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Zusammenfassung

Detergent resistente Membranen (DRMs) sind Membranbereiche die durch ihre 

einzigartige Zusammensetzung unlöslicher Lipide definiert  sind. Diese Bereiche 

sind  ungleichmäßig  lateral  und  horizontal  über  Biomembranen  verteilt.  Hoch 

geordnete, oft auch als Lipid Raft bezeichnete, Regionen in Membranen sind reich 

an Cholesterol und Phospholipiden mit gesättigten Fettsäure Seitenketten (Simons

and Ikonen, 1997). Die Assoziation mit diesen Regionen erfordert vielfach eine 

posttranslationale  Modifikation  der  betreffenden  Proteine.  Eine  Form  dieser 

Modifikation ist die kovalente Bindung von Palmitinsäure an ein Cystein mit hilfe 

einer  Protein  Acyl  Transferase  (PAT)  (Pechlivanis  and  Kuhlmann,  2006). 

Typischerweise  teilen  solche  Transmembranproteine  das  zinkbindende  DHHC 

Motiv und werden daher als ZDHHC Proteine bezeichnet.

In  der  vorliegenden Arbeit  wird  die  Identifizierung einer  in  Caco-2 Zellen hoch 

exprimierten  intestinalen  PAT  (iPAT)  beschrieben,  die  über  ein  ZDHHC  Motiv 

verfügt  und  an  der  Regulation  der  intrazellulären  Fettsäurezusammensetzung 

sowie den damit verbundenen Signalwegen beteiligt ist.  Die Verwendung stabil 

exprimierter siRNA gegen die bisher nicht charakterisierte iPAT (ZDHHC3) in einer 

Caco-2 Zelllinie ermöglichte einen Einblick in ein verwobenes System von DRM 

Intigrität  und Fettsäure Gleichgewicht,  notwendig für die Signaltransduktion und 

Nahrungsaufnahme.

Aus den Daten kann geschlossen werden,  daß die Regulation der intrazellulär 

verfügbaren  Fettsäuren,  insbesondere  der  Palmitinsäure,  ein  schlagkräftiges 

Instrument für die Feineinstellung in der Kontrolle der intestinalen Barriere sowohl 

unter normalen Bedingungen, wie auch in der Krankheit darstellt.

Schlagwörter:  Palmitoylierung,  ZDHHC3,  iPAT,  Lipid  Raft,  Detergent  resistente 

Membranen

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context



Abstract 6

Abstract
Detergent  resistant  membranes  (DRMs)  are  membrane  regions  defined  by  a 

unique composition of insoluble lipids. These regions are inequally distributed over 

biomembranes  both  laterally  and  horizontally.  Theses  ordered  regions  within 

membranes are  rich  in  cholesterol  and  phospholipids  with  saturated  fatty  acid 

chains and are often termed as lipid rafts (Simons and Ikonen, 1997). Association 

with  those  regions  in  many  cases  require  a  posttranslational  modification  of 

regarding proteins.  One class of  those modifications is the covalent  binding of 

palmitoic  acid  to  a  cysteine  residue  by  protein  acyl  transferases  (PATs) 

(Pechlivanis  and  Kuhlmann,  2006).  Typically  those  transmembrane  proteins 

feature  a  common  zink  binding  DHHC motif  and  are  generally  designated  as 

ZDHHC proteins.

In this thesis a highly expressed intestinal PAT (iPAT) owing a ZDHHC motif in 

Caco-2 cells  with  the ability  to regulate intracellular  fatty acid  composition and 

connected signalling pathways was identified. The usage of a stable expressing 

siRNA against  the formerly  not  characterized iPAT (ZDHHC3) Caco-2 cell  line 

provided  insight  to  an  interconnected  system  of  DRM  integrity  and  fatty  acid 

maintenance for signal transduction and nutritional uptake.

It  is  concluded  that  the  regulation  of  the  intracellular  fatty  acid  availabilty,  in 

particular palmitate, is a powerful cellular fine tuning instrument for controlling the 

intestinal barrier in health and disease.

Keywords: Palmitoylation, ZDHHC3, iPAT, lipid raft, detergent resistant membrane
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1.Introduction

1.1 Structure of Lipid Rafts

Detergent  resistant  membranes  (DRMs)  or  lipid  rafts  are  membrane  regions 

defined by a unique composition of insoluble lipids. These regions are inequally 

distributed over biomembranes both laterally and horizontally (fig. 1). Lipids in this 

regions reveal a high ordered structure within cellular membranes and are rich in 

cholesterol and other lipids with saturated fatty acid chains. Often sphingolipids, 

phosphatdylinositols  and glycolipids can be found enriched within  those DRMs 

(Simons  and  Ikonen,  1997).  Size  and  compostion  of  these  structures  vary 

depending on cell  type (Schuck et al., 2003), nutrition conditions (Peretti  et al.,

2005) and differentiation stage of the cell as reported in the formation of myelin 

(Fitzner et al., 2006). 

Even the mentioned lipids exist in numerous variations. Sphingolipids for example 

provide hundreds of different types sharing only the spingosine backbone structure 

(Merrill et al., 2008). Phosphatidylinositol and its oligophosphorylated derivates are 

frequently found parts of the intracellular messenging system (Jones et al., 1979). 

Glycolipids are early found determinants of the blood groups (Koscielak, 1963).

The properties of the lipids strongly depend on the associated fatty acids. Long 

chained saturated fatty acids like palmitate tend to allocate proteins to structures 

that are highly hydrophobic and tend to concentrate together with cholesterol. This 

structural aggregation finally leads to the function of the lipid rafts/DRMs, when 

proteins take part (Sengupta et al., 2007).
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Figure 1: Detergent resistant membrane (DRM). Cartoon of different type of lipid 
rafts   (DRMs)  and  protein  association.  From the  left:  DRM associated  protein 
crossing both layers of the membrane; Unilayer DRM with a associated towards 
outside of the cell; the same as before with an inside orientation; aggregation of 
DRM associated proteins.
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Whether there is a general kind of lipid raft or a definition relying on the used type 

of  detergent  has  to  be  made  still  is  a  matter  of  discussion.  Considering  the 

different characteristics like ionic or neutral detergents, a general valid definition of 

DRMs for all kind of detergents is improbable (Seddon et al., 2004). An unique 

composition  of  lipids  soluble  by  a  certain  detergent  already  has  been 

characterized (Alfalah et al., 2005).  

