors. In principle,
above described transitions are possible starting from every bound state being oc-
cupied. One exception is the absolute ground state n = 0 featuring only a carrier
transition and a blue sideband.

So far, |n) — |m) transitions have been treated for the Lamb-Dicke criterion
being satisfied and Eq. [£.26]was obtained throughout a first-order Taylor expansion
of Eq. [£.24 Coming to the end of this subsection, I would like to comment on
the more general situation with 1 being arbitrary. Using the appropriate operator
fo1rmalism|I|7 the exponential function in Eq. turns into

ez’n(a+aT) _ 6—%7;2 ez‘naT eind’
hence
Qpm = Qe’%"z\ <m]e"’dfei"d|n) |. (4.31)

As a'|n) = y/n!/(n —1)!|n — 1), the exponential function expressed in its Taylor

series acts like
- > (in)! n!
mae = —1). 4.32
) =35 e (132

Operating in Eq. [4.31]to the right with ¢™@ and to the left with ™' results to

! n< (_1>l772l
Qo = Qe 37 [ 15 (i) on , 4.33
: ot (1) ; N1+ An)l(ne — 1) (433)
with An = |m — n| and n. is the lesser of n and m [100]. Finally, using the
expression for the generalized Laguerre polynomial,
" n+a) X!
LY(X) =Y (-1) —
00 =30 (00T
the generalized Rabi frequency becomes
|
o k2 o 7l772 - \An n<: Any/ 2

1,A+B _ ,AB,—[A.B]/2
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4.1.3 Deduction of atomic temperature

For trapped atoms, the minimum kinetic energy is often given in terms of the
mean occupation number (n) of the harmonic oscillator state. If the atoms are at
temperature T, one can assume (n) to be Boltzmann distributed:

(n) = 1/(eM=/keT) _ 1), (4.35)

If (n) < 1, the atom’s energy in the potential well equals fw/2, the zero-point
energy [104} [106]. In the Lamb-Dicke limit, (n) = /n, hence, the amplitude ratio

of the first blue and red sidebands is given by ({(n) 4+ 1)/ (n). Using Eq. the
temperature T of atoms is given by

T = 72; In <<”<>n4>r 1>_1 . (4.36)

In the experiment, the temperature can be measured by recording the frequency
spectrum ranging from the first red to the first blue sideband, giving rise to the
trap frequency w, and the ratio of the sideband amplitudes.

4.2 Lamb-Dicke spectroscopy in a 1D optical lat-
tice

In this section, I will turn to more "realistic", optical potentials as they occur in ex-
periments on optical lattice clocks. "Realistic" in essence means here that potential
wells are not of infinite depth, hence, the ideal situation of a harmonic potential
with equidistant energy levels does not fully apply to the potential of an optical
lattice. Nevertheless, the harmonic oscillator still is a valid approximation for the
coldest atoms occupying the ground state of the trap. This section is structured
as follows: First, I will give the potential of an optical lattice featuring the main
characteristics important for Lamb-Dicke spectroscopy in Subsection [£.2.1 In an
optical lattice, several effects may cause inhomogeneities on the spectroscopy sig-
nal. In Subsection [4.2.2] lattice wavelength dependent inhomogeneities are treated
and the term of the magic wavelength is derived. Subsection deals with
inhomogeneities induced by atomic motion.

4.2.1 The optical lattice potential

An optical lattice is a standing-wave trap, in the 1D simplest case formed by a
retro-reflected laser beam conserving the wave front curvatures and beam polar-
ization [I07]. If the beam is directed along the z axis, the lattice potential is given

by
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Figure 4.4: Optical lattice potential. In the radial direction, the atoms exhibit a weak confine-
ment occuring due to the Gaussian trapping beam (left), whereas the axial confinement is much
stronger, typically in the Lamb-Dicke regime (right). Grey-shaded parts indicate the presence of
vibrational bands rather than states, as a consequence of finite well depths.

U(z,r) = =Us 0082(/{JLZ)(;WQ/MS7 (4.37)

Up = 4a(A\) P/ (mceqwy), (4.38)

where Uy is the well depth as a function of atomic polarizability «(Ar), P and wy
are the lattice power and waist [I08]. 7 = /22 + 42 denotes the radial distance
from the lattice axis, z is the axial position coordinate and k;, = 2w /Ap is the
lattice wave number [I09]. One can see from Eq. and Figure (right), the
lattice potential is of period Ar, /2. Hence, atoms are strongly confined in the axial
direction of the lattice, being trapped in the "pancake-shaped" anti-nodes, but
exhibit a weak confinement in the radial direction which is related to the Gaussian
profile of the lattice beam (Figure left).

As the single site potential is not separable into independent coordinates, Blatt
et al. [109] introduce a quartic distortion while approximating the axial trapping
potential as a 1D harmonic oscillator. Taylor series expansion of both functions in

Eq. in first order gives

2 kizt  2k?
U ~ Uy | =1+ ki 4+ —5r? — -2 — =122 )| 4.39
(z,71) 0( + ki z +w8r 1 wgrz (4.39)
First-order perturbation theory guides them to eigenstates |n) = |n,, n,,n,) with

energy spectrum

1 1
E,/h~w, (nz+2>—|—wr(n$+ny+1)—u};(nz—l—nz—i—Q)

Wy 1
—wrp— (g + 1y + 1) (nz + 2) :

z

(4.40)
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introducing the axial and radial trap frequencies from the harmonic approximation

as
U
w, = 2wR,/E—; (4.41)
Uo
R 4.42
w M T2WE ( )

Here, wr and ER are the lattice recoil frequency and energy, respectively. Unlike
the ideal situation of a harmonic oscillator, where the axial frequency spectrum is
given by Eq. [£.23] the quartic distortion of the lattice potential leads to an axial
frequency separation of

7<nz) = (Enzynyynz+1 - E’”z;”y;”z)/h

Wy
=w, —wr(n,+1)— wa—(nx +ny, +1).

and

(4.43)

As w, < w,, typically by almost three orders of magnitude, the third term in
above Eq. is negligible for ground state transitions. The measured axial trap
frequency is then y(n,) /27 ~ (w, — wr)/27 instead of the expected w, /27 [109).

4.2.2 Excitation inhomogeneities I - The magic wavelength

If atoms are exposed to a trapping light field with electric field amplitude &£, their
transition energy can be written as

hw = hwy — iAa(e,wL)Ez - 614A7(e,wL)54 — 0%, (4.44)

where Aa and A~y are the differential AC polarizability and hyperpolarizability
of the clock states, respectively, and e is the unit polarization vector of the light
field [32].

As the atomic polarizability is wavelength-dependent, it is obvious to choose
a particular, "magic" lattice wavelength satisfying Aa(e,wy) = 0, as the polar-
izabilities of the two clock states cancel each other. For completeness, the AC
polarizability consists of the electric dipole polarizability ag;, the magnetic dipole
polarizability an;; and the electric quadrupole polarizability ags:

ale,wr,) = ap(e,wr) + oy (e, wr) + ags(e,wr), (4.45)

where ag; clearly is the dominant effect for light-induced energy displacements of
the atomic states.

Depending on which transition has been chosen as clock transition, its magic
wavelength can have a different value. In ?*Mg, the 'Sy —3P; (m; = 0) and
1Sy — 3P, are possible clock transitions. Focusing on the latter one, offering the
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Figure 4.5: Polarizabilities of the clock states in magnesium as a function of lattice wavelength.
The 3P, polarizability (red curve) crosses the 1Sy polarizability (blue curve) at 468.45(23) nm,
fulfilling the condition for the magic wavelength. Polarizabilities are given in atomic units having
the dimension of volume in units of a3, where ag is the Bohr radius. The conversion factor to SI
units is given by 4megad [T10].

larger line-() and being independent on lattice light polarization, there have been
several theoretical predictions on the value of the magic wavelength ranging from
432 to 470 nm [64] [71, ITIHIT3]. The most recent calculation has been performed
using two different methods: The first uses state-of-the-art relativistic approach
combining configuration interaction (CI) and all-order linearized coupled-cluster
methods (Cl+all-order) [I10]. Furthermore, the magic wavelength has been esti-
mated via combination of CI with second-order many-body perturbation theory
(CI+MBPT), not including all-order corrections to the effective Hamiltonian, but
using experimental atomic parameters instead of theoretical ones. Using this re-
fined model, the magic wavelength of the 1Sy — 3P, clock transition in 2*Mg is esti-
mated to be 468.45(23) nm, where the uncertainty is given by the difference of the
above method’s values. Figure shows the calculated atomic polarizabilities as
a function of lattice wavelength with crossing point at the magic wavelength. The
estimated magic wavelength is red-detuned compared to relevant resonances that
introduce a light shift and the lattice therefore is an attractive potential. Higher-
order light-induced energy perturbations of the clock states are unpreventable, as
the atoms are trapped in the anti-nodes of the lattice with highest intensity [17].

However, a more crucial effect arises, if the optical lattice is not exactly tuned to
the magic wavelength. The result will be an energy mismatch for carrier transitions
Qum (n =m = 0,1,2...) due to a differential AC Stark-shifted energy spectrum
of the ground and excited state, respectively [I14]. Assuming the occupation of
vibrational states to be Boltzmann distributed with Boltzmann factor (see Eq.

1.36)
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Figure 4.6: Inhomogeneous broadening of the carrier transition due to a lattice AC Stark
shift. Carrier transitions €2, ,, (here n = 0, 1,2, blue curves) sum up to an envelope featuring an
asymmetry (red curve).

o= ((n) +1)/ (n) = e~/ o), (4.46)

the - under "magic" conditions degenerate - carrier spectrum will show an inhomo-
geneously broadened line shape

L8, dw) %j ( (/5)" ) , (4.47)

=\ (0 —wo + ndw)? + Aw?

consisting of several Lorentzian profiles belonging to Q,,,(n = m = 0,1,2...)
carrier transitions, weighted by the Boltzmann factor. Here, N, is the maximum
number of occupied axial vibrational statesﬂ 0 is the frequency detuning, wy is
the center frequency, dw is the differential AC Stark shift and Aw is the Lorentz
linewidth [108]. Figure 4.6{shows the expected carrier spectrum for the magnesium
clock transition featuring an AC Stark shift of ~ 4kHz at a trap depth of Uy =
27.5 Eg for 20 uK cold atoms. The linewidth of each carrier transition €2,,,, (here
n =0, 1,2) has been fixed at 2kHz. However, tuning the lattice wavelength allows
for the determination of the magic wavelength depending on the asymmetry of
the carrier envelope [108] [114) 115]. A method of preventing multiple vibrational
carrier transitions would be the purification of higher vibrational states via state-
selective optical pumping (see Chapter @

4.2.3 Excitation inhomogeneities II - Atomic motion

Another type of inhomogeneity arises due to the non-zero atomic temperature and
hence the atom’s motion in the trap. Having a look at Figure (left), radially

2Note that N, ~ -Jo = Yo and N, ~ N, 2= [109].

— hw. 4hwgr
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Figure 4.7: Effect of radial motion on the blue sideband. Assuming a trap depth of 9.5 FR,
the expected trap frequency (including quartic distortion of the lattice potential) is 196 kHz.
Sideband spectra are plotted for radial temperatures of 7,, = 1 uK (blue), T, = 2 uK (red) and
T, = 5uK (green).

oscillating atoms experience shallower well depths, the more they move away from
the radial center (the lattice axis). As a consequence, they exhibit different lattice
intensities and therefore different axial trap frequencies. The variety of resulting
Rabi frequencies (Eq. leads to inhomogeneities on the vibrational sidebands
as well as on the carrier transition.

Focussing first on the blue sideband, the clock transition includes a motional
transition given by |n) = |n,, ny,n.) = |m) = |ng, ny, n, + 1) with a corresponding
frequency difference given by Eq. [£.43] The radial motional distribution now
defines the shape of the blue sideband in terms of amplitude for a certain clock
laser detuning: any motional state (n,,n,) will shift the axial sideband frequency
due to the 7222 coupling term in Eq. Blatt et al. give an approximate line
shape as a function of detuning § from the carrier frequency and radial temperature
T, [109]:

a? [ ) ] .

ol (8) = = 1— - e~ l1=3/3n)lQ 5 () — 4], 4.48
where o = [J(n,)/wr|hw./(kgT,) and §(n,) = w, — wr(n, + 1) is the uncoupled
axial frequency separation and © is the Heaviside function. Main feature of this
line shape is the exponential slope falling towards the carrier, taking care of the
coupling between radial and axial degrees of freedom. Summing over all possible,

axial states, the thermally averaged blue sideband absorption cross section is given
by

N,
Ub1u0<5) X Z eiEnZ/(kBTZ)Ugfue((;)? (449>

n,=0
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Figure 4.8: Effective frequency spectrum in lattice Lamb-Dicke spectroscopy. The first axial
sidebands wash out towards the carrier, as they are inhomogeneously broadened due to radial
motion of the atoms.

with the axial temperature T,. Assuming a 9.5 Er deep trap for magnesium atoms,
Figure |4.7 shows expected blue sideband spectra plotted for different radial tem-
peratures T, using Eq. [£.49] One clearly sees the inhomogeneous broadening being
present even for low radial temperatures (1 uK, blue curve) and increasing dramat-
ically for higher temperatures (5 uK, green curve) coming together with a loss in
signal amplitude.

Derivation of the red sideband’s line shape is done analogously. Taking the in-
fluence of radial motion on the sideband spectra, the expected frequency spectrum
(Fig. , left) for a harmonic oscillator has to be revised for lattice spectroscopy.
Figure [4.§8 shows the expected frequency spectrum for lattice-based Lamb-Dicke
spectroscopy. Furthermore, being not indicated in the revised frequency spectrum,
radial sidebands exist with a frequency separation of w, from the carrier. Typi-
cally, their amplitudes are suppressed if the clock laser is perfectly co-aligned with
the lattice axis. If the radial trap frequency is known, a measurement of the axial
sideband spectrum gives a full characterization of trap parameters including well
depth Uy and waist wy in Eq. [T09).

Blatt et al. further investigated the effect of radial motion on the carrier transi-
tion. Therefore, they assumed harmonic oscillator states and energies and approxi-
mated the clock probe beam to be a plane wave over the extent of a lattice site, with
a transverse shape function describing its intensity profile. Choosing a small tilt
AB of the probe axis relative to the lattice axis such that Kciock = Kelock (€2 +A0e,),
they obtain a Rabi frequency (according to Eq. of

with
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1 h

7 )\CIOCk 2mawz ( )
and
Af h
= _ 4.52
" /\Clock 2mawr ( )

For a trap depth of 10 Fr, we expect Lamb-Dicke parameters in 2*Mg of 1, ~ 0.4
and 7, ~ Af x 11.8. Compared to strontium [109], the carrier transition in mag-
nesium is hence expected to be almost a factor of four times more sensitive to
misalignments in the transverse direction.

Evaluating how the carrier Rabi frequency is affected by radial motion, Blatt
et al. give the excited state probability for a motional state |n), detuning ¢ and
pulse time ¢ (neglecting any decoherences, such as trap lifetime) as

2

Q
pe(n,d,t) = ﬁ sin’ [ty /Q2 |+ 6% (4.53)

Ng,Nz

Summing over each vibrational state, the total excited state population results to

Pe(57 t) = Z Gny (TT’)QnZ (Tz)pe (n7 5a t)a (454)
with normalized Boltzmann weights ¢,, (¢,.) corresponding to radial (axial) tem-
perature T, (75):

Nz

dn., = (1 - Zz)zz ) 2z

Eq. can be further simplified, if it is assumed that the atoms are at low (axial)
temperatures, such that only the axial ground state n, = 0 will be occupied. The
excited state population can then be approximated as

¢t/ (ko)

ot/ (kB T2) (4.55)

1 — 2, 2, cos[(1 — n?)] — cos ¢
2 14 22—2z,cos(¢n?)

P.(t) ~ ; + (4.56)
where ¢ = 2mtQe "/2¢72/2 [109]. Assuming a trap depth of 10 Eg and above given
Lamb-Dicke parameters, Figure [£.9 shows the calculated excited state fraction of
3Py atoms in ?*Mg using Eq. and expected Rabi frequency /27 = 145 Hz
from Eq. [3.6] In the first case (left), the tilt between the probe beam and the
lattice axis is assumed to be # = 10mrad. For relatively cold motion of 1 uK
in radial direction (blue curve), the excited state population damps out towards
steady-state population quite fastly, but still showing multiple Rabi flops. At a
radial temperature of 7 uK, which is the more realistic case in our experiment, one
barely expects a few Rabi flops for small pulse times. In Figure (right) the
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Figure 4.9: (Left) Excited state population for radial temperatures of 1 uK (blue curve), 3 uK
(red curve) and 7uK (green curve). The estimated trap depth is 10 Egr and a tilting angle of
6 = 10mrad of the probe beam relative to the lattice axis is assumed. (Right) Excited state
population for a fixed radial temperature of 1 pK and tilting angles of § = 1 mrad (blue curve),
6 = 5mrad (red curve) and § = 10mrad (green curve). The estimated trap depth is 10 ER.

radial temperature is assumed to be 1 uK while the tilting angle has been varied.
For almost no tilt (§ = 1 mrad, blue curve) the influence of radial motion on the
carrier transition decreases.