1.2 Applying FRET

The  tendency  to  accumulate  certain  types  of  proteins  and  lipids  turns  those 

structures to  excellent  platforms for  the  interaction of  proteins  (Bromley et  al.,

2001).  Beside  the  opportunity  to  use  specific  detergents  to  isolate  DRMs 

biochemically/biophysically the high proximity of the proteins offers the alternative 

to apply the fluorescence resonance energy transfer between tagged transfected 

proteins (fig. 2).
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Figure 2:  Fluorescence Resonance Energy Transfer  (FRET):  This  technique is 
based on the phenomenon, that energy from on fluorescent protein (e.g. CFP) can 
be transmitted to another fluorescent protein (e.g. YFP).
It  is  possible  to  exploit  this  phenomenon  for  protein  interaction  studies  as 
presented in the cartoon on the right. The upper two images show the reaction of 
non-interacting proteins when exited with a wavelength specific for one of both 
(coded  by  colour):  only  the  specific  fluorescent  protein  will  emit  light.  When 
fluorescent tagged proteins are interacting energy can be transmitted from one 
partner to the other after excitation with the lower wavelength (lower image). This 
results in an emission of both partners in their specific wavelength, which can be 
measured and used for protein interaction studies.

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context



1.Introduction 5

1.3 Function of Lipid Rafts

A number of cellular processes correlate with DRMs and depend on the correct 

localization  within  those  membrane  regions.  DRMs  have  been  shown  to  be 

platforms for intracellular  transport.  The human intestinal  sucrase-isomaltase in 

epithelial cells depends in its transport on the association with DRMs (Alfalah et

al., 1999), turning this protein into an excellent marker for lipid rafts. Proteins of the 

intracellular transportation system, like caveolin are subject of regulation by DRMs 

themselves. The caveolin trafficking is strongly regulated by the composition of 

regarding microdomains as cholesterol depletion experiments recently were able 

to demonstrate (Pol et al., 2005). 

Signalling events underlie the same restrictions like FRET. The regulation of the 

activity of PI3K-Akt signalling takes place at those platforms (Arcaro et al., 2006) 

to  provide  the  necessary  proximity  of  the  participants  delivering  also  the 

phosphoinositol. Again aggregative effects are the key for the functional assembly 

of the phagocyte NADPH oxidase which also depends on intact DRMs (Vilhardt

and van Deurs, 2004). 

Often posttranslational modifications of proteins are necessary to associate them 

with  lipid  rafts.  A well  studied modification of  this  kind is  an attachement of  a 

glycosyl phosphatidylinositol (GPI) anchor to proteins in polarized cells for apical 

transport  (Hooper  and  Bashir,  1991;  Polishchuk  et  al.,  2004;  Delacour  et  al.,

2006).  
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1.4 Lipid Anchors

Other modifications are covalent but reversible attachments of fatty acid residues 

like myristolate, farnesylate or palmitate (see fig. 3). Myristoylation occurs during 

the translation process and causes a nonselective membrane association of the 

protein,  not  depending  on  certain  membranous  structures  like  DRMs   (Basu,

2004). It could be observed, that the binding of ARFs to their inhibitor arfaptin is 

influenced by the myristoylation state of the ARFs (Tsai et al., 1998). For preferred 

DRM  association  other  acylation  events  have  to  take  place.  Prenylation  is  a 

posttranslational  process  that  often  promotes  further  modification  like 

palmitoylation, a modification that clearly promotes association to DRMs. Proteins 

of the Ras and Rab family are often subjected to this kind of modification which is 

necessary for the efficient function by placement of those proteins  (Pechlivanis

and Kuhlmann, 2006).
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Figure 3: Types of lipid modifications. From the left:  Myristoylation provides 14 
saturated  carbon  residues,  Farnesyl-  or  geranylation  provides  a  number  of 
unsaturated  carbon  residues,  Palmytoilation  contains  16  saturated  carbon 
residues, example for multiple prenylation.

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context

C14H29 C16H31

Myristoylation Farnesyl – or 
geranylation

Palmytoilation Multipl. prenylation



1.Introduction 8

For palmitoylation a differentiation between serine and cysteine acylation has to be 

done. Since palmitate is the final step in the fatty acid synthesis by the fatty acid 

synthase complex (FAS) it is the starting point for a number of synthesis steps 

(Zakim & Herman, 1969). Serine palmitoylation characterizes the first step in the 

biogenesis of sphingolipids and takes place in the ER. Using the same substrates 

like  cysteine  palmitoyltransferases,  palmitoyl-CoA,  serine  palmitoyltransferases 

(SPTs)  are  involved  in  the  condensation  of  L-serine  and  palmitoyl-CoA  to  3-

ketodihydrosphingosine (KDS) (Yard et al., 2007). Deficiencies in the activity or 

expression  of  SPTs  can  be  brought  into  context  with  neuronal  defects  like 

hereditary  sensory  neuropathy  type  I  (HSN1).  A  complete  loss  of  SPTs  is 

considered to be embryonic lethal (Hanada, 2003).

Palmitoylation of cysteine residues of proteins is a postranslational modification 

that enables the recruitment of cytosolic proteins to ordered structure membranes 

or lipid rafts. These events may take place spontaneously in vitro or in vivo under 

the control of  palmitoyltransferase, which transfers a palmitoic acid (C16:0) group 

using an acyl-CoA-palmitate substrate via a thioester binding to cysteins of certain 

proteins.  Spontaneous  palmitoylation  only  could  be  observed  in  in  vitro 

experiments and the affected cysteine residues are the same like  in vivo (Basu,

2004). Due to a pKa of 8.5 cysteine it is unlikely that a spontaneous palmitoylation 

emerges in isolated cysteines. An environment of a much lower pH is necessary to 

induce palmitoylation. Observed in vivo autoacylation events may be possible due 

to  pH  reducing  compartments  of  the  regarding  proteins  or  or  other  non-

proteineous constitutents (Dietrich and Ungermann, 2004).

In the yeast it has been demonstrated that palmitoylation at the cysteine residues 

of the CHS-3 protein is necessary for  the ER-export  pointing thus to a role of 

palmitoylation in the quality control in the ER (Lam et al., 2006). Palmitoylation 

modifications  can  take  place  in  the  Golgi  or  ER  compartment.  This  highly 

hydrophobic attachment permits an association with highly ordered cholesterol rich 

membrane regions often associated with cell recognition elements like glycolipids 

or -proteins and receptors  (Fischer et al., 2006,  Liang et al., 2007,  Palmer et al.

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context
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2007). It is known that the spike glycoprotein of the SARS coronavirus binds to raft 

domains in the cellular membrane after being palmitoylated. This palmitoylation 

enhances the cell fusion of the virus (Petit et al., 2006). 

The effect of palmitoylation on cellular processes can not be always assigned to 

the effector directly but operate through a mediator protein. The intestinal sodium-

dependent  glucose  transporter  is  positively  controlled  by  HSP70  (Ikari  et  al.,

2002), that binds to the cysteine-string protein isoform beta (Cspβ), a membrane 

bound protein  existing  in  a  palmitoylated  and  nonpalmitoylated  form.  The  non 

palmitoylated form is mainly found in the trans Golgi presenting the palmitoylation 

as a tool for plasma membrane recruitment of HSP70 (Boal et al., 2007).

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context
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Figure 4: Palmitoylation dependent DRM association. The figure resembles figure 
1 with the difference that palmitoylation fullfills the anchorage of the protein in the 
DRM.
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Increasing  evidence  suggests  a  potential  role  of  palmitoylation  is  involved  in 

protein sorting (Greaves and Chamberlain, 2007). This feature of the above kind of 

acylation especially affects highly polarized cells. Neuronal dysfunctions could be 

observed in cases of a loss of function of cysteine palmitoyltransferases. It could 

be  shown  that  a  genetic  X-linked  defect  in  the  human  palmitoyltransferase 

ZDHHC9 is  responsible  for  a  familiar  marfanoid  mental  retardation  phenotype 

(Raymond et al., 2007).

An important class of polarized cells often associated with health and disease are 

the intestinal  cells.  Apically exposed to the intestinal  microflora those cells are 

frequent  targets  of  pathogens.  As  a  consequence  the  integrity  of  apical 

membranes are necessary for healthy intestinal conditions. Recent studies have 

shown an attenuating effect of applied poly unsaturated fatty acids (PUFAs) like 

docohexanoic acid in induced colitis, which is characterized by an disintegration of 

the intestinal brush border (Li et al., 2008). This points to a crucial impact of the 

fatty acid metabolism in the regulation of the brush border barrier function.

Using Caco-2 cells as a valid model for intestinal brush border cells (Vincent et al. 

1985) we present a mechanism in which the loss of storage for saturated fatty 

acids,  the  palmitoyltransferase  iPAT,  causes  an  increase  of  PUFAs  in  the 

membrane of Caco-2 cells. A possible explanation may be the limited resources of 

palmitoyl-CoA in the cell and its utilization by palmitoyltransferases as exemplified 

by the human palmitoyltransferase iPAT highly expressed in Caco-2 cells.

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context
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2.Material and Methods

All solutions, buffers and plasticware used for cell culture were autoclaved (121°C, 

1 bar, 20 min) before usage. Glasware was sterilized (250°C, 1h). Reagents were 

at least of p.a. quality.

2.1 RT-PCR

For mRNA extraction the Rneasy kit  from Qiagen has been used following the 

distributers protocols.  RT-PCR was performed with  the RevertAid® First  Strand 

RT-PCR Kit from Fermentas as described in the protocol from the distributor using 

following primers:

hZDHHC3: 5'-GCGAGATCTAAAATGATGCTTATCCCCACC-3'

5'-CGCGTCGACTTTTCAGACCACATACTGGTA-3', 

hgage1: 5'-GCGCTCGAGAAAATGAGTTGGCGAGGAAGA-3'

5'-CGCAAGCTTTTTTCAAGGTTTCCGTGGGGA-3' 

hmyl6: 5'-GCGCTCGAGAAAATGTGTGACTTCACCGAA-3'

5'-CGCAAGCTTTTTTCAGCCATTCAGCACCAT-3' 

hsyt3: 5'-GCGCTCGAGAAAATGTCAGGAGACTACGAG-3'

5'-CGCAAGCTTTTTTCACTCGGAGTTCTCTTT-3' 

hsytl4: 5'-GCGCCGCGGAAAATGTCGGAGTTACTGGAC-3'

5'-CGCGGGCCCTTTTCATAAACCCAGCTTCTG-3' 

htppc: 5'-GCGAGATCTAAATGTCTGGAAGCTTCTAT-3'

5'-CGCGTCGACTTTTCAGCTTAAAAGGTGTTT-3' 

beta - actin: 5'-GGACTTCGAGCAAGAGATGG-3'

5'-AGCACTGTGTTGGCGTACAG-3'

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context
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Ligation in pECFP-C1 vector was performed as described before. In brief: cut out 

cDNA and closed pECFP-C1 vector DNA were treated with BglII (MBI) and SalI 

(MBI) to produce sticky ends. Digested DNA was seqareted in a 0.8% Agarose gel 

electrophoresis, lanes were excised and DNA extracted as before. Ligation was 

performed using T4 – Ligase from MBI in an insert to vector ratio of 3/1 over night 

at  20°C.  For  amplification  competent  E.Coli  gold  strain  was  used.  For  siRNA 

design the PolII MiR RNAi Expression Vector Kit with EmGFP-Kit from Invitrogen 

was applied using following primers:

ZDHHC3: 

5'-TGCTGTGACAAAGAGGACCACGAACTGTTTTGGCCACTGACTGACAGTTC

GTGCCTCTTTGTCA-3'

5'-CCTGTGACAAAGAGGCACGAACTGTCAGTCAGTGGCCAAAACAGTTCGTG

GTCCTCTTTGTCAC-3'

2.2 Microscopy techniques

Cells grown on coverslips were fixated as described before. Confokal Microskopy: 

Images were taken with a Leica DM IRB/E TCS SP2 confokal microscope from 

fluorescent tagged proteins in cotransfected COS-1 cells. For CFP-tagged proteins 

an excitation wavelength of 454 nm and a detection wavelength of 490 nm has 

been used. 3D-reconstruction was performed with the aid of the Volume Viewer 

plugin under ImageJ (Rasband 1997-2008, Abramoff et al., 2004).

For  analysis  of  morphology  phase  contrast  images  were  taken  from  a  Zeiss 

Axiovert  25  microscope  with  a  Canon  PowerShot  A640  digital  camera  and 

subsequent image analysis using ImageJ analysis tools.

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context
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2.3 Raft preparation and 2D Gelelectrophoresis

Triton – X 100, TWEEN-20 and Lubrol DRM preparation: 50 µl  of PSMF were 

diluted in 100 µl protease inhibitor solution. 40 µl of the resulting inhibitor mix were 

added to  1  ml  of  1% regarding detergent  in  PBS.  10  cm Dishes with  5  days 

confluent Caco-2 cells were washed twice with PBS and 1 ml TX was dispensed 

on the dishes. Cells were scrapped off the dishes and the resulting solution was 

transfered in 2 ml reaction tubes. Cells were homegenized 20 time with 0.8 mm 

and 15 times with a 0.45 mm cannula using a 1 ml injection. To achieve constant 

degree of  lysis  homogenates  were  left  over  night  rocking  at  4°C.  Lysate  was 

centrifugated  for  1.5  h  at  100,000  g.  The  resulting  pellet  was  washed  with 

washbuffer I and two times with washbuffer II. Pellets were dissolved with 600 µl of 

lysis buffer (0.5% deoxycolate, 0.5% Triton-X 100 + 40 µl PI) for at least one hour 

at  4°C.  After  10'  centrifugation  protein  of  supernatant  was  quantified.  Proteins 

were precipitated with  absolute ethanol over night at -20°C, pelleted with 3000 

rpm,  washed  once  with  96%  ethanol  and  two  times  with  70%  ethanol.  The 

resulting  pellet  was  rehydrated  with  RH  buffer  depending  on  the  protein 

concentration to achieve a 100 µg of protein final concentration over night at 4°C 

under gentle rocking. Before applying samples to isoelectic (IE) -strips pH 3-10 

(IPG)  0.2  µl  of  ampholytes  (Bio-Lyte  3/10,  BioRad)  were  added.  Isoelectric 

focusing was performed on Protean ® IEF Cell (BioRad) with 12 h of equilibration, 

followed by an gradient with 4,000 V at 20°C.

For  the  second dimension  a  12% PAGE was  accomplished after  washing  the 

strips 2 times 10' in equilibration buffer with additional 0.05 g / ml DTT followed by 

a washing step of equilibrium buffer with additional 0.05 g / ml iodacetamide. The 

proteins were visualized by silverstaining of the gel.

The Palmitoyltransferase hZDHHC3 as a Lipid Raft Associated Protein in its Cell Physiological Context
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2.4 Growth rate, glucose uptake and transepithelial resistance

Coverage  of  culture  dishes  was  estimated  using  a  raster  overlay  und  light 

microscopy every 24 hours. For 2 – bromo palmitate treatment Caco-2 cells were 

grown for 24 h in 10 ml DMEM High Glucose  at 37°C, 5% CO2 with 100 µM and 

10  µM  2-bromo  palmitate  respectively.  Glucose  uptake  measurements  were 

performed using samples taken from cells cultured as described with  1 h time 

steps for eight hours. 100 µl of the sample were mixed with 24 mg p-ABS, 500 µl 

DMSO/ice cold acetate, 10 mg Na-CBH and incubated for 15' at 60°C. After a 

dilution of 1:10 in the fluid phase (10 mM NaPO4 buffer pH 2.0, 20 mM TBAHSO4) 

samples  were  measured  in  HPLC  with  a  synergie-fusion-RP  80  column 

(Phenomenex).  Detection  was  accomplished  by  fluorescence  detection  of 

emission wavelength of 358 nm with excitation wavelength 313 nm. 

For  measurements  of  transepithelial  resistance  cells  were  grown  on  transwell 

culture dishes (Corning Inc., Acton, MA) and after confluence for at least four days 

resistance was measured with  a Millicell-ERS (Millipore).  After  each performed 

measurement cells were trypsinated and counted using with a hemocytometer.

2.5 Measurement of cholesterole and phospholipids and fatty 
acids

Lipidextraction was performed following Bligh & Dyer (A rapid method of total lipid 

extraction  and  purification.  Can  J  Biochem  Physiol.  1959  Aug;37(8):911-7). 

Cholersterole was applied to HPLC following Takadate, 1985. Briefly 400 µl of the 

sample soluted in CH2Cl2 was mixed with 100 µl internal standard (1,5 mg/ml 1 – 

eicosanol) and 7-methoxycoumarin-3-carbonylacide (MCCA) was added to a final 

concentration of 20 nMol. Samples were then dried at 110°C and resoluted in 50 µl 

CH2Cl2 with 200 µl methanol. 50 µl of this solution were injected on a Microsorb-

MV 100-5 C18 column (Varian). For analysis of phospholipids samples were dried 
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at roomtemperature und N2 gas and resoluted in 0.5 ml CHCl3:Methanol (2:1 v/v). 