4.3 Carrier spectroscopy and Bloch bands

As it has already been mentioned in the previous section, the picture of harmonic
oscillator states does not hold anymore for the potential of an optical lattice. In
fact, taking into account the energy dispersion for lattice-trapped atoms, which is
in close analogy to electrons in a solid-state crystal, this system features a band
structure of eigenstates: the formation of energy bands gives rise to atomic inner-
band tunneling between adjacent lattice sites.

In this section I will show, based on a theoretical prediction by P. Lemonde
and P. Wolf [I16], that is briefly summarized in Subsection that tunneling
motion is expected to influence the carrier transition such that its signal amplitude
will decrease under specific circumstances and will lead to a new line shape related
to tunneling motion of the atoms (see Subsection . To the end, Subsection
[4.3.3| gives a more generalized treatment for arbitrary lattice wavelengths.

4.3.1 Tunneling between adjacent lattice sites - The band
structure

Considering atoms being trapped in an optical lattice and probed on its clock
transition, the total Hamiltonian as given in Eq. can be used, if Eq. is
replaced by the Hamiltonian for a standing wave potential



4.83. Carrier spectroscopy and Bloch bands 49

20 201
n=3
15¢ 151 1
\Lg U\J‘f n= 2 /
§ 10 § 10+ 1
2 s (=t
o o
Ll |
50 5t
n=0
%1% 05 0.0 05 10 1% 05 0.0 05 10
Quasimomentum (q,) Quasimomentum (q,)

Figure 4.10: Energy dispersion as a function of lattice quasimomentum with restriction to the
first Brillouin zone. In the case of a free particle, the well-known energy parabola E = p?/2m is
folded back on itself (left). At a trap depth of 10.5 Er (red line), one already sees the formation
of energy bands, whereas the lowest two motional states will be trapped in the lattice (right).

h2A2
=" +Z°[1—cos(2/@2)], (4.57)

where hk is the atomic momentum. It is further assumed, that the optical lattice
is operated at the magic wavelength, so above Hamiltonian acts identical on the
ground and excited states of the clock transition.

According to the Bloch theorem [I17], the Hamilton operator in Eq.
has eigenstates |n,q) and corresponding eigenenergies hw, , owing two quantum
numbers: the band index n and the quasimomentum ¢. As an optical lattice, just
as its counterpart in solid state physics, is a periodic potential, the eigenstates are
also periodic in ¢ with period 2k;,. Hence, studies on lattice bands are usually
restricted to the first Brillouin zone (q €] — ki, kr]) [I16]. For atomic plane waves
with wave vector k,

A mk?2 U, U
H ) k) = <2m + 20> |k) — ZO(]K: + 2kL) + |k — 2ky)), (4.58)

having the shape of a tridiagonal Toeplitz matrix [I18]. Diagonalization of this
gives the eigenenergies and eigenvectors as a linear combination of plane waves,
known as the Bloch vectors:

f{(m) ’nv Q> = hwn,q ’nv Q> s

|TL, q> = Z On,m,q ‘Hi,q> )

1=—00

(4.59)

where k; 4 = q + 2tk;,. Each quasimomentum ¢ thus features a discrete set of
energies hwy, o and coefficients Cy, ., . € R with 37, Cflmq =1

Figure visualizes the atom’s energy as a function of lattice quasimomen-
tum. Free particles with energy F = p?/2m, experience a continuous energy
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Figure 4.11: Band widths for the lowest three motional bands as a function of trap depth.

dispersion (left). For increasing trap depths, the energy parabola splits up to the
forming of energy bands (right) (see also Fig. [4.4] right). Calculated for a well
depth of 10.5 ER, the two lowest motional bands will be trapped in the lattice. Due
to the finite depth of the lattice, the energy bands show a deformation throughout
the first Brillouin zone. Hence, one can define the band widths by

AE = [M(wnk;, — wno)l- (4.60)

Each motional band width decreases for increasing trap depth, as depicted in Fig.
.11} In magnesium, high laser powers are required to generate sufficient deep
traps: Featuring a lattice waist of 79 um, a circulating power of 11 W would be
necessary to reduce the lowest band width below 1 Hz at a trap depth of 63.5 Fg.

4.3.2 The effect of tunneling motion - Simulation of the
carrier signal

If atoms undergo a transition €2, ,, (see Eq. [4.34)), the time behavior of this two-
level system is described via the Bloch equations [119):

(Q(T]n,n)*

g A"t e
Za["»Q - Z 2 € am7q+k‘clock’
m
ron (4.61)
.. e _ q —iAg’mt g
/La/nzq"'kclock - Z 2 e am,q?
m
n,m __ nm __ _ _ )
where Q0™ = Q3 Crw  Cros gir, o, @0 AP™ = W — Wo + Winyg — Wngtkaoa [110]-

In essence, the action of the probe laser in momentum space e?<occ* couples a state
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Figure 4.12: (Left) Scheme of optical spectroscopy of Bloch bands. Atoms are excited on the
1Sy — 3Py clock transition at 458 nm starting from the lowest motional band without changing
the vibrational quantum number. As the clock pulse is applied, the photon momentum adds to
the initial atomic momentum causing a net energy difference. (Right) Calculated frequency shift
as a function of initial lattice quasimomentum at a trap depth of 10.5 E¢jock- Depending on the
initial quasimomentum, the tunneling frequency shift can be negative, positive or equal to zero.

In, q) to |m, ¢ + keock) thereby causing a frequency shift of AEgoek /R = Wingtkyou —
wn,q With respect to the atomic resonance, as illustrated in Fig. 4.12} as the lattice
is assumed to be at the magic wavelength, the motional bands of the ground and
excited states are identical (left). Hence, for clock excitation without momentum
transfer, the band energy at initial quasimomentum g¢q is equal for both ground
and excited state. Consequently, the visualization of the energy mismatch AFEqoqx
reduces to the comparison of band energies at momentum positions ¢y and o+ kciock
in the excited state band. Depending on the initial quasimomentum ¢q of the atom,
this frequency shift may be either negative, zero or positive. Fig. (right) shows
the expected frequency shift as a function of initial quasimomentum, calculated for
a trap depth of 10.5 Er. The expected width of the lowest vibrational band at this
well depth is ~ 2.5kHz and, as can be seen, the frequency shift due to the band
structure is of the order of the ground state band width. Furthermore, it is periodic
in ¢ with two possible initial momenta ¢y ~ + 0.5 g1, resulting in a zero frequency
shift. Nevertheless, in the case of magnesium, A\, = 469nm > Ajoa = 458 nm
and consequently kp, < kcock, thus the maximum possible frequency shift (the
maximum band width) should never be observed.

However, a frequency shift directly affects the clock transition. Solving the
Bloch equations [4.61] gives the excitation probability on the clock transition. As-
suming the ground state band to be uniformly populated, all initial quasimomenta
qo should participate to the spectroscopy signal, if the laser is swept over the car-
rier resonance frequency [120]. The expected frequency spectrum is plotted in Fig.
for different lattice trap depths. The Rabi frequency has been chosen to be
2/2m = 145 Hz according to Eq. and the pulse time hence equals a 7 /2-pulse.
For shallow lattices, the signal amplitude of the carrier transition drops, giving rise
to a resonance structure featuring two shifted maxima. Lemonde and Wolf desig-
nate this shift away from the unperturbed resonance frequency to a "Doppler effect
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Figure 4.13: Simulation of the carrier spectrum being modified by the lattice band structure.
The Rabi frequency has been chosen according to Eq. and the pulse time corresponds to a
m/2-pulse. For decreasing trap depths, the signal amplitude decreases as well and the spectral
feature broadens into a resonance structure featuring two maxima as the result of tunneling
motion induced Doppler effects.

associated with tunneling motion" [I16]. For increasing trap depths, the line shape
broadening decreases (blue and magenta curves), starts to overlap (black curve)
and transforms into the expected sinc-line shape for a sufficiently deep lattice (red
curve). But what exactly is "sufficiently deep'? The carrier resonance obviously
breaks together and broadens, if the shallow lattice regime dominates, here I define
with the condition AE > ). Table summarizes the different trap depths used
for the simulations in Fig. together with the corresponding ground state band
widths.

4.3.3 Spectroscopy of Bloch bands close to the magic wave-
length

In the previous subsection it was assumed that clock spectroscopy is performed
at the magic wavelength. Hence, a symmetrically broadened line shape should be
observed in the experiment. Extending this model to arbitrary lattice wavelengths
should differently affect the band structure of the ground and excited states as
it is directly related to the AC polarizability. Furthermore, the calculations in
the last subsection assumed that the lattice potential is of uniform well depth for

Trap depth in Eg || 10.5 | 15 | 20 | 25 | 30
Band width in Hz || 2590 | 893 | 377 | 144 | 71

Table 4.1: Trap depths used for the simulation of the frequency spectrum in Fig. and the
corresponding ground state band widths.
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Figure 4.14: (Left) Simulation of the carrier spectrum featuring an AC Stark shift. Calcu-
lations have been carried out using the Bloch equations in Eq. [£.61] with introduced atomic
polarizabilities for the clock states as calculated by [I10]. Here, in particular, the contribution
from different trap depth’s spectra has been plotted, serving as a kind of set of "base functions"
for the calculation of the total spectral feature. (Right) Sum of the base functions for different
trap depths. The expected signal of the carrier scan features an asymmetric line shape due to
inhomogeneous broadening.

each lattice site. However, in reality, the lattice is formed by a Gaussian laser
beam. This means, the atoms will explore different well depths in radial and
axial direction ruled by the beam parameters. In particular, for random lattice
wavelengths, atoms now additionally experience a decreasing AC Stark shift for
shallower explored trapping regions. As in our case, the optical lattice is loaded
from an elongated dipole trap, approximately 1,000 atoms are distributed over
130,000 lattice sites along the lattice axis. Hence, it is very likely that all these
atoms contribute to an inhomogeneous spectral feature during clock spectroscopy.

Fig. (left) shows the expected frequency spectrum for different trap depths
at a lattice wavelength of 467.5 nm, which is below the estimated magic wavelength.
Values of corresponding ground and excited state polarizabilities have been chosen
according to Fig. M [T10]. For visualization purposes, the spectra have been plot-
ted for a maximum trap depth of 7.6 Er and a minimum trap depth of 0.6 Er, as
well as sufficient steps in between. Furthermore, /27 = 400 H2E| and 7, = 100 ms
have been chosen, being closer to the experimental parameters. Each plotted curve
represents the calculated interpolation function of the simulated data points. In a
very simple approach, the idea was that each of the calculated spectra in Fig.
(left) can be treated as a sort of "base function" ¢; belonging to a certain potential
well with trap depth U;. A linear combination ), ¢;¢; with ¢; € R, of all these
base functions should then result in a fitting function which can be applied to the
experimental data. Fig. (right) exemplarily shows the sum with ¢; = 1 (Vi) of
the base functions, assuming a uniform distribution of the atoms along the lattice
sites, to give a first idea on the overall expected frequency spectrum.

In the experiment, the atoms are distributed over several lattice sites (each hav-
ing a different trap depth due to the Gaussian lattice beam) and will all contribute

3Note that Qor = \/QQ + (AEClOCk/h)Q.
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to the resonance signal. The latter is thus expected to feature an inhomogeneous
broadening. In particular, the line shape now shows a certain asymmetry whereas
two features are of interest: The resonance peak’s amplitude and their slopes. For
a lattice wavelength smaller than the magic wavelength, the left peak appears with
a larger amplitude and a steeper slope, the right peak is of smaller amplitude and
facing a flatter slope. The same holds inversely for a lattice wavelength being
larger than the magic wavelength. Hence, it seems likely to investigate the local
minimum between the resonance’s maxima and the FWHM frequency values of
the slopes to make a qualitative statement on experimental data. If done so, a
new method of measuring the magic wavelength has been found, requiring just a
single recorded frequency spectrum per lattice wavelength.

4.4 Conclusion

In summary, this chapter treats the introduction to Lamb-Dicke spectroscopy,
starting out from the ideal harmonic potential and the preparation of tools for un-
derstanding the basic features of the Lamb-Dicke regime. Turning to spectroscopy
in 'real" potentials, e.g. provided by optical lattices, several aspects have been
discussed that affect the spectroscopy signal and shall be briefly recalled.

Optical lattices usually operate at the magic wavelength, where the differential
AC Stark shift of the clock states vanishes in first order. If multiple motional
states in the lattice are occupied due to a Boltzmann distributed ensemble of
atoms, carrier transitions €2, ,,, are no longer degenerate if the lattice wavelength
deviates from the magic wavelength. Each carrier transition contributes with its
Lorentzian line shape to an inhomogeneously broadened total carrier line shape.

As the trapping potential of an optical lattice shows tight confinement along
the lattice axis and weak confinement in radial direction due the Gaussian beam
shape, atoms have axial and radial degrees of freedom. Related to temperature, ra-
dially oscillating atoms explore decreasing trap depths in radial direction and hence
decreasing axial confinement, thereby modifying the axial frequency spectrum via
inhomogeneous broadening of the sidebands. Performing clock spectroscopy of
lattice-trapped magnesium, the carrier transition in the lattice is expected to be
sensitive to misalignment of the probe laser relative to the lattice axis. Referring
to expected experimental parameters of the magnetically enabled clock transition,
Rabi oscillations will almost be suppressed for beam tilts of # > 10 mrad and atoms
with a radial temperature of 7uK. As a consequence, the clock laser has to be
very carefully aligned or the atoms have to be further cooled down.

Finally, the aspect of tunneling motion acting on the carrier frequency spectrum
is discussed. Due to the finite well depth, the lattice potential forms vibrational
bands rather than explicit states. This band structure enables tunneling between
adjacent lattice sites, which can be thought of as residual Doppler motion. If the
lattice is operated in the shallow lattice regime, meaning the ground state band
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width is larger than the system’s Rabi frequency, the signal amplitude of the carrier
transition will drop, giving rise to a broadening. This spectroscopic feature is sup-
posed to be of symmetric line shape if the lattice is tuned to the magic wavelength.
For different wavelengths, the carrier resonance obeys an asymmetry depending on
the lattice wavelength’s detuning relative to the magic wavelength. This asymme-
try is related to inhomogeneous broadening as the atoms are spread along the
longitudinal lattice sites with shallower trap depths, all contributing to the total
spectroscopy signal. Nevertheless, it features a new method of determining the
magic wavelength.



96

Chapter 4. Theoretical discussion of Lamb-Dicke spectroscopy




CHAPTER 5

Lamb-Dicke spectroscopy of the
1Sy =3Py clock transition

As T have discussed the theoretical background of Lamb-Dicke spectroscopy in
the previous chapter, thereby introducing the most relevant characteristics, this
chapter describes the measurements on Lamb-Dicke localized magnesium atoms,
as they have been carried out in the frame of this thesis. In Section[5.1] I will char-
acterize our optical lattice to set up a prerequisite for the following measurements.
Section treats the light shift measurements on the carrier transition for the
determination of the magic wavelength. The measurement of the magnetic polar-
izability /3 is described in Section [5.3] Its knowledge further allows the preliminary
deduction of the clock transition frequency. Section discusses a new method
of lattice-based spectroscopy of Bloch bands carried out via an optical transition.
This effect becomes pronounced for shallow trap lattices giving rise to a frequency
shift of the clock transition together with a change in the spectroscopic line shape.
The latter turns out to be lattice wavelength-dependent, alternatively allowing the
determination of the magic wavelength.

5.1 Characterization of the optical lattice

Performing clock spectroscopy in Mg requires the presence of an external mag-
netic field for enabling optical dipole excitation of the strongly forbidden 1Sy — 3P
transition. As a starting point, a magnetic field of 249 G has been chosen to have a
sufficiently large signal-to-noise ratio. Accordingly, the resonance frequency of the
clock transition will be shifted due to the second-order Zeeman effect, which is ex-
pected to be —135 625 Hz with the above mentioned magnetic field amplitude [67].

Without performing an absolute frequency measurement on the 458 nm clock
transition, its frequency is already known with an accuracy of 48 Hz due to previous

o7
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Figure 5.1: Frequency scan of the 'Sy — 3P, clock transition at 458 nm. The red curve is a
fit corresponding to the line shape derivation in Subsection The axial sideband frequency
separation is 256 kHz, whereas the radial sidebands cannot be resolved here. Including the quartic
distortion of the lattice potential, the axial trap frequency of the lattice is 294 kHz.

frequency measurements of the 'Sy —3P; and 3P, — 3P, transitions [57, 121].
Subtracting both frequencies, the clock transition frequency is 655 058 646 681
860(48) Hz, where the above calculated Zeeman shift still has to be added.