50 µl  were injected on a Lichrospher Si  100 (Merck) column and subjected to 

gradient of flux agent A (CHCl3:Methanol:30% NH3; 80:19.5:0.5 v/v) to flux agent B 

(CHCl3:Methanol:H2O:30% NH3; 60:34:5.5:0.5 v/v) of 100% A / 0% B, 8' 45% A / 

55% B, 15' 40% A / 60% B, until end 0% A / 100% B. Detection was performed 

with Sedex 55 light scatter detector (S.E.D.E.R.E)

Esterification of fatty acids from lipids: 15 ml reaction tubes have been precleaned 

with n-hexane. Samples of in chloroform dissolved lipids were dried under N2 at 

room temperature. Together with the internal standard (37,3 ng/µl C17:0) samples 

were dissolved in 2 ml methanol and 0,5 ml n-hexane. 200 µl acetylchloride were 

carefully added and the samples were left for 1 hour at 100°C. After 5 minutes of 

cooling  on  ice  4  ml  6% K2CO3 were  applied.  Samples  were  centrifuged for  1 

minute at 1500 rpm (~10000 G) and 10°C. The upper phases were transferred into 

a new reaction tube and evaporated until 50-60 µl were left. Those  were applied 

to GC (Varian 3400) on a supelcowax-10 column.

2.6 Brush border preparation and western blot

Brush  border  preparation:  Cells  were  washed  two  time  in  sterile  PBS  and 

homogenized in 2 ml buffer containing 2 mM tris-HCl, 50 mM mannitol 40 µl PI. 

CaCl2 solution was added dropwise to a final concentration of 10 mM while the 

samples were gently stirred on ice. Another 30 minutes the samples were stirred 

on ice. In the first centrifugation step samples were centrifuged for 20 minutes at 

2000 g, 4°C. The pellet (P1) containing basolateral and intracellular membranes 

was stored at  4°C until  use. Supernatant  was centrifugated at 25000 g for  30 

minutes at 4°C. The second pellet (P2) containing the brushborder membrane was 

used together with P1 for westernblot. The supernatant containing the cytosol was 

discarded.

Immunoblotting  employed  polyvinylidene  difluoride  membranes  (Millipore, 
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Germany)  and  horseradish  peroxidase-conjugated secondary  antibodies,  which 

were visualized by ECL (Amersham Biosciences). Primary monoclonal antibodies 

were Annexin 2 (HH7), kindly provided by Prof. Dr. Gerke, Münster, SI (705) by 

Prof. Dr. Columbatti, Verona Flotilin-2 (B-6), Santa Cruz BT (SC, Cal.), EEA1 by 

ABR, Golden (Co).

2.7 Confocal Microscopy, FRET and Colocalization Analysis

Confocal  microscopy:  Images  were  taken  with  a  Leica  DM  IRB/E  TCS  SP2 

confocal  microscope  from fluorescent  tagged  proteins  in  cotransfected  COS 1 

cells.  For  CFP-tagged  proteins  an  excitation  wavelength  of  454  nm  and  a 

detection  wavelength  of  490  nm  and  for  YFP-tagged  proteins  an  excitation 

wavelength of  510 nm and a detection wavelength of  535 nm has been used. 

Additionally  images  were  taken  454  nm  excitation  wavelength  and  535  nm 

detection wavelength for FRET analysis.

Colocalization Analysis: Colocalized pixels were superimposed using the 

colocalization  finder  plugin  (C.  Laummonerie,  J.Mutterer,  Institut  de  Biologie 

Moleculaire des Plantes, Stasbourg, France) under ImageJ (Rasband, 1997-2006, 

Abramoff et al., 2004). For calculation of the releative amount of colocalized pixels 

cotransfected  cells  were  digitally  isolated  with  the  threshold  function  under 

ImageJ. Pixel values of colocalized versus CFP signal values were calculated and 

treated as areas.

FRET Analysis: Determination of FRET values was performed via the PixFRET 

plugin (Feige et al., 2005) under ImageJ with 
FRET

Donor×Acceptor  . Relative FRET 

values were obtained the same way as in the colocalization analysis with CFP as 

donor  and  YFP  as  acceptor.  Background  subtraction  was  performed  using 
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exponential fitting: ax eb . 

2.8 Electronmicroscopy

For fixation of the cells 30 minutes incubated with 1% glutaraldehyd in 100mM 

cacodylatbuffer. The samples were rinsed in cacodylatbuffer followed by 1.5 h of 

incubation with 2% OsO4 in H2O. Next the samples were washed twice with H2O 

and over night incubated with 0.5% uranylacetate in H2O.

The following steps were performed in Gießen at the group of Prof. H.P. Zimmer

The next  day the samples were washed twice with  H2O followed by a graded 

series of ethanol:

2 x 15 min. 50%, 70% and 90% ethanol

4 x 10 min. 100% ethanol

1 x 5 min. propylenoxide

Embedding in epon: 

2 x 30 min. 1 +1 epon with propyleneoxide

2 x 60 min. pure epon

Samples were transferred to flat embedding mould or beam capsule.

Electromicrographs  were  taken  on  an  electronmicroscope  Philips  EM  208 

(Eindhoven,  Niederlande)  with  photographs  by  Kodak  electronmicroscope  film 

4489 (Rochester, New York, USA). 

2.9 Glycolipidpreparation and Lectin Screening

For  the  isolation  of  glycolipids  two  TLC  (Glass,  Si-60,  Phenomenex)  of  dried 

isolated lipids (see lipid extraction) were performed. The fluid phase consisted of 

chloroforme; methanol; aqeous 0,2% CaCl2 solution (60/35/8). The process took 

place in a glass chamber. After drying one plate was stained with 2µg/ml orcinol in 

70% H2SO4 and developed at 110°C. Using this template targeted glycolipids were 
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isolated on the other plate by carfully scrapping out previously defined areas with a 

scalpell. After the incubation of the fragments in chloroforme/methanol (50/50) a 

centrifugation separated the lipids from the solid phase. The pellet was discarded. 