As it has been mentioned in the previous chapter, a frequency scan ranging
from the first red to the first blue sideband contains information about the tem-
perature of the atoms and the properties of the trapping potential. Figure [5.1
shows such a frequency spectrum recorded at a lattice wavelength of 468.95 nm
with a circulating power of 2.4 W. The carrier frequency has been retrospectively
set to 0 Hz, displaying just a relative frequency measurement. Having a look at the
frequency spectrum, the axial sidebands can be clearly identified by applying the
derived sideband line shape from Subsection [£.2.3] as fit to the experimental data
(red curve). Observation of motional sidebands verifies that spectroscopy is per-
formed in the resolved sideband regime. As expected, the sideband shape appears
to be inhomogeneously broadened, indicating the coupling to radial motion of the
atoms. The frequency separation of the axial sidebands from the carrier transition
is v(0)/2m = 256 kHA[(see Subsection and especially Eq. [£.43). Including the
lattice recoil frequency of 38 kHz, the axial trap frequency of our optical lattice is
294 kHz. Calculating the Lamb-Dicke parameter according to Eq. together
with the clock photon’s recoil frequency of 40 kHz, n = \/wRec/w. = 0.37, which
means the magnesium atoms are well localized in the Lamb-Dicke regime. Further-
more, the knowledge of the axial trap frequency is a direct measure of the lattice

'Experimentally measured frequencies are always in the unit of w/2m, hence I will restrict
myself in the following to "real" frequencies instead of angular frequencies.



5.1.  Characterization of the optical lattice 59

Atomic species | Mg | "WHg | ®'Sr My
Mass in u 23.985 | 198.968 | 86.908 | 170.936
Amagic 11 DM 468 363 813 759
Egr/kg in uK 1.8 0.36 0.17 0.09

Table 5.1: Comparison of the commonly used clock isotopes of Mg, Hg, Sr and Yb. Due to
its low mass and short magic wavelength, Mg features the largest recoil energy among the
compared species.

depth according to Eq. Hence, the trap depth for the frequency scan in Fig.
is UO =15 ER-

As a consequence of the lattice loading scheme (see Subsection , the am-
plitude of the red sideband is suppressed, indicating that most of the atoms are
occupying the vibrational ground state. Analyzing the ratio of the first sideband’s
amplitudes according to Eq. [4.30], the axial temperature of the atoms is T, = 7 uK,
being in agreement with previous measurements on the Doppler width of the atomic
velocity distribution [66]. Fitting a Lorentzian lineshape to the carrier feature, the
linewidth is approximately 6.5 kHz, hiding the radial sidebands which are supposed
to have a frequency separation of a few hundred Hz. The magnetic field enabled
linewidth should be just a few pHz while the most dominant contributions to the
spectroscopic linewidth probably arise from the ground state band width (see Fig.
and an inhomogeneous broadening due to the lattice wavelength being not
magic. If the radial trap frequency was known, the optical lattice would be fully
characterized, as the lattice waist could be determined via Eq. [4.42] As this was
impossible for the measurements presented in this work, the lattice waist has been
measured to be wg = 79 + 4 um using a CCD camera detecting the light leaking
out of the enhancement cavity while locked.

However, there is a small spectroscopic feature arising at a frequency detuning
of approximately —170 kHz away from the carrier transition (and eventually also
at —80kHz), which has been reproducibly observed. So far, the origin of these
resonances could not yet be determined, but it might be that the optical lattice
is modulated in some sense, as it has already been observed in other lattice clock
experiments [122].

Drawing a first conclusion, large axial trapping frequencies have been observed
at moderate trap depths, being almost a factor of three times larger than in yt-
terbium [68] and a factor of four times larger than in strontium [109]. As a conse-
quence, confinement in the Lamb-Dicke regime is very likely in magnesium. How-
ever, for a direct comparison of the clock species, one has to consider the isotopic
mass and magic wavelength, as summarized in Table [5.I] Due to their high mass
and magic wavelength being in the low-energy regime of the visible spectrum (ex-
cluded Hg with its magic wavelength in the UV [I08]), Hg, Sr and Yb feature a
lattice recoil energy being nearly an order of magnitude smaller, as compared to
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Figure 5.2: AC Stark shift for different lattice wavelengths vs. the lattice trap depth in units
of the recoil energy. The red and the blue data correspond to the same experimental parameters
but have been recorded independently from each other at different times. The deviation complies
with the combination of statistical and systematic uncertainties.

Mg. Additionally possessing larger atomic polarizabilities, ytterbium and stron-
tium lattice clocks usually operate at recoil energy normalized trap depths of up
to 300 Er achieving spectroscopic linewidths of a few Hz [38 [123]. Hence, these
species are not limited by the ground state band widths.

5.2 Measurement of the magic wavelength for
the clock transition

The differential AC Stark shift is directly proportional to the lattice wavelength
and trap depth. According to Eq. [£.44], it should add an offset to the unperturbed
resonance frequency ry. A measurement campaign comprising frequency scans on
the carrier transition for several trap depths, being repeated at different lattice
wavelengths, typically gives rise to the zero-shift at the magic wavelength. For
the 1Sy — 3P, clock transition in magnesium, the most precise calculation of the
magic wavelength suggests Apagic = 468.45(23) nm (see Subsection [£.2.2)), thus,
measurements in a wavelength range from 467 to 469 nm have been performed, as
depicted in Fig. p.2] Each data point of this graph represents the Gaussian fit’s
center frequency of a data set consisting of three independent carrier scans being
merged together. For clarity, Fig. (left) shows the measurement campaign for
a lattice wavelength of 466.97 nm. Each graph shows the number of excited atoms
(red and blue dots) as a function of clock laser frequency and the corresponding
Gaussian fits (red and blue solid curves). The measurement procedure was as
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Figure 5.3: (Left) Frequency scans of the line profile taken at different lattice depths, exemplar-
ily shown for a lattice wavelength of 466.97 nm. Each data represents the combination of three
line scans being corrected for residual clock laser drifts. The solid lines are Gaussian profiles that
have been fitted for center frequency determination. (Right) Linear regression of the combined
measurements in Fig. as a function of lattice wavelength. The magic wavelength (crossing
point between regression and dotted line) determines to 468.463(207) nm. The linear dependence
of the AC Stark shift on lattice depth and wavelength is 1.669(115) kHz/Eg /nm.

follows:

Initial clock laser drifts have been removed as described in Subsection B3.4.2
However, taking multiple measurements on the carrier transition without changing
experimental parameters, we observed residual clock laser drifts due to thermal
disequilibrium of the clock laser’s ULE cavity. The line profiles for different trap
depths were measured successively, while a single line scan comprises about 30
measurements, each lasting 1.9s. The linewidth of the carrier transition is on
the order of 10kHz being most probably dominated by the lattice band width
(see Fig. , as it narrows down for increasing trap depth. The measurement
sequence has been repeated three times to evaluate and correct for the residual laser
drift. The corresponding frequency shift has been measured by fitting Gaussian
profiles to the data. Comparing the frequencies for a specific lattice depth, residual
clock laser drifts being as large as 2 — 3kHz were determined in several minutes.
Finally, each of the line profiles in Fig. [5.3]is obtained by superimposing the drift-
corrected frequency scans to one single data set. Fitting a Gaussian profile to this
data set, the resulting center frequency is used for evaluation in Fig. [5.2] where
the line center frequencies are plotted together with a linear regression for the
corresponding AC Stark shift. Taking each wavelength measurement, an individual
offset was subtracted from each data set (as a consequence of the thermal drift of
the ULE cavity), such that they cross at zero lattice intensity. The data point’s
error bars are composed as follows: The uncertainty of the determination of the
lattice depth is about 5% being dominated by the uncertainty of the measurement
of the lattice waist, as it showed slight deviations throughout daily operation. The
uncertainty of the AC Stark shift results from the combined statistical uncertainty
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Figure 5.4: Measurement of the quadratic Zeeman shift. The center frequency of the carrier
transition (black squares) is plotted as a function of magnetic field amplitude. We derive a
Zeeman coefficient of 8 = —206.6(2.0) MHz/T? (= —2.06(2) Hz/G?, black solid curve), being
consistent with a theoretical prediction of 3 = —217(11) MHz/T? (red solid curve).

of the line center fits and the systematic uncertainty due to residual clock laser
drifts leading to frequency offset fluctuations on the order of a few kHz.

The red and the blue data display the same measurement campaigns being
performed at different times to check the consistency of the measurements. Their
deviation in the AC Stark shift complies with the above described uncertainties.
The magic wavelength for the 1Sy — 3P, clock transition in Mg determines to
Amagic,exp = 468.463(207) nm, with a linear dependence of the AC Stark shift on
lattice depth and wavelength of 1.669(115) kHz/Eg /nm. Treating the two mea-
surement campaigns displayed in Fig. independently, 468.472(224) nm (blue
data) and 468.452(192) nm (red data) were obtained for the value of the magic
wavelength, being consistent with the averaged value. The final value is also
in excellent agreement with the previously mentioned theoretical calculation of
Amagic,theo = 468.45(23) nm [110].

5.3 Measurement of the 2nd order Zeeman shift

The presence of an external magnetic field enhances optical dipole coupling of
the 1Sy — 3P, clock transition in bosonic isotopes, as it has already been demon-
strated with ytterbium [68] and strontium [69], but it also implies a large shift on
the transition frequency due to the second-order Zeeman effect. Hence, a careful
measurement of the magnetic polarizability is necessary to give a first estimate of
the unperturbed clock transition frequency.
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Atomic species Mg Sr Yb
Theory —217(11) | —23.3(1.2) | —6.2(3)
Experiment —206.6(2.0) | —23.5(2) | —6.6(4)

Table 5.2: Comparison of the magnetic polarizability 8 of Mg, Sr and Yb. Values are given in
MHz/T?.

5.3.1 Measurement of the magnetic field dependence

Similar to the measurement of the wavelength dependence, the carrier frequency
shift has been studied for various magnetic field strengths. The magnetic field am-
plitude has been determined to 2.49(1) G/A by performing optical spectroscopy of
the 3P m; Zeeman sub-states [66] with a sensitivity of 2.1 MHz/G [72]. Figure
shows the center frequency (black squares) of the 1Sy — 3Py carrier transition, ob-
tained by Gaussian fits, as a function of magnetic field amplitude. To suppress sys-
tematic drifts of the experiment, the Zeeman shift was measured in an interleaved
sequencd’l Applying a parabolic fit to the experimental data, the magnetic po-
larizability is § = —206.6(2.0) MHz/T? (equivalent to —2.06(2) Hz/G?, black solid
curve) which is consistent with the theoretical prediction of 3 = —217(11) MHz/T?
(red solid curve) [67, 124].

The experimentally determined magnetic polarizabilities in ytterbium and stron-
tium are By, = —6.6(4) MHz/T? and fs, = —23.5(2) MHz/T? [68, [125], respec-
tively, all being nearly one order of magnitude smaller than in magnesium. Table
5.2/ summarizes the measured parameters and their corresponding theoretical pre-
diction [67), [124].

5.3.2 Measurement of the clock transition frequency

To give a first estimate on the clock transition frequency, the spectroscopy laser
was beated with an optical frequency comb that was stabilized to a 10 MHz GPS-
based reference signal. The parameters for the optical frequency comb were as
follows:

n = 3275292, 1yep =~ 100MHz+28.1Hz, vcgo = —20MHz, tpeay = 31.7 MHz,
where n is the mode number, 14, is the comb repetition rate, vcgo is the carrier

envelope offset and 14,0, is the beat frequency of the laser with the comb at 916 nm.
The clock laser frequency in the infra-red is then given by the following equation

VL =N X Vyep + Upeat + 2VCEO; (51)

2Such that the magnetic field amplitude has not been varied in a successive way.
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where the offset frequency has to be added with a factor of 2, as the beat is
recorded with the frequency-doubled comb spectrum [93]. For the measurement of
the clock transition frequency, the amplitude of the quenching magnetic field was
184 G, hence the transition is expected to be shifted by dvzeeman = —108974 Hz.
Furthermore, the switching-AOM frequency of vaom = 79.111 MHz at 458 nm has
to be added to the clock laser frequency. Hence, the clock transition frequency
results to

Vo = 2v1, + VAOM — OVZeeman = 655058 646 691(101) kHz, (5.2)

where its uncertainty is mainly dominated by the accuracy of the GPS frequency
reference. Nevertheless, this value displays a first measurement of the clock tran-
sition frequency, being in agreement with the expected value of 655 058 646 681
860(48) Hz. Future, more precise determinations of the transition frequency would
require a more accurate frequency reference, e.g. a hydrogen maser or a compar-
ison against several frequency standards at PTB being available via the optical
fiber link [92].

5.4 Optical spectroscopy of Bloch bands

The band structure of optical lattices has so far been studied by coupling the
ground state band to higher-order bands by means of a phase modulation imprinted
on the lattice potential [126] or by mapping the crystal momentum onto free-space
momentum by adiabatically lowering the lattice depth [127]. However, in this
work, mapping of the shape of the Bloch bands onto a frequency shift of the
lattice carrier transition is demonstrated by coupling the lowest band of the 1S
ground state to its counterpart in the 3P, state via the optical clock transition at
458 nm, as described in Section [4.3] Higher-order bands are not excited in these
experiments.

5.4.1 Spectroscopy in the shallow lattice regime

The optical lattice is operated at a wavelength of 468.48 nm, which is the deter-
mined magic wavelength for the ?*Mg clock transition within the error bars, as
described in Section After the transfer of the atoms to the lattice, the well
depth intensity is lowered to create reproducable temperature conditions for each
measurement, before the lattice intensity is set to the final value for clock spec-
troscopy. Figure [5.5| shows frequency scans of the carrier transition performed for
different final lattice depths with a clock laser pulse of 100 ms duration. The red
solid curves represent a fit to the experimental data (blue dots) according to a lin-
ear combination of base functions for different trap depths (similar to Subsection
[1.3.3] but assuming identical polarizabilities for the clock states). However, the
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Figure 5.5: Spectroscopy of the carrier signal taken for different trap depths at the magic
wavelength. For decreasing trap depths, the signal contrast of the resonance decreases and gives
rise to a broadened line shape caused by tunneling motion of the atoms. The red solid curves
represent fits according to a linear combination of base functions, as described in Subsection
The blue curve in (a) is a convolution of a Lorentz and a Gauss function.
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fitting function is not fully smooth, showing "unphysical" irregularities. The reason
for this is the following: As can be seen in Figure [1.14] these irregularities already
occur in each interpolated base function as a consequence of a limited number of
simulated data points per function, keeping the calculation time in a reasonable
frame. An improvement of the theoretical simulation could not be realized in the
frame of this thesis.

At a trap depth of Uy = 10.1 Eg (Figure[5.5] (a)), a distinct spectral resonance
is observed. For comparison, a fit based on the convolution of a Lorentzian and a
Gaussian profile (blue curve) is plotted versus the fit generated out of the theoret-
ical model. Although both functions agree well for the central data points, they
seem to not fully match the high-frequency line shape of the resonance. However,
its FWHM linewidth of approximately 7.5 kHz indicates the presence of a broaden-
ing mechanism, as the Fourier-limited transition linewidth should be in the order
of a few Hz. The expected ground state band width of the optical lattice is 2.8 kHz
(see Figure , giving a first evidence on tunneling induced broadening. The
spectral feature becomes more pronounced, while having a look on the frequency
scans performed at shallower trap depths (Figure 5.5, (b) and (c)). It is clearly
visible that the signal contrast of the carrier amplitude reduces with shallower
potentials, giving rise to the simulated line shape of Section [£.3] In this regime,
fitting with the above used convolution function is not reasonable anymore.

In essence, this measurement reveals spectral maxima with the expected posi-
tive and negative frequency shifts, as has been calculated in Figure [£.12] exemplary
for a trap depth of 10.5 Egr. This in particular means, the shape of the lowest bands
of the electronic ground and excited state is probed as a function of frequency de-
tuning. Treating the carrier line shape therefore as a composition of maximaﬂ it
seems not only that they are shifted in the order of the ground state band width,
it also appears that the distance of the turning points due to the band structure
increases by the same amount, verifying the proposed behavior by P. Lemonde
and P. Wolf [116]. Nevertheless, the observed FWHM linewidth (e.g. 7.5kHz for
Up = 10.1 ER) cannot fully be explained via tunneling broadening as it is slightly
larger than twice the ground state band width. The discussion in Subsection [4.3.3]
suggests, that an atomic cloud, which is distributed over several, varyingly deep
lattice sites, is expected to cause an inhomogeneous broadening during clock in-
terrogation.

For further investigation of broadening mechanisms, the minimum lattice depth
was varied during the phase of the ramp down of intensity, which directly influences
the occupancy of the lattice sites. Figure [5.6] shows frequency scans of the carrier
transition in the case where no initial intensity variation has been applied to the
lattice (a), when the peak intensity has been initially ramped down to 7 Er (b) and
to the lowest possible depthﬁ of 5 Fg (c). The duration for either ramping down and

3By clearly distinguishing between negatively and positively frequency shifted contributions.
4Where atoms still could be trapped by the lattice.
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Figure 5.6: Measurement of the carrier signal taken for no initial ramp-down of lattice intensity
(a), for a ramp down to Uy = 7 Er (b) and a ramp down to the minimum trap depth of Uy = 5 Er
(c). The final trap depth for clock spectroscopy in each of the cases is Uy = 8.5 ER, while the
lattice wavelength was 467.50 nm. The red solid line is a fit composed of a linear combination of
the previously described base functions.
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up again was each 100 ms. In each of the scans, the final lattice depth was 8.5 Fg,
being limited by the available power of the Ti:Sa laser at a lattice wavelength of
467.50nm. The red solid curve is again a fit comprising a set of base functions
of Subsection [£.3.3] As can be seen from the different scans, one clearly looses
atoms, if the lattice intensity is initially decreased, indicated by the smaller signal
amplitude. Moreover, the high-frequency wings of the resonance are suppressed if
Figure (c) is directly compared to (a), indicating that the observed spectral
feature is composed by resonances belonging to several different trap depths. In
fact, the optical lattice is loaded out of the elongated dipole trap, while the latter
has a confocal parameter of b ~ 3 cm. Within this range, the atomic cloud would
be distributed over 130,000 lattice sites, experiencing trap depths from 5.7 Er up
to 8.5 Fr at the position of the lattice waist. If the lattice intensity is reduced
during the purification sequence (see Subsection , atoms can no longer be
captured in the shallower outer parts and will be released from the trap. As the
lattice features a detuning of the magic wavelength, this shallow-trap contribution
especially causes an inhomogeneous broadening of the carrier transition.

In Section [5.1] T have discussed that the intensity variation of the optical lat-
tice modifies the temperature of the atomic sample and hence the occupancy of
higher-order vibrational states. The measurements depicted in Figure [5.6] further
suggest, that the purification sequence also modifies the ground state band pop-
ulation, in particular the number of atoms with initial quasimomentum between
approximately +0.5¢qp, (see Figure . Those are contributing to a positive
frequency shift and hence to the right maximum of the spectral feature. Its ampli-
tude seems to depend on the inner-band population distribution of the atoms and
is obviously more pronounced, if the optical lattice is not operated at the magic
wavelength. In the frame of this work, the population distribution used in the
theoretical model has been considered to be uniform, hence the obtained fitting
functions (red curves) do not fully explain this behavior.

In summary, the theoretical model can describe most of the physics of the
shallow lattice regime within the spectroscopic resolution. The observation of the
line shape behavior of the carrier transition at different trap depths (Figure
matches with the theoretical simulation as discussed in Section .3l In the ex-
periment, the carrier resonance features a frequency shift as well as a broadening
in the order of the ground state band width, which is homogeneous at the magic
wavelength and obviously inhomogeneous if the lattice is detuned from the magic
wavelength, giving rise to an asymmetric line shape. Concerning clock operation,
any kind of line broadening directly affects the clock’s accuracy. The simplest so-
lution would hence be to perform spectroscopy in deeper lattices where tunneling
is suppressed. Coming to the last part of this section, I will discuss how this in-
homogeneity can be used for the determination of certain atomic parameters, like
the magic wavelength.
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5.4.2 Spectroscopy of Bloch bands close to the magic wave-
length

Besides the fact that the calculated atomic polarizabilities are predicting the magic
wavelength for the clock transition in **Mg with a high accuracy [I10] and in
well agreement with the measurements, it is interesting to study the effect of
unequal clock state polarizabilities on spectroscopy of Bloch bands. However, the
experimental data presented in Figure [5.6|suggest, that the theoretical simulation,
which has been carried out in the frame of this thesis, does not yet contain all
relevant physical effects, being more pronounced at a non-magic wavelength, as
discussed in the previous subsection. As an alternative, one could think of a more
straight-forward approach concerning data analysis, hence skipping the complex
routine of simulating data points, calculating the interpolation base function and
obtaining a linear combination of several base functions for data fitting.

As has been previously mentioned, the line shape of the carrier transition in
the shallow lattice regime features two maxima with respect to a negative and
positive frequency shift, respectively. Furthermore, the resonance is affected by an
inhomogeneous broadening, as several differently deep lattice sites contribute to
the spectral featureﬂ According to Wolf and Lemonde [I16], tunneling causes the
Bloch states for a certain lattice band to dephase on a time scale being the inverse
of the band width. In a comparable situation, an excited atom will decay on a
time scale being the inverse of the natural linewidth ~. The resonance spectrum
of the latter is described with a Lorentz function, so it may be arguable to fit
each maximum of the observed resonance by an independent Lorentz function,
while both overlap for the final function fg(v). Although each maximum in the
single-site calculated base function (see Figure [4.14] left) is in contradiction to
a Lorentzian line shape, their sum (Figure right) reminds of a composition
of two resonances with different linewidths. For clarity, Figure shows such a
composition in comparison to the graph of Figure (right). To comment on
the degree of the observed inhomogeneity of the carrier transition, several spectra
for different lattice wavelengths will be discussed in the following, whereas the
maxima’s different linewidths, obtained via Lorentzian fits, are directly compared.

Figure 5.7 shows scans of the carrier transition recorded at lattice wavelengths
below (467.50nm), at (468.42nm) and above the magic wavelength (468.81 nm).
The lattice intensity variation during the purification phase has been chosen to
be slightly below U, in each case, to pronounce the spectroscopic feature. Each
data point has been averaged over three measurements. The red solid curve is a
composition fgi () of two independent Lorentzian functions each fitted to the left
and the right maximum of the line shape, respectively. For data analysis, the local
minimum between the maxima has been chosen as reference point ... The width

5This situation may be comparable to the derivation of the axial sideband’s line shape, being
modified by radial motion of the atoms (see Figure .
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Figure 5.7: Carrier spectroscopy at different lattice wavelengths. The red solid curve is a
composition of two independent Lorentz functions fitted to the left and the right maximum of
the carrier line shape for analysis purposes. The ratio of the peak linewidths gives evidence on
the detuning of the lattice light relative to the magic wavelength.
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Lattice wavelength || 467.50 nm | 468.42nm | 468.81 nm
Ayight | Al 1.889 0.892 0.656

Table 5.3: Evaluation of the carrier resonance characteristics. The maxima’s linewidth ratio
suggests that the magic wavelength lies between 467.50 nm and 468.42 nm.

of the maxima shall here be defined by the frequency difference |vef — Vet /right|,
where fgi(Viefe/right) = fat(her). Looking at the carrier scans in Figure , the
width of the right peak appears to be broader than the left one, if the optical
lattice is operated below the magic wavelength (and hence the 3P, polarizability
is larger than the 1S polarizability, see Figure and vice versa if the lattice
wavelength is larger than the magic one. Hence, the ratio Avjgni/Avier of the
widths gives evidence on the detuning relative to the magic wavelength and should
be proportional to the ratio of atomic polarizabilities asp,/a1g,. At the magic
wavelength, the line shape is expected to be symmetric and as a consequence

AVright/Al/left = 043P0/a15'0 =1 (53)

Hence, the frequency scan at 468.42 nm suggests, that the magic wavelength has
to be slightly smaller than the operated lattice wavelength. However, comparing
all the frequency scans with each other, the peak amplitudes also seem to change
with different lattice wavelengths. According to the discussion in the previous
subsection, this effect may be related to the inner-band population distribution
of the atoms as well as the differential AC atomic polarizabilities. Unfortunately,
this hypothesis could not be further investigated in the frame of this thesis, as a
consequence of limited lattice laser power.

In brief summary, the optical spectroscopy of Bloch bands displays a tool of
measuring atomic parameters, like the magic wavelength, throughout an indirect
measurement of atomic polarizability ratios. Moreover, a single frequency scan per
lattice wavelength contains all the relevant informations, therefore reducing the
experimental effort, compared to the traditional light shift measurements, where
several scans at different trap depths have to be recorded for the determination
of the light shift. In principle, this method can be applied to any other atomic
species used in an optical lattice clock.

The results summarized in Table [5.3| suggest, that the magic wavelength is
between 467.50 nm and 468.42nm. Figure [5.§ shows the linewidth ratios of the
carrier’s maxima as a function of lattice wavelength. Applying a linear regression
to the data points, the magic wavelength determines to 468.394(179) nm which is
consistent with the light shift measurement of 468.463(207) nm (see Section [5.2).
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Figure 5.8: Determination of the magic wavelength via optical spectroscopy of Bloch bands.
The linewidth ratios obtained in Figure [5.7] are plotted as a function of lattice wavelength. The
magic wavelength, where Avyighy/Atesy = asp,/arg, = 1, is 468.394(179) nm. The error bars
are composed of the statistical uncertainties of the Lorentzian fits.

5.5 Conclusion

In this chapter, I have discussed the characterization of the optical lattice and the
determination of clock relevant atomic parameters by optical spectroscopy. The
measurements benefited from previous frequency measurements of the 1.5, — 3P,
and 3Py — 3P, transitions, whereas the difference of their frequency values deter-
mined the clock transition frequency with an accuracy of 48 Hz.

In the experiment, large axial trapping frequencies have been observed, being in
the order of a few hundred kHz. However, due to its low atomic mass, a short magic
wavelength and smaller atomic polarizabilities, Mg possesses a higher lattice recoil
energy, as compared to Sr or Yb. As a consequence, spectroscopy in the Lamb-
Dicke regime requires high laser powers, featuring small recoil energy normalized
trap depths. So far, the radial trapping frequencies, expected to be a few hundred
Hz, could not be resolved as the carrier linewidth features a broadening of several
kHz, which is due to tunneling between adjacent lattice sites. If the radial trapping
frequency was known, the lattice would be fully characterized in terms of beam
waist and trap depth. Alternatively, the lattice waist was measured with a CCD
camera for obtaining a complete characterization of the optical lattice.

Studying the frequency shift of the carrier transition, the magic wavelength
of the 1Sy — 3P, clock transition has been determined to 468.463(207)nm via
lattice light shift measurements and the magnetic polarizability, measured via the
second-order Zeeman shift, is 3 = —206.6(2.0) MHz/T?. Both values are consistent
with their theoretical predictions. The knowledge of both parameters allowed for
the first direct spectroscopic measurement of the clock transition frequency of
655058 646 691(101) kHz, while beating the clock laser with an optical frequency
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comb. The accuracy of this measurement is limited by the uncertainty of the
comb’s GPS based frequency reference.

Finally, a novel method of spectroscopy of Bloch bands is presented, carried
out on the strongly forbidden optical clock transition. If the optical lattice is
operated in the so-called shallow lattice regime, the shape of the lowest bands of
the electronic ground and excited state can be mapped onto a frequency shift of
the lattice carrier transition, giving rise to a resonance structure being modified by
tunneling motion. In our case, atoms are distributed along the lattice axis as they
are loaded out of an elongated dipole trap. As a consequence, atoms are trapped
in shallower trapping regions the more far away they are from the lattice waist.
Hence, as all excited atoms contribute to the total spectroscopy signal, the latter
appears to be broadened. In particular, this broadening mechanism turns out to
be inhomogeneous, if the lattice wavelength is detuned from the magic wavelength.
However, this asymmetric line shape can be used for the determination of atomic
parameters, like the magic wavelength. In particular, a single frequency scan
already contains all relevant informations, reducing the experimental efforts as
compared to the traditional light shift measurements. In a simplified approach
of data analysis, the magic wavelength via optical spectroscopy of Bloch bands
determines to 468.394(179) nm, being consistent with the previous value obtained
via light shift measurements.
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CHAPTER 6

Outlook

Concluding this thesis, this chapter will give an overview on the immediate next
steps in the experiment, based on the results that have been achieved so far, as
well as on possible experiments that could be carried out in the near future. Sec-
tion describes possible ways to further increase the optical lattice depth to
enable Fourier-limited spectroscopy of the clock transition. Furthermore, system-
atic frequency shifts for a future Mg optical lattice clock are discussed. Section
6.2| compares fermionic lattice clocks with bosonic lattice clocks opposing their
most prominent (dis)advantages, before a potential way how to operate a lattice
clock with fermionic Mg is identified. To its end, future prospects for optical
spectroscopy of Bloch bands and possible applications are discussed in Section [6.3]

6.1 High-precision Lamb-Dicke spectroscopy

The measurements performed in the frame of this thesis represent a fundamental
starting point for a future clock operation with lattice-trapped magnesium. Al-
though the determination of Mg parameters, like the magic wavelength of the
1Sy — 3Py clock transition or the magnetic polarizability /3, has been carried out
at sufficient precision, their uncertainties can be further reduced, if the optical
lattice is operated at deeper trap depths and hence tunneling between adjacent
lattice sites is suppressed. Approaching linewidths on the order of ~ 10Hz, the
optical lattice can be fully characterized via resolved radial sideband spectroscopy,
obtaining a complete picture of lattice depth and waist.

In this thesis, the available output power of the Ti:Sa laser at 936 nm (which is
the fundamental wavelength of the lattice light) was limited to maximum 550 mW
due to degrading laser diodes of the Verdi pump laser. In the ongoing work [128],
the old pump laser has already been replaced by a new ond] with a maximum

Werdi G12, Coherent

5
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pump output power of 12W. As a consequence, the available Ti:Sa power could
already be enhanced to at least 1.3 W at 936 nm. A more compact setup of the
overall laser system, including the SHG stage for 468 nm and a shorter glass fiber
for transportation to the lattice setup, is conservatively expected to give at least
200mW at 468 nm available for coupling into the lattice enhancement cavity.

6.1.1 Increasing the lattice trap depth

As can be seen from Eq. [£.38] the lattice well depth is depending on the lattice
power and the lattice waist. Concerning the power, the incident laser light is
enhanced in our 1D build-up cavity passing through the vacuum chamber. Here,
round trip losses due to imperfect optic coatings (ideally highly reflective in the case
of cavity mirrors and highly transmissive chamber viewports) limit the maximal
achievable power enhancement. The cavity enhancement factor is given by

g~ (6.1)

where F = mv/R/(1 — R) is the resonator’s finesse [83, 9T, 129]. For the mea-
surements presented in this thesis, the cavity enhancement factor was about 25,
corresponding to a total cavity reflectivity of R ~ 0.96. With the above anticipated
fiber-coupled laser power of 200 mW at the magic wavelength, a circulating lattice
power of 5 W is expected. Featuring a lattice waist of wy = 79 um, the resulting
trap depth will be Uy = 28.6 Fg giving rise to a ground state band width of ap-
proximately 87 Hz (see Figure [£.11]). In terms of clock spectroscopy, this already
represents a linewidth limitation improvement of almost two orders of magnitude.
There are two possibilities for a further increase of the lattice trap depth:

(i) A reduction of the lattice waist would automatically lead to an increase in lat-
tice depth and displays an easy-to-implement solution, as the corresponding
optical lenses are mounted on translation stages [91]. A waist of wy = 69 pm
would already lead to a trap depth of Uy = 37.5 Eg and hence a ground state
band width of 23 Hz.

(ii) So far, the lattice optics feature a broad band coating with reduced reflec-
tivity as we had initially been prepared to measure the magic wavelength in
a range of 460 — 470nm. As the uncertainty of the magic wavelength has
been reduced to 0.207 nm in the frame of this thesis, new cavity optics could
be purchased offering a high-reflection coating for Apagic = 468.463(207) nm.
If it was possible to obtain an incoupling mirror optimized for impedance
matching of round trip losses at the magic wavelength and being highly
transmissive for the clock laser at 458 nmﬂ one could even change the lat-

2Featuring a broad band coating with a reflectivity of a few percent and a high transmission
at 458 nm at the same time had been impossible in the past [91].
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wo in pm (P =5W) | ¢ (wg =79 um)

59 69 79 25 33 50
Upin Br || 51.4 | 37.5 28.6 28.6 | 37.8 | 57.3
AF in Hz 4 23 87 87 22 2

Table 6.1: Calculated lattice trap depths and ground state band widths for different configura-
tions of lattice waist and cavity enhancement. The incident laser power in each case is 200 mW
at /\magic-

tice setup to a two-mirror resonator, further reducing light losses on optics.
However, as the vacuum windows that had been replaced in the frame of this
thesis, again show a reduced transmission for the magic wavelength due to
a contamination on the vacuum side or optical coating damages as a conse-
quence of the intense blue lattice power, they could be replaced as well by
the already available ones featuring optimized coatings for the optical traps
(see Section [2.1)). Estimating the total cavity reflectivity with R ~ 0.98, if
all these optimizations were executed, would result in a cavity enhancement
factor of g ~ 50 and a circulating power of 10 W. As a consequence, the lat-
tice trap depth would be Uy = 57.3 E featuring a ground state band width
of approximately 2Hz. Obtaining a spectroscopic linewidth of this order of
magnitude in magnesium would already be competitive with state-of-the-art
strontium or ytterbium optical lattice clocks.