The supernatant was dried under N2 gas and soluted in methanol.

For lectin screening methanol dissolved samples were transferred into a methanol 

resistant 96-well  plate and dried again.  The treated plates were incubated with 

BSA to reduce any possible background. 15 µl of lectins in lectin buffer (300 mM 

NaCl, 100 µM CaCl2 in 10 mM HEPES, pH 7.5) were applied to each well. After 

washing 3x with PBS samples were stained using streptavidine Cy-3 conjugates 

(Sigma), dissolved 1:250 in PBS for 1 h at room temperature. For quantification a 

Fluorimeter (Tecan) with 552 nm excitation and 565 nm emission was used. 

2.10 Used Chemicals

Acrylamide Rotiphorese Gel30, Roth, Karlsruhe,

Deutschland

Agarose Gibco, Eggenstein, Deutschland

Ammoniumchlorid (NH4Cl) Fluka, Steinheim, Schweiz

Ammoniumperoxosulfate (APS) Merck, Darmstadt, Deutschland

Ampicilin Sigma, Taufkirchen, Deutschland

Bacto Yeast Extract BD Biosciences

Bacto-Tryptone BD Biosciences

Bovine Serumalbumine (BSA) PAA

Brij Sigma

Chloroforme Roth

Dithiolthreitol (DTT) Sigma

Dimithylsulfoxide (DMSO) Fluka

Ethanol Roth

Ethylendiamintetraacetate (EDTA) Roth

Ethidiumbromid Merck
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Fetal calfserum (FCS) Gibco

Glycerole Sigma

Glycine Roth

Lubrol Merck

Magnesiumchloride (Mg2Cl) Merck

Moviol Molecular Probes

N,N,N',N'-Tetramethlethylendiamine Roth

(TEMED)

Nonidet P40 (NP40) Fluka

Paraformaldhyde Merck

Peniciline-Streptomycine Gibco

Phenole Roth

Tris-HCl Roth

Sodium hydroxide (NaOH) Merck

Di-sodiumhydrogenphosphate- Merck

dihydrate (Na2HPO4x 2H2O)

sodium dodecyl sulfate (SDS) Roth

Triton-X-100 Sigma

Tween-20 Roth
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2.11 Used Enzymes

Ligase T4 MBI Fermentas

Protease inhibitors Roche Diagnostics

1mM PMSF:

1µg/ml pepstatine A

1µg/ml antipain

5µg/ml leupeptin

5µg/ml aprotinin

50µg/ml trypsine-chymotrypsine-inhibitor

Restriction enzymes and buffer MBI Fermentas

Rnase A Roche

RNAse inhibitor MBI Fermentas
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3.Results

3.1 A set of proteins can be found in several kinds of detergent 
resistant membranes.

A series of 2D-gel electrophoresis images has been produced out of detergent 

insoluble fractions from Caco-2 cells to investigate the protein composition of four 

types  of  detergent  resistant  membranes  (DRM),  defined  by  their  susceptibility 

against different detergents. The used detergents were Triton X-100, Tween-20, 

lubrol and brij. Triton X-100 is the typical detergent for the generation of DRMs or 

lipid-rafts.  Tween-20 is  a  detergent  recently  (Alfalah  et  al.,  2005) identified  as 

capable  for  the  isolation  of  early,  ER/Golgi  rafts.  Lubrol  and  brij  are  weak 

detergents with  not yet  clearly defined specificity for  membrane compartments. 

Although a number of proteins seemed to vary in concentration and appearance, a 

few spots remained comparatively stable expressed (fig. 1 A). Using free available 

image analysis software and software based pI and molecular mass estimation a 

careful  internet  based  search  using  the  ExPASy  TagIdent  tool  revealed  five 

proteins.  The  most  promising  identified  protein  with  this  method  was  the 

presumptive palmitoyltransferase ZDHHC3 or  intenstinal  protein  acyl  transferase 

(iPAT), a 37 KD transmembrane protein (fig. 1 A, lowest arrow). 

Although this method of identification bears a comparative high risk of errors, it 

could be used for proteins like the iPAT. Prerequisites for the application of the in  

silico identification of spots in 2D-gels is the comparative isolated situation of the 

spot  and  the  exclusion  of  proteins  that  are  known  to  undergo  secondary 

procession  like  glycosylation  or  extensive  phosphorylation.  Those  kinds  of 

intracellular secondary protein procession are known to change the protein pI and, 
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in many cases (especially in the case of glycosylation), the protein mass. The spot 

for the invariable iPAT satisfied the initial prerequisites by standing comparatively 

isolated and producing a strong signal. Exclusion of all proteins with a high degree 

known possible secondary processed domains left only one protein, the iPAT as 

candidate.

Figure 1: 2D  Gel  of  Tween-20  DRMs.  Example  of  a  typical  2D-gel  resulting  from 
the  preparation   of   Tween-20   derived  DRMs.   For   better   distinguish   between 
variable and invariable spots the same image has be been used. 
A: invariable or spots with a low  alteration  rate  between  different  types of DRMs 
marked by green arrows.
B: variable  or  spots  with  a  high  alteration rate between different types of DRMs 
marked by red arrows.
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3.2 iPAT is expressed in Caco-2 cells and is located in the Golgi 
membrane

To  test  the  expression  rate  of  the  human  palmitoyltransferase  iPAT  a  semi-

quantitative RT-PCR for a number of proteins with different expression rates has 

been used. Four proteins are known to work at Caco-2 cells as a positive control 

and two proteins that should produce no or only weak signals as a negative control 

were chosen. The positive control proteins have been myosin light polypeptide 6 

(Myl6), a widely expressed regulatory non muscular myosin, synaptotagmin like 

protein 4 (SytL4), a protein associated with exocytosis, MBP-1 interacting protein 

2A (TPPC) a protein supposed to take part in the vesicular transport between ER 

and Golgi and beta actin. The TPPC was detectable only at a faintl level while the 

rest presented sufficient signals (fig. 2). For negative controls the G antigene 1 

(GAGE1), which only can be found in testis tissue and synaptotagmin III (Syt3), a 

SytL4 related protein highly expressed in the neuronal system but not in intestinal 

cells were used. None of the negative controls did show any signal.