Table[6.1] gives an overview on the maximum trap depth for different configurations
of the lattice waist wy and enhancement factor g, assuming a fiber-coupled laser
power of 200 mW at the magic wavelength.

As some frequency shifts and broadening effects presented in this thesis (see
Section are a consequence of tunneling and the corresponding delocalization
of atoms, localization could be established by introducing an acceleration to the
optical lattice, e.g. provided by the gravitational force [116]. In this case, each
lattice site will be shifted by

magic

AE, = myg g sin 6, (6.2)

where myg, is the mass of the magnesium atom, g is the gravitational accelera-
tion and 0 is the angle between the horizontal plane and the direction of gravity,
therefore reducing the influence of tunneling between adjacent potential wells. A
vertical orientation of the magic wavelength lattice, being under maximum in-
fluence of gravity, then corresponds to an energy spacing of Av = 138 Hz. Ac-
cordingly, any combination displayed in Table [6.1] would allow for spectroscopy
in a tunneling-suppressed regime. However, the current experimental setup, as
described in Subsection [3.3.2], does not allow for the implementation of a vertical
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lattice for several reasons: On the one hand, the z-viewports would have to be re-
placed, as the coating is optimized for the operation of the UV MO'TSs, on the other
hand, the magnetic quenching field ideally needs to be oriented perpendicularly to
the lattice axis and hence the clock laser axis, as can be seen from Eq. [3.6]

Nevertheless, a tilt of # = 5° could be introduced with the current lattice optics
generating an energy spacing of at least Arv = 12 Hz. If tunneling effects shall be
fully inhibited in future, ground state band widths of the same order need to be
realized, which should be the case for trap depths of Uy = 45 Er and higher, as
depicted in Figure [4.11}

6.1.2 Purification of the atomic ensemble

Once the spectroscopic linewidth is reduced down to the Fourier limitation on
the order of several 10 Hz, some effects will dominate the line shape of the carrier
transition, e.g. the excitation of multiple transitions €2, ,,, if multiple axial motional
bands are occupied (see Subsection , or the radial temperature acting on the
Rabi frequency as well as on the carrier line shape, as described in Subsection
423

As we have seen in Sections [5.1] and [5.4] a variation of the lattice intensity
down to shallow depths before the spectroscopy pulse is applied, modifies the
atomic temperature and hence the occupancy of higher-order vibrational states.
Nevertheless, the latter may not fully be emptied, so one might apply some addi-
tional state-selective purification to these. A possible scheme is depicted in Figure
[6.1 An additional 457 nm laser beam being red-detuned by v;, = vy — v, from
the clock transition, could be irradiated to eliminate contributions from the first
red sideband. Atoms excited to the 3P, state, that are immediately pumped to
the 3D, state by means of RP 2 in presence of the lattice light, will be exposed to
photoionization caused by lattice photons [64], and should consequently leave the
optical trap’]

An alternative method, which in addition should allow for reduction of atomic
temperature, is given by sideband-resolved laser cooling [28]: If the 1Sy — 3Py clock
laser is tuned to the frequency of the first red sideband, lattice-trapped atoms will
absorb photons with energy hvy = h(vy — v,) and on average re-emit photons with
energy hrg. As a consequence, each photon scattering event reduces the atomic
energy by amounts of hv, with atoms finally occupying the vibrational ground
state of the trap. However, this scheme might be applicable in a limited way only,
as the 3P, state features a long life time.

3In addition, the photon recoil at 383 nm applied to the ~ 20 MHz broad transition should
push the atoms out of the trap.
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Figure 6.1: Possible scheme for purification of higher-order axial vibrational bands in the 'Sy
ground state. Atoms are excited on the 'Sy — 3P, transition at 457 nm being red-detuned with
respect to the first red sideband’s frequency. If 3P, atoms are subsequently pumped to the
3D, state, photo ionization will occur in the presence of the lattice light. The latter will not
necessarily be at the magic wavelength for 3P;.

6.1.3 Towards an optical lattice clock with magnesium

Heading towards a frequency measurement of the strongly forbidden 'Sy — 3P
transition in lattice-trapped magnesium atoms, several requirements have to be
accomplished in the experiment. The most crucial part is to analyze the reasons
for thermal disequilibrium of the clock ULE cavity at 916 nm. As it has been
mentioned in Section [5.2] residual (nonlinear) clock laser drifts as large as 2 —
3kHz in several minutes occurred during the measurements, being inapplicable
for Hz-spectroscopy of the clock transition. Here, the clock laser system needs
to be improved to reach again the demonstrated low drift rate of 150 mHz/s (or
equivalently 4.6 x 10716) [93].

Normalization of the atomic signal

To provide a sufficiently high and reliable S/N ratio of the clock transition, the
knowledge of the total number of atoms being prepared in the optical lattice is
crucial for normalization of the spectroscopy signal. For the measurements pre-
sented in this thesis, atoms have been prepared in the 'Sy ground state offering an
improved S/N ratio for spectroscopy as compared to previous measurements [66],
where the clock transition had been interrogated by optical disexcitation of atoms
prepared in the 3P, state. As it has been demonstrated in this thesis, ramping
down the lattice intensity displays a first-order purification of the trapped atomic
ensemble. Accordingly, we might again operate the magnesium clock in future
starting out from the 3P state, avoiding further photon recoil heating by optical
depumping to the 'Sy ground state. A possible detection scheme of atoms could
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thus look as follows:

(1) After the clock laser pulse has been applied, lattice trapped atoms will be
transferred to the optical dipole trap at 1064 nm, which already has been
evaluated with an efficiency of ~ 100 %. The remaining atoms N, in the 3P,
state can now be detected in absence of the lattice light using the triplet-
MOT beams, hence avoiding photo ionization effects.

(2) Atoms that have been disexcited to the 'Sy ground state, will be optically
repumped to the triplet manifold via the 1Sy —3P; transition. Detection is
again carried out with the triplet-MOT yielding N,,.

(3) The normalized spectroscopy signal results to N,/(N, + N.).

This detection scheme requires two pictures to be taken of the atoms. As the read-
out of the currently used CCD camera turned out to be too slow for two consecutive
images, the second number of atoms N, could alternatively be recorded by means
of a PMT. The opto-mechanical setup and the implementation into the LabView
computer control is subject of an ongoing work in our group [128]. However, this
proposed normalization scheme benefits from background-free detection with the
triplet-MO'T showing a sensitivity to a few tens of atoms, as metastable magnesium
only occurs throughout laser excitation in our experiment. Exemplarily, in Yb, the
strong 'Sy — ' P, transition is used for optical detection of atoms N, [123]. After
clock interrogation, excited atoms are repumped to the 3D, state with further decay
to the 1Sy ground state. Again, the singlet-MOT transition is used to measure N,.
However, in this scheme additional atoms may be excited from the background gas
leading to an error in the number of atoms.

Lattice induced frequency shifts

The measurements on the magic wavelength of the 'Sy — 3P clock transition in
Section yielded a linear dependence of the differential AC Stark shift on lattice
depth and wavelength of 1.669(115) kHz/Egr/nm. Aiming for a fractional clock
uncertainty of 1x 1071 (equivalent to 0.65 mHz), this sensitivity sets a requirement
on frequency stability of the lattice laser for a given trap depth U, (expressed in
ER) to the level of 3.9 x 1077/U,. In Subsection , the ideal trap depth for
future lattice clock operation has been estimated with U, = 45 Eg, hence the
lattice laser has to be stabilized on the level of 8.7 x 107, corresponding to 10 kHz
stability. In parallel to this work, the stabilization scheme for the lattice laser is
under development. The Ti:Sa frequency will in future be locked in the infra-red
at 936 nm to a transfer cavity, whose length will be stabilized to the high-finesse
clock cavity, providing a frequency stability being well below the above mentioned
requirements [130].
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As expressed by Eq. [.44] the clock transition energy is not only modified
by the differential AC polarizability. In higher order, hyperpolarizability effects
will also have an impact on the transition frequency. The largest contribution
to the hyperpolarizability is given by two-photon transitions being near resonant
to the magic wavelength of the optical lattice [89, [I3T]. However, in the case of
magnesium, there are no two-photon transitions known so far corresponding to 2 x
468.463 nm [132], [133], accordingly hyperpolarizability effects should be suppressed.

Black body radiation shift

The black body radiation (BBR) shift arises from perturbations of the atomic
energy levels caused by time varying thermal radiation and is given by

Avgpr = —thAoz (E?) + Avgyn(T), (6.3)
where Ac is the differential static polarizability, (E?), ~ (8.319V /cm)?*(T'/300 K)*
is the mean squared electric field of the BBR radiation at temperature 7" and Avgyy,
is a dynamical correction that has to be included in the total BBR shift [36]. Avgyy,
is derived from the combination of theoretical calculations and measurements of
the 3D, state lifetime [40 [134].

Both clock states are affected by BBR and Avggg displays the difference of the
shift for the two levels. Porsev and Derevianko calculated the BBR shift for the
1Sy — 3P clock transition in Mg to be —0.258(7) Hz (or equivalently —3.9(1) x
10716 in fractional frequency shifts) at 7' = 300 K, being one order of magnitude
smaller as the calculated shifts in Sr and Yb [63]. The refined atomic structure
model for magnesium, that has also been used for the most recent calculation
of the magic wavelength [110] (see Subsection [£.2.2), predicts a static BBR shift
to be eight and five times lower than those of Sr and Yb, which were recently
measured [36] 37]. The dynamic contribution for the * P, state has been estimated
to be 0.1 % in Mg, being remarkably smaller than for Yb (1 %) or Sr (4 %) [63},135].

Other systematic shifts and cancellation techniques

The large second-order Zeeman shift, that has been calculated for magnesium [67,
124] and was confirmed by the measurements presented in this thesis, displays
a dominant contribution to the error budget of our magnesium clock and puts
tight constrains on the knowledge of the magnetic field with respect to accuracies
of state-of-the-art optical clocks. However, enhancing the dipole coupling of the
ground state 1S, to 3Py with a magnetic field, allows to arrange a trade-off between
the clock laser induced AC Stark shift and the quadratic Zeeman shift. According
to the measurements performed in the frame of this thesis, a clock laser intensity of
7.07 W /cm? and a magnetic field amplitude of 10 G (equivalent to 1 mT) will yield a
reasonable Rabi frequency of 8 Hz, a second-order Zeeman shift of —206.6(2.0) Hz
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and an estimated clock AC Stark shift of —3.5Hz. To reach a fractional clock
uncertainty of 1 x 1078, i.e. 0.65mHz in absolute frequencies, with an applied
magnetic field of 10 G, the field amplitude needs to be stabilized at the level of
16 uG. However, this level of accuracy also puts a constraint on the knowledge of
the Zeeman coefficient §: If the magnetic field is stabilized with an uncertainty
of 16 uG, the value of 3 has to be measured to the level of 4 x 1078, displaying a
challenging restriction for future experiments.

Although the major systematic shifts for a future magnesium optical lattice
clock, the lattice AC Stark and second-order Zeeman shifts, have been measured
on a decent level of precision, their uncertainties can be further reduced, if clock
spectroscopy is performed on a Fourier-limited linewidth level on the order of
~ 10 Hz. This regime will then also allow for the determination of other systematic
effects, e. g. the clock laser induced AC Stark shift, that could not be resolved so
far in the frame of this work due to observed transition linewidths of several kHz.
Taichenachev et al. calculated the clock laser AC Stark shift coefficient in Mg to
be K = —0.5mHz/(mW /cm?) [67]. As has been mentioned above, the expected
frequency shift with the current clock laser intensity is about —3.5 Hz.

However, there are strategies to eliminate residual AC Stark shifts, Zeeman
shifts and others, that are present during the interaction with the clock laser. In a
generalized Ramsey excitation scheme, the so-called "hyper-Ramsey" scheme, the
probe laser frequency is adjusted by means of the frequency shifts. In addition, the
pulse durations and phases are modified that, in the end, a suppression of the clock
laser AC Stark effect has been demonstrated in [136] and a related scheme [137]. If
we implemented these techniques in our experiment, bosonic magnesium becomes
a favorable candidate for optical lattice clocks.

6.2 Fermions vs. bosons

There are two prominent advantages for lattice clocks to use fermions, as opposed
to bosons. First, spin-polarized fermions are expected to show a reduced collisional
frequency shift (CFS), as they obey the Pauli exclusion principle. Accordingly, one
either operates with bosons in a 3D optical lattice with single-site occupancy to
fully suppress collisions or one precisely determines the CFS in a 1D lattice and
keeps the atomic density low and well controlled. Comparing a 8"Sr [I38] and a
8Sr [139] lattice clock, both being at a comparable state of development at that
time, yields no limitation for the bosonic clock due to collisions, as Lisdat et al
carefully designed their lattice geometry. In fact, the uncertainties of the CFS for
both clocks were in the low 10717 regime. As the development of lattice clocks con-
centrated more on fermionic isotopes, state-of-the-art 7Sr clocks nowadays exhibit
a density shift of —3.5+0.4 x 10718 [40]. For clarity, the density shift reported for
the ®Sr clock in [139] is 7.2 4 2.0 x 10717, where 2 x 10* atoms were distributed
over 1,400 lattice sites (corresponding to a mean occupancy of approximately 14
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atoms per lattice site). In the case of our bosonic ?*Mg atoms, we load the optical
lattice out of the elongated dipole trap at 1064 nm. We measured the number of
atoms being available for clock spectroscopy after the lattice purification phase to
be ~ 1,000 atoms, where we estimate the ensemble to be distributed over 1.3 x 10°
lattice sites. Hence, the mean occupancy here is about 0.008 atoms per lattice
site, being three orders of magnitude smaller as compared to [139]. As a conse-
quence, a 3D optical lattice for 2*Mg will not be required, as collisions should play
a minor role in our clock. Nevertheless, the density shift for magnesium has to be
experimentally determined at some point.

Second, fermions are favorable candidates for lattice clocks as they exhibit a nu-
clear spin, naturally causing a hyperfine-mixing of the > Py and 3P, states. Hence, a
magnetic quenching field is not necessary for enabling spectroscopy of the strongly
forbidden 1Sy, — 3P, clock transition, keeping the second-order Zeeman contribu-
tion to the clock’s uncertainty budget on a remarkably low level as compared to
their bosonic counterparts.

6.2.1 Challenges for fermionic isotopes

Nevertheless, one also has to take into account the disadvantages that fermionic
clocks are facing. The presence of a nuclear spin gives rise to either a vector shift
that occurs through interaction with residual elliptical polarization of the lattice
light [114], 140] and a tensor shift being roughly proportional to the ratio of the
hyperfine splitting of the coupled electronic state and the lattice laser detuning
to that state [32]. However, these shifts can be experimentally determined in
presence of a small bias magnetic field: as the degeneracy of the mpg substates
is lifted, the frequency splitting of neighboring components gives rise to the shift
coefficients [141].

Although the second-order Zeeman shift for fermions is fairly low, they are
facing a strong linear sensitivity which is, for w-transitions with Amg = 0, given
by Af = —mpdguoB [142]. Here, g is the Bohr magneton and dg the differential
g-factor of the two clock states. As a w-transition is sensitive to dg, a o-transition
(Amp = =£1) is sensitive to both dg and g;, the nuclear g factor. Analogously
to the measurement of the residual lattice-dependent shifts, a measurement of the
frequency splitting of both 7- and o- transitions yields the value of dg.

However, there are ways to eliminate the first-order mpg-dependent shifts, such
as the lattice vector and the linear Zeeman shift. Equal mr components with op-
posite sign feature the same absolute frequency shift, but with opposite sign. Ac-
cordingly, the average transition frequency 'So(F,+mp) —3Py(F, +mp) of these
mp components is no longer dependent on the linear shifts and is equal to the
perturbation-free value [53] [143]. For this reason, atoms are usually state-prepared
in opposite mp states throughout spin-polarization, whereas the clock transition is
interrogated in interleaved measurements of the corresponding +mpr component.
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However, after this process of spin-polarization, some atoms may remain in neigh-
boring mpr components. Transitions driven from there will lead to a line-pulling
by means of an inhomogeneous broadening of the clock transition [55].

Finally, an s-wave frequency shift for fermions can arise, if the clock interro-
gation field exhibits spatial inhomogeneities. Hazlett et al. demonstrated that, in
this case, fermions become distinguishable, giving rise to a CFS [144].