The  scaffold  protein  beta  actin  presented  the  highest  level  of  expression. 

Compared to beta-actin the iPAT a high degree of expression presented (fig. 2). 

Quantification of the intensity revealed a comparative intensity to actin of about 

72%. Considerable less intensity could be detected of Myl6 with about 30% of 

actin and SytL4 with 11% presented an even lower signal of the positive controls.

Since  none  of  the  used  negative  controls  did  produce  any  signal,  providing 

evidence for the specificity of the RT-PCR.
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Figure 2: Agarose Gel of RT-PCR. cDNA resulting of mRNA RT-PCR was applied 
to  a  0.8%  agarose  gel.  Used  primers  were  iPAT  for  the  human 
palmitoyltransferase  ZDHHC3,  GAGE1 for  the  human G antigene  1,  MyL6  for 
myosine light polypeptide 6, Syt3 for synaptotagmin III, SytL4 for synaptotagmin-
like protein 4 (granuphilin a), TPPC for MBP-1 interacting protein 2A, and finally 
actin for a fraction of beta-actin. For detailed information about the primers see 
methods.
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Further analysis of the iPAT sequence data allowed a presumptive view on the 

iPAT topology (Fig.  3).  For  this  purpose  the  specialized  software  TMRPres2D 

(Spyropoulos  et  al.,  2004)  had  been  used,  that  is  able  to  extract  predicted 

transmembrane  data  out  of  sequence  and  to  display  resulting  topology in  2D 

graphical representation of regarding proteins. The DHHC type zinc finger domain 

had been identified to be located between the amino acids 127 and 177. This 

resembles  in  the  graphical  representation  of  fig.  3  the second as extracellular 

characterized loop of the protein. This domain is the region hold responsible for a 

palmitoylation activity of proteins belonging to the ZDHHC family. 

Isolated cDNA was subsequently used for cloning iPAT in a pECFP vector.
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Figure 3: iPAT localization in the membrane. Cartoon image of putative membrane 
resident iPAT constructed out of sequence data with TMRPres2D (Spyropoulos et 
al., 2004).
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 Transfection in COS-1 cells showed a clear localization in the perinuclear region 

of the cells which is presumably the Golgi region (fig. 4 A and B) of the cells. This 

has  been  predicted  before  with  the  aid  of  sequence  similarity  analysis  in  the 

uniprot database system (uniprot entry:  Q9NYG2) and hence the second name 

GODZ  (Golgi  apparatus  –  specific  protein  with  the  DHHC zinc  finger  domain) 

(Uemura et al.,  2002). Additionally a vesicular association could be detected in 

some cases together with a compact perinuclear signal, indicating an apoptotic 

situation with a disintegrating Golgi apparatus (fig  4 C and D).

A BLAST search of protein sequence on NCBI with subsequent alignment (see 

appendix) revealed that iPAT is a highly conserved protein, found in all classes of 

animals.  This has been visualized using a tree chart for relatedness of species 

(see  appendix).  Even  distant  related  species  are  included  with  the  identifier 

ZDHHC3 including isoforms of iPAT. This indicates a low degree of variability (fig. 

5), which could be strengthened by the comparatively short amino acid sequence 

(327 aa) and the high number of membrane passages. Thus together with the 

pure  alignment  data  (see  appendix)  the  tree  representation  indicate  a  high 

functional dependence on the amino acid sequence.
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Figure 4: Confocal images of iPAT. Left side: iPAT cloned in pECFP transfected 
into Cos-7 cells. On the right: 3D-reconstruction produced with the Volume Viewer 
ImageJ plugin Two types of distribution could be observed. A and B show a strong 
compact perinuclear association. C and D present a vesicular view with a compact 
centre.
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Figure 5: Phylogenetic tree of the iPAT. This images is an excerpt of the complete 
tree in  the appendix.  Rooted on the input  sequence (last  entry at  the bottom; 
DHHC type containing 3). Apart from the yellow marked unnamed protein product 
all identified sequences are DHHC – type proteins with little variations throughout 
all species.
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3.3 siRNA against iPAT changes morphology and cell growth 
characteristics

To learn about the function of the identified protein iPAT, a siRNA against iPAT 

was introduced into Caco-2 cells. A stable cell line with reduced iPAT (fig. 6) was 

produced  to  perform reliable  tests.  To  control  the  efficiency  of  the  introduced 

siRNA 2D-gel electrophoresis and biosynthetic labelling with S35-methionine were 

performed, since no reliable antibody  against iPAT does exist. Although a higher 

protein concentration lead to a general over staining in the 2D-gels derived from 

the wild type cells, relatively high intensity of the iPAT spot allowed the detection 

of the corresponding position and the comparison in the treated clone. The stable 

expressed siRNA caused a marked reduction of iPAT signals (fig. 6 red circle). 

Using radioactive labelling of proteins with S35 labelled methionine revealed in the 

one dimensional SDS gel electrophoresis a marked reduction of a protein with a 

size  where  the  iPAT  is  expected  to  be  found  (Fig.  6b).   Both  data  strongly 

implicate the successful and functional application of siRNA.