6.2.2 The fermionic Mg

As has been mentioned in Section [3.1] there is one stable fermionic isotope for
magnesium, Mg, with a nuclear spin of I = 5/2. Laser cooling of the fermion in
the singlet-MOT at 285 nm has been achieved in a previous work of our group [71],
trapping 10* — 10° atoms at a temperature of 4 mK, being slightly hotter than the
MOT for #*Mg. The small number of atoms is probably limited by the natural
abundance of 10% only, but in principle does not display an overall limitation.
Using appropriate oven designs with corresponding slowing schemes of the thermal
beam might increase the atomic flux into the fermionic singlet-MOT [145].

The 1S, ground state of 2>Mg offers a hyperfine structure being suitable for sub-
Doppler cooling techniques like polarization-gradient cooling [146]. These cooling
effects have also been studied in [71], but unfortunately sub-Doppler temperatures
could not be demonstrated, as the hyperfine splitting of the ! P; state cannot be
resolved in presence of the broad 'Sy, — !P; transition linewidth of 78 MHz and
the calculated capture velocity of the sub-Doppler force turned out to be smaller
compared to the recoil velocity of magnesium.

In principle, the state preparation scheme for the bosonic 2*Mg (see Chapter
3) could be adapted to the fermion as well, but one has to face the fact that the
fine structure of each state 3Py in the triplet manifold of Mg further possesses a
hyperfine structure. This leads to a variety of possible transitions that have to be
covered by additional laser beams at 383 nm, if one wants to operate a triplet-MO'T,
immensely increasing the experimental complexity of the existing laser system at
383 nm.

The optimal solution would be a cooling mechanism in the singlet manifold
leading to temperatures of several 100 uK, which might be given by quench-cooling
on the 1Sy — 3P| intercombination line [147, [148] or other schemes. Achieving such
low temperatures, we could apply the optical dipole trap at 1064 nm as energy
filter, similar as in [64] [65] for optical trapping of a cold fraction of atoms in
the 1Sy ground state. As a next step, these atoms would be transferred to the
optical lattice, as mentioned in Chapter [3 followed by optical clock spectroscopy.
The frequency of the 1S, — 3P, clock transition in Mg is already known to be
655 060 050 580(120) kHz, including the isotope shifts of the 1Sy —3P; transition
between 2*Mg and Mg as well as the determined center-of-gravity frequency of
the 3P, — 3P, fine-structure transition in Mg [57, 149, 150]. Furthermore, the
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same clock laser at 458 nm could be used for interrogation of the clock transition.

6.3 Prospects for optical spectroscopy of Bloch
bands

As we have seen in Section the carrier line shape observed in the shallow
lattice regime is sensitive to both the lattice intensity and wavelength enabling
the precise determination of wavelength dependent atomic parameters. To further
improve our studies on atomic properties, we need to gain more insight into the
impact of lattice band filling and the corresponding population distribution on the
spectroscopic line shape.

Study of lattice dynamics

So far, mapping of the Bloch band curvatures onto a frequency shift has been
demonstrated, if clock spectroscopy is carried out in the shallow lattice regime. A
variation of the lattice intensity to shallower depths for purification of higher-order
bands seems to modify the population distribution of atoms in the ground state
band (see Subsection [5.4.1). For a full understanding of the lattice dynamics, the
behavior of the population distribution needs to be further investigated. Here, the
use of absorption detection of the atomic cloud seems to be unavoidable. If the
lattice intensity is ramped down adiabatically, therefore preserving the crystal mo-
mentum, Bloch states in the ground state band were demonstrated to be mapped
onto a free-particle momentum in the first Brillouin zone [127]. Accordingly, a uni-
form mixture of Bloch states and hence a uniform distribution of quasimomenta
will cause the atomic cloud to expand in a square box of width 2hk;, after release
of the trap. As an alternative, this free-particle momentum may eventually also
be observed in terms of a frequency shift, if the narrow linewidth clock transition
is probed during free-fall with subsequent monitoring of the excited state fraction.

Thermometry in optical lattices

Determination of atomic temperatures in optical lattices is a crucial part. One
method is given by analyzing the contributions from the first axial sidebands (see
Section for lattice states being populated according to a Boltzmann distribu-
tion. Recently, a new method for 3D thermometry has been demonstrated for Sry
molecules being trapped in the Lamb-Dicke regime of a 1D optical lattice [I51].
Here, the carrier spectrum features an asymmetrically broadened line shape being
temperature dependent, as it is shifted by ~ 100 kHz due to a lattice AC Stark ef-
fect with asp, /ang, # 1. The carrier transition itself shows a FWHM linewidth on
the order of ~ 20kHz. Analyzing the carrier line shape, McDonald et al. not only
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demonstrated the measurement of 3D temperatures instead of just a 1D temper-
ature measurement, as in case of sideband thermometry, this method also turned
out to be one order of magnitude more sensitive.

However, as it has already been demonstrated in the frame of this thesis, the
variation of the lattice intensity modifies the ground state band population. Hence,
we also might perform carrier thermometry in the shallow lattice regime. In our
case, the tunneling induced line shape is much more sensitive to the detuning
of the lattice wavelength, as in [I51] the lattice needs to be detuned by tens of
nanometers.



APPENDIX A

Properties of a compact
triplet-MOT

As it has been mentioned in Subsection[3.2.3] the new alignment of the triplet-MOT
beams leads to a compact and highly fluorescent cloud of atoms. In the following,
I will briefly introduce some MOT properties resulting from this nouveau regime.

MOT dynamics are governed by several types of collisions: Collisions of atoms
with the background gas are referred to as linear losses, while collisions between
trapped atoms are described via two-body losses. The resulting reaction rate can
either be determined throughout the losses of atoms from the trap or during the
loading process [152]. The net loading rate is described by

=L, —Tn— fBn? (A.1)

with n being the atomic density, L,, is the linear loss rate and /3 the two-body-loss
coefficient. A solution to above equation is given by

1+ &e

where ngg is the steady-state density and

Y= '+ QBTLss, (A3)

f = ans/(ﬁnss + F) (A4)
are the total trap loss rate and the cold collision fraction, respectively, as stated
in [153).

Figure shows the number of triplet-MOT atoms as a function of MOT
holding time. The solid curves are fits corresponding to Eq. [A.2] There are two
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Figure A.1: Decay rate of the triplet-MOT for different cooling laser powers.
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Figure A.2: Decay rate of the triplet-MOT for different cooling laser detunings.
50% = 5.3 mW of the total cooling power has been used for each measurement.

Here,
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Figure A.3: TOF-temperature measurement of the triplet-MOT as a function of cooling laser
detuning.

effects that can be clearly seen from the data: First, the less cooling power is used,
the longer the MOT life time, which should be an indication of existing light-
assisted collisions. Second of all, high-density effects that occur at short holding
times are less pronounced than expected by theory. In a more compact cloud one
might expect the opposite case.

Keeping the cooling power at a constant value of 5.3 mW (which is half of the
maximum available power), the same decay rate has been measured for different
detunings of the cooling laser. The results are depicted in Figure At a
detuning of —0.5, the triplet-MOT life time equals the result in Figure (black
curve). However, for more far-detuned cooling laser frequencies, the decay rate
adapts to the expected behavior (solid lines) and shows even longer life times of
the triplet-MOT.

Finally, the temperature of the ensemble has been measured for different de-
tunings using the time-of-flight (TOF) method (see Figure . The final tem-
perature of the triplet-MOT matches with earlier measurements [64] and shows no
significant dependence on the improved beam alignment.
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APPENDIX B

Fitting of the carrier line shape
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Figure B.1: Composite fit to the carrier line shape (black solid curve) in the shallow lattice
regime featuring two independent Lorentzian functions (red and blue solid curves). The fit
function (green solid curve) has been generated by linearly combining the Lorentzians.

In Subsection [5.4.2] it has been mentioned, that the asymmetric carrier line shape,
observed in the shallow lattice regime at a lattice wavelength close to magic, re-
minds of a composition of two resonances. These maxima correspond to the contri-
bution of the AC Stark modified band structure, being different for the electronical
ground and excited state, which is taken care of by fitting a Lorentzian function
with independent linewidth and amplitude to each of the maximum. The total fit
function is given by the sum of the independent Lorentzians. For clarity, Figure
shows this fit function (green solid curve) exemplarily applied to the line shape
(black solid curve) obtained by summing up the simulated base functions of Figure
(left). In the same way, the experimental data presented in Figure has
been fitted.
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Abstract We report on a reliable laser system for cool-
ing magnesium atoms in the metastable 3 P manifold. The
three relevant transitions coupling the 3P to the *D mani-
fold are near 383 nm and seperated by several hundred GHz.
The laser system consists of three diode lasers at 766 nm.
All lasers are frequency stabilised to a single pre-stabilised
transfer cavity. The applied scheme for frequency control
greatly reduces the complexity of operating three lasers com-
bined with resonant frequency doubling stages and provides
a high reliability necessary for complex atomic physics ex-
periments.

1 Introduction

Laser manipulation of atoms is an indispensable tool in atom
optics. Most experiments require the laser frequency to be
stabilised, typically to an atomic transition. This can be
achieved via frequency modulation spectroscopy in an atomic
vapour cell if the transition originates from the ground state
[1]. Applying this method to metastable transitions involves
additional complexity of an electric discharge and the asso-
ciated linewidth broadening [2]. In such cases, as well as in
the case that the laser frequency is far from any atomic trans-
ition, one can transfer the stability of a reference laser to the
target laser via a transfer cavity or a frequency comb [3,4,
5]. The transfer cavity technique has been demonstrated for
metastable transitions in strontium where the lasers are sta-
bilised to independent reference cavities [6]. This approach
considerably increases the complexity of the system with the
number of lasers involved. Locking multiple lasers to a single
cavity has been achieved using a fast scanning cavity offset
lock [7]. However, the system has a feedback bandwidth lim-
ited by the scan frequency of the cavity.

In this article, we demonstrate the transfer of frequency
stability of the reference laser to three independent lasers us-
ing a single transfer cavity. These lasers are around 766 nm
and are frequency doubled to obtain 383 nm light needed
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Figure 1 Relevant energy level scheme of the triplet manifold of
24Mg. The red arrow depicts the closed cooling transition, whereas
the blue arrows represent the repumping transitions.

to manipulate magnesium atoms in the metastable P man-
ifold. The relevant metastable energy levels of magnesium
are shown in Fig. 1. Each of the three laser systems con-
sists of a master oscillator power amplifier (MOPA) feeding
a cavity enhanced second harmonic generation (SHG) stage.
The MOPA systems are locked to the reference cavity that
is pre-stabilised to the Dy-line of 3°K at 766 nm. We apply
the Pound-Drever-Hall (PDH) stabilisation scheme based on
diode current modulation [8]. The modulation sidebands are
also used to lock the SHG cavities to the light at 766 nm. A
schematic setup of the complete laser system is shown in Fig.
2.

2 The MOPA system

The three seed lasers are external-cavity diode lasers (ECDL)
in Littrow configuration [9] with an output power of 50 mW.
The laser diodes are anti-reflection (AR) coated and emit
light at a central wavelength of 770 nm with a tuning range
of +40nm. The external cavity consists of a grating with
1800 lines/mm. According to the Bragg condition for the
first order A = 2d- sin(«), this results in a lasing opera-
tion for A = 766 nm at an incident angle o ~ 43.6°. The
temperature of the laser diodes is stabilised to few mK and
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Figure 2 Simultaneous locking of three independent laser systems
to a common transfer cavity referenced to an atomic transition. Each
laser system is locked to the cavity using the PDH scheme. The re-
quired modulation is generated by RF local oscillators imprinting
sidebands on the laser frequency via diode current modulation. The
same modulation is also used to stabilise the individual SHG cav-
ity of each MOPA. The modulation frequencies are seperated by
a few MHz to allow the unperturbed demodulation of each signal.
The length of the transfer cavity is stabilised with the help of a fourth
laser referenced to the Dy-line of 3°K via Doppler-free spectroscopy.
The locking scheme is shown in detail only for MOPA 1 for clar-
ity. Blow-up: Bowtie cavity design for second harmonic generation.
(PZT: piezo-electric transducer, PBS: polarising beam splitter, PD:
photo diode)
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an optical isolator (60dB) protects the laser from back re-
flections. A tapered amplifier with a central wavelength of
765 nm is used for power amplification which is followed by
an isolator (35 dB) to suppress back reflections. Each MOPA
system has an output power of 1 W. A Voigt function fit to
the beat measurement performed between two free-running
MOPAs with a sweep time of 530 ms and a resolution band-
width (RBW) of 10 kHz resulted in Gaussian and Lorentzian
linewidths (FWHM) of 260 kHz and 35 kHz, respectively.

The frequency of each MOPA system is stabilised by
locking the master lasers to a transfer cavity via the PDH
method. MOPA 2, in addition, passes through an acousto-
optic modulator (AOM) in double-pass configuration before
the transfer cavity which allows the frequency to be scanned
around the 3P, — 3Dj cooling transition.

The frequency modulation sidebands for the PDH lock
are generated by current modulation around 20 MHz. The
differences in modulation frequency are kept large enough
to distinguish the error signals of the individual MOPA. Each
error signal is fed to the corresponding laser diode current
for fast frequency control and to a piezo-electric transducer
(PZT) for high gain at low Fourier frequencies.

A. P. Kulosa et al.
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Figure 3 Fractional frequency instability of the beat note between
MOPA 1 and MOPA 2 that are seperated by 200 MHz and locked to
the transfer cavity.

3 The length stabilised transfer cavity

The transfer cavity consists of a plane and a concave mirror
(with radius of curvature R = 100 mm) for 766 nm seper-
ated by a quartz glass spacer of length L = 7 cm. One of the
mirrors is attached to a PZT for controlling the length of the
cavity. The finesse is determined to be F =~ 200 while the
linewidth of the resonances is 10.2 MHz. In order to lock the
laser to an atomic transition frequency, it is necessary that the
cavity resonance be within a few 100 MHz of the transition
frequency. This can be achieved by generating a higher or-
der mode degeneracy creating a spectrum of equidistant res-
onances with a spectral separation Av = ¢/(2NL), where
N € IN. Following the approach in [10], this can be accom-
plished by choosing a specific length of the cavity according
to the relation

% =1 — cos? (%) @))]

Here ¢ € IN, ¢ < N and ¢, N are mutually prime. In the
experiment, ¢ = 6 and N = 19, resulting in a mode spacing
of 112.5 MHz.

The absolute length of the cavity is stabilised to an ECDL
with an output power of P = 45 mW locked to the 3°K D-
line at 766 nm via Doppler-free saturation spectroscopy. The
cavity is heated above room temperature to make fine adjust-
ments to the cavity length to satisfy Eqn. 1 and also for tem-
perature stabilisation.

The locking performance of the transfer cavity was de-
termined in the time domain by locking MOPA 1 and MOPA
2 to adjacent modes of the cavity with a servo bandwidth
of a few 100 kHz. The laser frequencies were seperated by
200 MHz. The beat signal between the two lasers was detec-
ted with a photo diode and fed to a frequency counter with
zero dead-time. The gate time for the measurement was 1 s.
From the time series the Allan deviation was calculated. The
result is shown in Fig. 3. The relative frequency instability
reaches a value of o, ~ 2 x 107! for integration times



An ultraviolet laser system for laser cooling and trapping of metastable magnesium 3

120 v T v T T T d T T T d T

1004 .
80+ .

60 .

Pags [MW]

40 ]
20- §

0 T 1 T T 1 T
0O 100 200 300 400 500 600
Pres [MW]

Figure 4 Generated UV power at 383 nm as a function of the power
of the incident light field at 766 nm.

7 =~ 100s. The flicker floor of the lasers results from a jit-
ter in the frequency control loop.

4 The second harmonic generation

Second harmonic generation in a 15mm long LBO crystal
placed inside a bow-tie cavity delivers more than 100 mW of
power at 383 nm, corresponding to a conversion efficiency
of ~ 20%. Fig. 4 shows the generated power in the UV
as a function of the incident power at 766 nm. The crys-
tal is AR coated on both sides. The outcoupling mirror M1
is a minescus (radius of curvature X = +50mm) to min-
imise the output beam divergence. Mirror M1 together with
curved mirror M2 (radius of curvature = 50 mm), focus the
beam to a waist of 30 pm inside the crystal. The incoupling
plane mirror M3 has a transmission of 1.2 %. Mirror M4 is
4mm in diameter and attached to a PZT (Fig. 2). The total
length of the cavity is about 28 cm. The finesse of the cavity
is calculated to be F = 270 from the measured linewidth of
ov = 3.93 £ 0.2 MHz. The crystal is temperature stabilised
to room temperature.

The SHG cavity is stabilised to the light at 766 nm with
the PDH scheme using the modulation sidebands generated
by diode current modulation. The lock has a bandwidth of
2.5 kHz. The power fluctuations in the output beam are be-
low 2 %. A beat measurement performed between two lasers
at 383 nm resulted in a Gaussian linewidth of 1.2 MHz and
a Lorentzian linewidth of 25 kHz measured with a RBW of
100 kHz and a sweep time of 4 ms.

The laser system is used to realise a magneto-optical
trap (MOT) for metastable P, magnesium atoms loaded
from a MOT operated on the 1Sy — !P; transition in the
singlet manifold. 10° atoms at 3mK are transferred to the
triplet manifold using the narrow intercombination transition
(*Sy — 3Pp) at 457nm. 1.6 x 108 atoms are then captured
by the "triplet-MOT" at 383 nm where they are further cooled
to 1 mK. This serves as starting point for loading them into

a dipole trap or a magic wavelength lattice for creating an
optical lattice clock.

5 Summary

We established frequency stabilisation of three lasers at
766 nm to a single reference cavity whose length is pre-
stabilised using a fourth laser locked to a 39K spectroscopy
signal. The light of the target lasers is frequency doubled
to obtain more than 100 mW of UV light at 383 nm. Side-
bands generated by laser diode current modulation are used
for locking the lasers to the transfer cavity as well as for
locking the second harmonic generation cavities to the fun-
damental light. Our setup reduces the complexity of operat-
ing multiple frequency stabilised lasers. In principle, it al-
lows in the present configuration to lock up to nine lasers to
the cavity limited only by its finesse. The method can also
be applied to other experiments requiring multiple stabilised
lasers by an appropriately designed cavity. A few examples
are the sub-Doppler cooling of calcium in the metastable
manifold [2], the strontium optical clock [6] and the simul-
taneous magneto-optical trapping of °Li, “°K and 8"Rb [11],
among many others.
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Abstract—10* magnesium atoms have been trapped in an optical
lattice at the predicted magic wavelength of 469 nm. The trap
depth of the lattice sites is 16 E, corresponding to a Lamb-Dicke
parameter of n = 0.51. The temperature of atoms in the lattice is
10 pK. We performed magnetic field-induced spectroscopy on the
strongly spin-forbidden clock transition and observed for the
first time a 50 kHz broad carrier signal together with a 80 kHz
broad red sideband.

Keywords-Magnesium optical lattice clock; Lamb-Dicke
spectroscopy; magic wavelength

L INTRODUCTION

Magnesium is the 12" element in the periodic table and thus is
the lightest species among the candidates for optical atomic
clocks. It has three stable isotopes: the bosonic **Mg and
Mg, as well as the fermionic **Mg with a nuclear spin of I =
5/2. Most knowledge has been gained so far on **Mg which
has a natural abundance of 78.99 % in an isotope mixture.
Magnesium benefits from a low sensitivity to black body
radiation [1] and a relatively simple electronic level structure
(see fig. 1).

All relevant transitions for laser cooling and clock
spectroscopy in magnesium are in the blue or UV range of the
electromagnetic spectrum. Laser cooling at 285 nm in the
singlet manifold has been well developed [2]. The broad
transition linewidth of 78 MHz limits the final temperature in
a magneto-optical trap (S-MOT) to approximately 3 mK. The
intercombination line with its linewidth of 36 Hz is not
suitable for magneto-optical trapping. Nevertheless, we use
this transition to optically pump the pre-cooled singlet atoms
into the long-lived triplet manifold. Metastable magnesium
thus only occurs by laser excitation of the intercombination
line as there is no decay channel from the lPl to the triplet
manifold via intermediate states like in strontium [3].
Applying a repumping laser to the *P, > °D, transition, atoms
are optically pumped to the *P, state which is the starting point
for our triplet MOT (T-MOT). The *P, > °Ds; cooling
transition further cools the atoms to 1 mK. Since the energy
splitting of the *D states is only marginal, a second repumping
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Figure 1. Partial level scheme of *Mg. The S-MOT is operated on the 'Sy >
'P, transition. The intercombination transition 'S, = °P, is used for
transferring the atoms to the triplet manifold. Operating the T-MOT envolves
three lasers: The cooling laser is acting on the *P, = *Djs transition, while two
additional repumping lasers re-cycle atoms that have decayed to the *P, and
*P, states. Clock spectroscopy is performed on the 'S, = *Py transition.

laser for the *P, state is mandatory to close the MOT cycle. All
lasers operate around 383 nm.

Concerning optical trapping of magnesium, it turned out that
directly applying laser light at 469 nm (which is the predicted
magic wavelength) to the atoms while they are in the *Dj state
leads to photo ionisation. Hence, we need a far detuned trap
for first trapping before we can load the magic wavelength
lattice. Recently, we developed a loading scheme for an
optical dipole trap (ODT) at 1064 nm for enhancing the
transfer efficiency into the dipole trap, which has earlier been
limited by the density of the T-MOT [4]. Atoms are
continuously pumped from the singlet manifold into the dark
’P, state by not applying the relevant repumping laser. The
coldest among the P, atoms are accumulated in the dipole trap
thus creating a quasi energy filter for metastable atoms.

In this paper we report about the successful transfer of °P,
atoms into an optical lattice at the predicted magic wavelength
of 469 nm and the first spectroscopy of the strongly spin-
forbidden clock transition 'Sy > P, at 458 nm. This is a key
breakthrough in order to realise a magnesium lattice clock

2013 Joint UFFC, EFTF and PFM Symposium



improving our latest frequency measurement on cold free-
falling atoms [5].

1L

Atoms are prepared and manipulated in a vacuum chamber
made of stainless steel with a background gas pressure below
10° mBar. The S-MOT is loaded from a Zeeman-slowed
thermal beam of magnesium atoms as described in [5]. In
contrary to our previous work, the light at 285 nm is nowadays
generated by frequency quadrupling a commercial 5 W fibre
amplifier laser at 1141 nm. For long-term stability, the
frequency doubled laser at 570 nm is locked to an iodine
spectroscopy. The main output of the laser feeds a home-built
resonant second harmonic generation (SHG) cavity allowing
for the generation of up to 350 mW at 285 nm with a linewidth
of 6 MHz. An acousto-optic modulator (AOM) splits the UV
light into a resonant beam for Zeeman-slowing the thermal
atoms and the light further prepared for magneto-optical
trapping.

For pumping the atoms from the singlet to the triplet manifold
we perform laser excitation on the narrow 'S, > °P,
intercombination line. The transfer laser is a commercial laser
system consisting of an amplified diode laser at 914 nm
feeding a SHG cavity. The output power at 457 nm is typically
120 mW. In order to address this narrow transition, the laser is
frequency-stabilised to a high-finesse cavity with F = 39000
providing a laser linewidth of 30 Hz. A detailed description of
this laser system can be found in [6].

The T-MOT light at 383 nm is generated by a laser system
consisting of three independent lasers for addressing the P, >
D cooling transition and the two repumping transitions,
respectively. Three master oscillator power amplifiers
(MOPA) deliver 1 W optical power at 766 nm each feeding
independent home-built SHG cavities (see fig. 2). The output
power of each SHG is about 100 mW at 383 nm and the lasers
have a linewidth of 1 MHz. For frequency stabilisation of the
three MOPAs that are far from any magnesium transition and
differ several hundreds of GHz in frequency (see fig. 1), we
transfer the stability of a reference laser to the MOPA systems
via a common transfer cavity [7,8]. Following a suggestion
given by Budker et al. [9], we lift the degeneracy of higher
order modes inside the cavity by slightly tilting one of the
cavity mirrors thus obtaining a mode spacing of 112.5 MHz
which is feasible for locking a laser with respect to an atomic
transition (the remaining gap can be bridged with AOMs). The
length of the cavity is controlled with a piezo-electric
transducer (PZT) to which one of the cavity mirrors is
attached. Long-term stability is achieved by stabilising the
cavity length to an ECDL locked to the *’K D,-line at 766 nm
via Doppler-free saturation spectroscopy. The MOPAs are
stabilised to the transfer cavity using the Pound-Drever-Hall
(PDH) method [10]. Frequency modulation sidebands are
generated by laser diode current modulation around 20 MHz.
Each SHG cavity is then locked to its respective MOPA light
using exactly the same modulation sidebands which largely

reduces the complexity in electronic stabilisation efforts.
A Ti:Sa laser giving 0.9 W of optical power with a maximum
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Figure 2. Schematic setup of the laser system used for operation of the T-
MOT. The three independent lasers are locked to a common transfer cavity
using the PDH scheme. The length of the transfer cavity is stabilised by means
of a fourth laser referenced to the Ds-line of *K via Doppler-free
spectroscopy. The locking scheme is shown in detail only for MOPA 1 for
clarity. (PZT: piezo-electric transducer, PBS: polarising beam splitter, PD:
photo diode)

tuning range of 930 — 960 nm feeds a commercial SHG cavity
providing the light for the optical lattice. Long-term frequency
stability of the Ti:Sa laser is obtained by stabilising it to the
ultra-stable clock laser at 916 nm by means of another transfer
cavity. According to the theoretical prediction of the magic
wavelength for magnesium, the SHG output delivers 130 mW
fibre-guided light at 469 nm to the experiment for generating
the optical lattice. In order to fulfil the power requirements on
Lamb-Dicke confinement, this light is enhanced in a linear
build-up cavity which is set up in the horizontal plane around
the vacuum chamber. Fig. 3 shows the schematic setup of the
resonator. The cavity has a total length of 850 mm with a
beam waist of 65 pm and consists of a curved mirror (R = 500
mm, T =3 % around 469 nm), a plane mirror being HR-coated
for the magic wavelength but AR-coated for the clock laser at
458 nm and a second curved mirror (R = 350 mm) having the
same coating as the plane one. We operate with this three-
mirror folded design due to two constraints on the cavity: (i)
the clock laser has to be spatially overlapped with the lattice
light for interrogation without being enhanced inside the
cavity and (ii) the transmission of the incoupling mirror has to
match the light losses per round trip inside the cavity
(impedance matching) to ensure the highest possible
enhancement factor. Offering a high transmission for 458 nm
at the same time represents a hard-to-fulfil requirement on the
mirror coating. Finally, the dipole trap beam at 1064 nm
emitted by a Ytterbium fibre laser is overlapped with the
lattice light in order to transfer the atoms into the optical
lattice.

The maximum build-up factor of the cavity is 15, so we obtain
a circulating power of 1.5 W by coupling 100 mW of light into
the cavity. The corresponding trap depth is 16 E, with E, being
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Figure 3. Schematic setup of the enhancement cavity for generation of the
optical lattice. The total length of the cavity is 850 mm which is stabilized
using the back-reflected light at mirror M1 (photo diode PD1). Using PD2
measuring the light leaking out of the cavity, the intra-cavity power is
stabilised while a 4-quadrant photo diode (PD3) stabilises the cavity mode.
the recoil energy (in temperature units E, is 1.8 pK). We
measured the trap frequencies to be 2mx 150 kHz which
results in a Lamb-Dicke parameter of n 0.51. The
enhancement and thus the trap depth may be further increased
by exchanging the view ports of the vacuum chamber as there
might be a coating damage. A photo diode in front of the
cavity is used for cavity length stabilisation (PD1) using the
PDH scheme. PD2 is used for stabilising the circulating power
inside the cavity while a 4-quadrant photo diode controls the
cavity mode by giving feedback to two PZTs acting on Mirror
3 (see fig. 3).

The clock laser at 916 nm is guided via a 30 m long phase-
stabilised fibre from a separate room to the magnesium
experiment showing a frequency instability of 5 x 10" in 1 s
averaging time. The light is amplified in the magnesium
laboratory and frequency doubled to 458 nm in a commercial
SHG cavity with an output power of 100 mW. The clock laser
light is further fibre-guided to the experimental chamber and is
aligned paraxial with the optical lattice.

I1I.

The procedure of preparing metastable *P, atoms in an ODT at
1064 nm is described in detail in [4]. For clarity, the
continuous loading scheme we are using is different from
stepwise loading of the S-MOT and the T-MOT with
subsequent capture in the dipole trap. Instead, during the
dipole trap loading, the S-MOT laser, transfer laser, T-MOT
lasers and dipole laser are operating continuously, except the
repumping laser for the 3P, state. Since the ODT has a
maximum depth of 260 pK, we filter out the coldest *P, atoms
being captured by the potential. We trap about 10° atoms at a
temperature of 100 uK.

In order to trap atoms in the optical lattice, the lattice light is
applied additionally to the ODT, while the dipole trap and all
other lasers are turned off after a period of 100 ms. Transfer of
atoms to the lattice is performed with an efficiency of 10 %.
The temperature of atoms in the lattice has been measured to
be 10 uK.

PREPARATION OF ATOMS
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Figure 4. First spectroscopy of the clock transition. The red line is a moving
average of five consecutive data points while the blue area indicates the signal
standard deviation in absence of the spectroscopy laser. The carrier is
observed at a detuning of -460 kHz and the red sideband at a detuning of -550
kHz.

IV. SPECTROSCOPY OF THE 'Sy > *P; TRANSITION

In order to enhance the mHz natural linewidth of the clock
transition for spectroscopy, we follow the suggestion of
Taichenachev et al. [11] and apply a homogeneous magnetic
field during the interrogation pulse thus creating a mixture of
the magnetic *P, state and the non-magnetic *P, state. In order
to address the transition for the first time, we apply a strong
field (B = 500 G) causing ~ kHz power broadening of the line.
Later on, we will require only a weak magnetic field if the
transition frequency is well known.

After 1 s of preparation of atoms in the dipole trap, they are
transferred to the optical lattice. In parallel, the static magnetic
field is created by switching the Anti-Helmholtz MOT coils to
Helmholtz configuration. During the 100 ms spectroscopy
pulse, atoms in the *P, state eventually are de-excited to the
'S, state depending on the clock laser frequency, so losses in
number of atoms would indicate a spectroscopy resonance.
For detection the quadrupole field is restored, atoms are
released from the lattice and subsequently captured by the T-
MOT for fluorescence detection. Detection in the triplet
manifold is carried out with a high signal-to-noise ratio since
no atoms from the background gas contribute to the signal.
Fig. 4 shows such a recorded spectroscopy sequence. The
clock laser frequency was changed in steps of 300 Hz. Each
data point is the result of three differential measurements (with
and without the clock laser) being averaged. Furthermore, we
took a moving average over five such consecutive data points
to reduce the signal noise. One can clearly see a carrier signal
together with a red sideband. Knowing the frequency of the
'Sy, > P, clock transition without performing an absolute
frequency measurement to be vy = 655 058 646 681 860(47)
Hz due to earlier frequency measurements of the 'Sy > °P;
transition [5] and the °P; > P, transition [12] we observe the
carrier with 25 % of atoms being de-excited at a detuning of
-460 kHz from the expected signal having a FWHM of 40
kHz. Due to the magnetic field of 500 G, a 2™ order Zeeman
shift of -534 kHz is expected for the clock transition which is
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in moderate agreement with the measurement. The red
sideband could be observed at a frequency detuning of -550
kHz with a FWHM of 80 kHz. The broad carrier linewidth
may be due to additional homogeneous broadening effects like
fluctuations in the magnetic field. The width of the red
sideband is subject to inhomogeneous broadening since the
width of the second lattice energy band is 50 kHz. However,
we do not observe a blue sideband giving rise to the
assumption, that atoms occupy mostly the lowest energy band
in the °P, lattice potential.

V. SUMMARY & OUTLOOK

We have presented the successful loading of 10* metastable
atoms in an optical lattice at the predicted magic wavelength
of 469 nm. The atoms have a temperature of 10 pK.
Performing magnetic-field-induced spectroscopy, we are able
to observe the strongly spin-forbidden 'S, > ‘P, clock
transition.

In order to increase the signal-to-noise ratio of the
spectroscopy signal, we will, as a next step, optically pump the
prepared atoms in the P, state back to the 'S, state, while
being held by the dipole trap. Transfer to the optical lattice
will thus happen in the singlet manifold and remaining
metastable atoms will be blown away with resonant beams.
Performing clock spectroscopy starting in the 'S, state with
detection using the T-MOT afterwards promises a significant
higher signal-to-noise ratio as no background atoms will
contribute to the detection signal.
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We optically excite the electronic state 3s3p 3P, in **Mg atoms, laser cooled and trapped in a magic-
wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly
forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift, and the
transition frequency to be 468.46(21) nm, —206.6(2.0) MHz/T?, and 655058 646 691(101) kHz,
respectively. These are compared with theoretical predictions and results from complementary experi-
ments. We also develop a high-precision relativistic structure model for magnesium, give an improved
theoretical value for the blackbody radiation shift, and discuss a clock based on bosonic magnesium.

DOI: 10.1103/PhysRevLett.115.240801

The frequencies of optical clocks are currently measured
with a fractional accuracy and precision of nearly 1078
[1-4]. A potentially limiting systematic frequency shift of
both ion and optical lattice clocks is the ac Stark shift from
room-temperature blackbody radiation (BBR) [5,6]. Clock
transitions with small BBR sensitivities are an attractive
approach to even higher accuracies. Among these are
neutral Hg and Mg, In*, and especially the Al" ion clock
transition, which all have significantly smaller BBR sensi-
tivities than Sr and Yb lattice clocks and Cs microwave
clocks.

In this Letter, we report the spectroscopy of the Mg clock
transition in a magic-wavelength optical lattice, which
gives equal ac Stark shifts of the clock states. We measure
the transition frequency [7,8] and its magic wavelength and
quadratic Zeeman shift, which were recently predicted
[9-12].

Along with our measurements, we developed a more
refined atomic structure model to calculate both the magic
wavelength as well as the static BBR shift. For less
massive atoms, such as Mg, these models are more
accurate than for heavier elements like Sr and Yb, and
spectroscopy of low-mass elements generally represents
an interesting test bed for validating improved theoretical
models [13]. Both our theoretical and experimental results
for the magic wavelength agree at a level of better than 1%
and restrict the value, which was estimated to fall between
466 and 480 nm [9-11]. Our model for Mg predicts a
static BBR shift to be 8 and 5 times lower than those
measured for Sr and Yb, respectively [14,15]. Apart from
the static contribution, the total BBR shift also includes a
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dynamic contribution, which is derived from the combi-
nation of theoretical calculations and measurements of the
3D, state lifetime [5,16]. Reference [17] estimated the
dynamic contribution in Mg to be 0.1% for the 3P, state,
remarkably smaller than those of Yb (1%) and Sr (4%).

For bosonic atoms, optical dipole excitation of the
electronic ground state 'S, to 3P, is strongly sup-
pressed. A magnetic field enhances the dipole coupling,
enabling a nanohertz linewidth by mixing the 3P, elec-
tronic state [12,18]. References [12,19] calculated the
associated second-order Zeeman effect for Mg to be
—217(11) MHz/T? [equivalent to a fractional frequency
shift of —3.31(17) x 1077/T?], a systematic effect that
must be evaluated. We precisely measure the magnetic field
dependence, which is consistent within the uncertainty of
Ref. [12], estimated to be 5% [19]. This second-order
Zeeman shift is larger than those of Yb [—6.6(4) MHz/T?
or —1.27(8) x 1078 /T? [18]] and Sr [-23.5(2) MHz/T? or
—5.47(47) x 1078 /T2 [20]].

In this way, we directly measure the transition frequency,
which agrees with the difference of the measured frequen-
cies of the 'S,-3P, and 3P,-3P, transitions [7,8]. Because
of its low mass and the short magic wavelength, Mg has a
large photon recoil frequency shift Avy = h/ ZlﬁlagicmMg,
where Ap.gic 18 the magic wavelength, as well as greater
tunneling. A deeper lattice is therefore required to suppress
tunneling [21], as compared to heavier species.

We briefly summarize the steps required for the optical
lattice spectroscopy in Fig. 1. A thermal beam of Mg atoms
is slowed and loaded into a “singlet’-magneto-optical
trap (MOT) using laser light tuned near the 'Sy-'P,

© 2015 American Physical Society
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FIG. 1 (color online). Optical transitions in >*Mg relevant for
optical lattice spectroscopy. Atoms are continuously loaded into
the long-lived electronic state 3P, in an optical dipole trap (ODT)
at 1064 nm using a dual MOT [23]. Atoms trapped in a MOT
using the ' S,-' P, transition are optically transferred with 457 nm
light to the 3P, state and then to 3 P,. The atoms are further cooled
in a MOT with 383 nm light that excites the 3D manifold, and
cold atoms are permitted to accumulate in 3P, in the ODT. These
atoms are optically depumped to the ground state via 3P, and the
magic-wavelength optical lattice is adiabatically turned on. The
dipole trap and the optical lattice laser beams are depicted by the
bold arrows. The 458 nm light interrogates the magnetic-field-
enhanced clock transition.

transition. Atoms are optically transferred, after excitation
to the 3P, state, into a second, simultaneously operated
“triplet” 3 P,-> D3 MOT. There, atoms can decay to the *P,
state (see Fig. 1) during MOT operation [22] and have to be
recycled with light exciting them to the 3D, state. This
continuous loading scheme yields nearly 10° atoms in the
3P, state within 1 s at 100 K in a 1064 nm dipole trap as in
Ref. [23]. The atoms are then optically pumped to the *D,
state for 360 ms and decay to the electronic ground state via
the 3P, state. Afterwards, a spatially overlapped 1D optical
lattice with a waist of 89 um is adiabatically turned on in
100 ms before the dipole trap is rapidly switched off. To
select the coldest atoms, the optical lattice intensity is
ramped to a lower depth and subsequently increased to a
final value for the clock transition spectroscopy. Each of
these linear intensity variations is performed within 100 ms.
This procedure reproducibly generates about 1000 atoms
at 4 uK.

We generate 160 mW of lattice light near the magic
wavelength at 4,,0ic = 469 nm with a frequency-doubled
Ti:sapphire laser. A horizontal buildup cavity, with a finesse
of 80, twines around the vacuum chamber and, with a
circulating power of ~2.3 W, produces trap depths of ten
recoil energies hvg. The cavity length is stabilized to the
frequency of the laser with a Pound-Drever-Hall [24] lock
driving an electro-optical modulator and a piezo-controlled
mirror. An additional feedback loop driving an

acousto-optical modulator (AOM) can set and stabilize
the depth of the lattice. The light transmitted through the
cavity is used to measure the circulating light intensity in the
cavity.

The clock transition spectroscopy is performed with a
homebuilt external cavity diode laser stabilized to an
ultrastable resonator with finesse 7 =600000 at 916 nm,
similar to Ref. [25]. The infrared light is fiber guided
to the spectroscopy setup, a tapered amplifier chip, and a
commercial second-harmonic generation stage. The
system generates 10 mW of 458 nm light with a short-
term frequency instability as low as 5x 1076 in 1 s,
inferred with the help of a second ultrastable resonator.
The spectroscopy is performed by irradiating the atoms
for 100 ms with a pulsed, Gaussian-shaped laser beam
with a waist of 300 yum and a peak intensity of
7 W/cm?. The MOT coils, operated in a Helmholtz
configuration, generate a magnetic field of 2.49(1) G/A,
determined via optical Zeeman spectroscopy of the
1So(my; = 0)-*P,(m; = +1) transitions, increasing the
dipole coupling of 'S, and 3P,. We normally use a
magnetic field of 249 G, which yields a predicted linewidth
of 8.07 uHz and a Rabi frequency of 205 Hz [12]. In this
way, we resonantly excite up to 1000 atoms to 3P, which
are then optically pumped to 3P, and detected with 80 ms
of fluorescence from the triplet MOT. This detection scheme
yields a sensitivity of a few tens of atoms. To obtain the line
center and profile of the transition, we record the number of
excited atoms as we step the frequency of the 458 nm laser.
The initial drift of the laser is determined via spectroscopy
of the atoms and compensated with a feedforward of an
AOM that shifts the laser frequency to a resonance of our
ultrastable cavity. A scan over the resonance typically
comprises 30 measurements, each lasting 1.9 s.

The magic wavelength for Mg is inferred from
measurements of the line center for different lattice depths
and several wavelengths. Figure 2(a) shows two sets of
measurements of the transition probability (red and blue
dots) versus the clock laser frequency and corresponding
Gaussian fits (red and blue solid curves) for three depths of
a 466.97 nm lattice. The line profiles for different trap
depths were measured successively. To evaluate and correct
the residual laser drift, the measurement sequence was
repeated three times, and the shift of the line centers for a
specific trap depth is determined from the Gaussian fits.
From the frequencies for a specific lattice depth, we infer
the residual clock laser drift, which can be as large as
2-3 kHz within several minutes. The line profiles in
Fig. 2(a) are three superposed scans. The linewidth of
each profile, on the order of a few kilohertz, is mostly due
to tunneling in our shallow optical lattice. According to
Ref. [21], the total line broadening is on the order of twice
the ground state bandwidth, in agreement with our findings.
In our current apparatus, the trap depth was as low as six
recoil energies, which gives rise to a carrier width of
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FIG. 2 (color online).

Trap depth in E;

(a) Measured and fit line profiles for three depths of a 466.97 nm optical lattice. Two sets of measurements (red

and blue dots) are shown with their corresponding Gaussian fits (red and blue solid lines). (b) The observed linear ac Stark shift versus
the optical lattice depth for several lattice wavelengths. The frequencies of the line center (dots) from Gaussian fits as in (a) and their
corresponding linear regression (solid lines) are depicted. For each measurement set at a lattice wavelength, a single frequency offset

accounts for the drift of our ultrastable cavity.

approximately 16 kHz. Figure 2(b) shows the line centers
(dots) and the corresponding linear regression (solid lines)
of the ac Stark shifts versus the lattice depth for different
lattice wavelengths. An offset frequency was subtracted
from the linear regressions for each lattice wavelength to
account for the laser drift between measurements. The
uncertainty of the experimental determination of the lattice
depth is about 5% dominated by the uncertainty of the
lattice waist. The uncertainty of the ac Stark shift is a
combination of the statistical uncertainty of the linear
regression and the systematic uncertainty of residual (non-
linear) frequency drifts of the clock laser, on the order of a
few kilohertz. During the measurements for 466.97 nm, the
clock laser was less stable, leading to more noise in the
number of detected atoms, larger error bars, and a larger
variation of the observed ac Stark shifts. The differences in
the linear regression from the two measurement campaigns
agree within these uncertainties. Separately, the two data
sets yield magic wavelengths of 468.47(22) (blue data)
and 468.45(19) nm (red data). Applying a linear regression
to the combination of both measurement sets, we
determine the magic wavelength of the >*Mg 'S,-*P,
transition to be 468.46(21) nm and the linear ac Stark
shift dependence on the lattice depth and wavelength to be
1.67(12) kHz/Eg/nm [equivalent to a fractional frequency
shift of 2.55(18) x 10712/ E,/nm].

The experimentally determined magic wavelength
agrees well with our theoretical prediction. We use a
state-of-the-art relativistic approach that combines configu-
ration interaction and all-order linearized coupled-cluster
methods (CI + all-order). To evaluate the uncertainty of
our calculations, we use a combination of the CI and

second-order many-body perturbation theory (CI + MBPT),
which does not include all-order corrections to the effective
Hamiltonian. The difference of the CI+ MBPT and
CI + all-order values serves as an estimate of the theoreti-
cal accuracy [26-28]. The results are summarized in
Table I. Our final recommended value for the theoretical
Mg magic wavelength, listed in the “Final” row, uses
measured instead of calculated transition energies for the
dominant contributions. While our calculated Mg transition

TABLE 1. Comparison of CI+ MBPT and CI+ all-order
values for magic wavelengths Ay, in nanometers and static
polarizabilities a (in atomic units) of Mg, Sr [28], and Yb [27].
Aa = a(nsnp3Py) — a(ns*'S,). The “Final” value in the third
line uses measured instead of calculated energies of the most
important polarizability contributions in the CI 4 all-order
calculation.

Quantity Method Mg Sr Yb
Amagic CI+ MBPT 468.45 847 789
Cl+all 468.68 820 754
Final 468.45(23)
Exp. 468.46(21) 813.427* 759.354*
a('Sy) CI + MBPT  71.257 195.4 138.3
CI + all 71.251 197.8 140.9
a(®3P,)  CI+MBPT 100.812 482.1 305.9
CI +all 100.922 458.1 293.2
Aa CI + all 29.671 260.3° 152.3
Exp. 247.379(7) 145.726(3)

*We only list six significant figures from the measurements in
Refs. [29,30].

"Using experimental energies gives 254.4 au., and small
corrections yield 247.5 a.u.
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energies agree with the observed values to a few cm™!, even

these small differences affect the magic wavelength in the
fourth significant figure. We note that this correction is
quite small and the final value differs from the ab initio
CI + all-order value by only 0.05%.

In Table I, we give CI+ MBPT and CI + all-order
values for the magic wavelength A.,,.;.. We also give the
static ground state a(ns’>'S,) and excited clock state
a(nsnp3Py) polarizabilities and their difference A, which
is proportional to the static BBR shift [17]. To demonstrate
the extremely high accuracy of the theoretical calculations
in Mg, we compare the magic wavelength and polar-
izabilities of Mg, Sr, and Yb in Table L. In our theoretical
method, the main difference between Mg, Sr, and Yb are
the much larger and more complicated cores of Sr and Yb
than of Mg. As a result, core-valence correlations are much
smaller in Mg than in Sr and Yb, leading to substantially
higher accuracy for the theoretical predictions for Mg. The
large differences between CI + MBPT and CI + all-order
Sr and YD values illustrate the significance of higher-order
effects in these heavier systems. We note that the difference
of the CI + MBPT and CI + all-order values for Sr and Yb
is much larger than the difference of the CI + all-order
results with experiment for both the magic wavelength and
Aa, confirming the validity of using such a difference as an
uncertainty estimate of the Mg theoretical values. The
excellent agreement of the CI + MBPT and CI + all-order
polarizabilities indicates an uncertainty of the Mg BBR
shift of less than 1%.

The second-order Zeeman shift drops out of the deter-
mination of the magic wavelength but is a significant
correction to our measured transition frequency. Figure 3
shows the measured transition frequency versus the applied
magnetic field (squares), a parabolic fit (black curve) of the
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FIG. 3 (color online). Quadratic Zeeman shift of the clock
transition versus magnetic field strength (black squares), a para-
bolic fit (black curve), and the theoretical prediction of Ref. [12]
(red curve). The predicted dependence on the magnetic field is
—217(11) MHz/T?, which agrees with the experimental result of
—206.6(2.0) MHz/T?.

measurements, and a theoretical prediction by Ref. [12]
(red curve). The experimental parabolic coefficient is
—206.6(2.0) MHz/T? [equivalent to —3.15(3) x 1077 /T?]
and agrees within 5% with a theoretical value, which is
consistent with its estimated uncertainty [19]. The meas-
urement accuracy of the magnetic field strength, via the
Zeeman spectroscopy of the 'S,-3 P, transition, is 1% and
limited by our present accuracy in measuring the MOT
coils’ electrical current.

Our measurements at the magic wavelength, with the
correction of the second-order Zeeman shift, yield a direct
measurement of the optical transition frequency of 655 058
646 691(101) kHz. The absolute frequency is measured by
beating the spectroscopy laser with an optical frequency
comb that is stabilized to a 10 MHz GPS frequency
reference. The measured transition frequency agrees with
the difference of previous spectroscopic measurements of
the 'S,-3P, and 3Py->P, transitions of 655659 923 839
730(48) and 601277157 870.0(0.1) Hz to better than
100 kHz, which corresponds to the estimated uncertainty
of this measurement [7,8].

In summary, we report the direct optical spectroscopy of
the 'Sy-*P, clock transition of laser-cooled bosonic **Mg
in a magic-wavelength optical lattice. Our measurements
determine precisely the magic wavelength and confirm the
high precision obtained with a new theoretical atomic
model of Mg. Our experimental determination of the
quadratic Zeeman effect and clock transition frequency
agree with a prediction [12] and previous indirect frequency
measurements. Lattices with a larger depth of more than 40
recoil energies, accessible with higher laser power and a
higher finesse of the enhancement cavity, will display a
reduced width of the lowest vibrational band to 20 Hz and
thus allow more precise spectroscopic measurements.

The demonstrated agreement of our combination of
theory and experimental measurements is an important
ingredient for exploring a future bosonic and fermionic Mg
optical lattice clock. For bosonic magnesium, atoms can be
optically prepared at microkelvin temperatures, which has
not yet been demonstrated for the fermionic isotope 2Mg.
In our experiment, a dilute atomic cloud of 1000 atoms is
distributed over 130000 lattice sites (~0.008 atoms per
lattice site), which is a factor of 100 lower density than that
reported for other clocks with approximately the same
number of atoms [31,32], significantly reducing the lim-
itations from collisional shifts. The quadratic Zeeman shift
can be sufficiently controlled [33] by using the suitably
narrow Mg transitions for Zeeman spectroscopy, a higher
clock laser intensity, and a smaller magnetic field [12]. A
clock laser intensity of 7 W/cm? yields a Rabi frequency of
20 Hz, with a magnetic field that is 10 times smaller and a
corresponding reduction in the uncertainty of the quadratic
Zeeman shift. Here, in the context of Sr, Yb, and Hg, Mg
can use higher clock laser intensities, because the clock and
magic wavelengths are nearly equal, leading to small
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differential polarizabilities of the Mg clock states and a
naturally smaller clock-laser ac Stark shift. Combining all
of these techniques can exploit the small Mg sensitivity to
blackbody radiation to make a highly accurate and stable
lattice clock and further precisely test atomic models for
precision spectroscopy.
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