Figure 6: Test of iPAT reduction by siRNA. 
A)  Excerpt  of  silver  stained  2D  gel  showing  the  difference  of  wild  type  (left) 
compared to  siRNA treated  Caco-2 clones (right).  The red circle  indicates  the 
position of the palmitoyltransferase ZDHHC3 (iPAT).
B) Biosynthetic labelled proteins of Caco-2 wild type and Caco-2 stable expressing 
siRNA against iPAT. Approximate position of iPAT is indicated by the arrow.
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Analysis of cell growth showed a considerable decrease in the growth rate of the 

Caco iPAT siRNA treated (siiPAT) clone compared to Caco-2 wild type. Starting 

with  2  x  106 cells,  wild  type  Caco-2  cultures  reached  confluence  after  48  h 

whereas siiPAT cultures did not show complete confluence after 72 h (fig.  7A) 

although finally the confluence at about 100 h is reached by the siiPAT cells. A 

regression analysis of the growth rates showed a significant difference (p-value 

0.011) in the slope. A partial linearisation of the growth curves allowed a reliable 

assessment of the differences between the wild type and siiPAT Caco-2 cells. 

The growth of the siiPAT clone starts with a delay of approximately 20% compared 

to the wild type at the time point of the first measurement (fig. 7B). Since the first 

time point of the petri dish coverage has been 12 h after seeding, the slope can be 

expected to be linear from this point. This implies not only a reduced growth rate of 

the siiPAT clone, which was also about 20% lower (data not shown) of the cultured 

Caco siiPAT clones but also a delayed inset of the growth or settlement on the 

petridish surface compared to wild type cultures. 
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Figure 7: Cell growth of Caco-2 wild type and Caco-2 siiPAT. 2 x 106 cells were 
plated on 10 cm petri  dishes and the occupied area was estimated under the 
microscope every 24 h. The growth curve (A) of the Caco-siiPAT (triangles) clone 
compared to the Caco-2 wild type (black dots) presents a slower growth rate. A 
more precise view can be achieved in the consideration of the intercept (B). The 
slope of the Caco-siiPAT clone growth rate is significantly reduced.
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Out of this data it could be expected that the morphology of the cultured cells is 

altered too.  In fact  quantification of  phasecontrast  micrographs (fig.  8A and B) 

delivered a significant  decrease in  cell  size of  about  35% in  the siiPAT clone 

compared to Caco-2 wild type cells (fig. 8C). To avoid effects due to ageing of the 

cell culture the maximal time of confluence was not used. 

An observed gain of circularity of about 1% (fig. 8 D) may mainly be due to this 

decrease in size. This indicates a more dense growth of the stable transfected cell 

line, which can also be observed in the corresponding micrographs (fig. 8 A and 

B). If those data are adopted to the growth rate data (fig. 8) general reduction in 

the growth rate has to be relativised because this reduced measured growth rate 

may be due to the reduced size of the cells which are needing more time to cover 

the same area like the wild type cells. 
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Figure 8: Exemplary phasecontrast micrographs of confluent cultures of Caco – 2 
wild type (A) and iPAT siRNA treated Caco cells (B) and quantification (C,D) of 
wild type Caco – 2 cells compared to iPAT siRNA treated Caco cells. Scale bar in 
figures A and B represent 100 µm. iPAT siRNA treated Caco cells are significantly 
smaller than Caco – 2 wild type cells (C). The circularity of  iPAT siRNA treated 
Caco cells is significantly higher than of the wild type (D).
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The phasecontrast micrographs implied a change in the morphology of the siRNA 

treated cells compared to the wild type cells. To receive a closer look at the ultra 

structure of treated and untreated Caco-2 cells transmission electron microscopy 

with a uranylacetate staining for membranes had been applied (fig. 9). 

Noticeable differences appears to exist at the immediate brush border membrane, 

where a loss of ordered villi in size and direction could be detected (fig. 9 A and B, 

red  arrows).  Also  the  cytoskeleton  in  this  apical  region  seems to  be  affected, 

showing a loss of order where the actin meshwork usually can be found (fig. 9 A 

and B, blue arrows).

An analysis  of the recognized organelles inside of  the cells revealed a striking 

difference in the numbers of larger compartments like multivesicular bodies (MVB) 

between wild type Caco – 2 cells and iPAT siRNA treated Caco – 2 cells. Whereas 

the number of  MVBs (fig.  9c,  inlet)  in wild type Caco – 2 cells outbalance the 

siiPAT cells by about 2 times (2.03),  siiPAT cells clearly dominate in the case of 

lamellar bodies over the wild type cells by 38 times (fig. 9d, inlet).
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Figure 9: Transmission electron micrographs of Caco – 2 wild type (A,C) and iPAT 
siRNA treated Caco – 2 cells (B, D). Images A and B emphasize the difference of 
the  brush border  membrane.  C and D are  representatives  for  the  intracellular 
organelle aberrations. Inlet in C shows a magnification of a mulitivesicular body. 
Inlet in D represents magnification of a typical lamellar body found in siiPAT Caco 
– 2 cells.
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3.4 The iPAT Influences the Cellular Physiology

It is probable that those growth characteristics also may influence the permeability 

of the cell layer.

Indeed, measurements of transepithelial resistance (TER) presented an increase 

compared to wildtype culture. The significant (p = 0.02) increase of about 20% in 

TER was detectable even at the cellular level (Fig 10). A more compact growth 

behaviour of the the cells may account for this increase (see Fig. 8).

Figure  10:  Cell  number  corrected  transepithelial  resistance  of  confluent  cell 
cultures  of  Caco  –  2  wildtype  and  iPAT  siRNA  treated  stable  cell  line.  The 
transepithelial resistance has been measured in mΩ.
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Marked differences in growth rates, morphology and TER suggest a change of 

overall metabolic conditions within the cells. To estimate whether a change in the 

metabolism of the siiPAT cells emerges, the consumed glucose in confluent cell 

lines from the medium has been measured by periodically taking samples of the 

medium and the quantification of remaining glucose in those. Figure 11A illustrates 

a decreasing concentration of glucose in the medium in all cultured cell lines. The 

strongest decrease of glucose in medium can be observed in the siiPAT cells (Fig. 

11A, solid diamonds) compared to the wild type cells (Fig. 11A, solid circles). As a 

control for a dependence between glucose consumption and palmitoylation events 

2-bromopalmitate was applied as a general inhibitor of cellular palmitoylation in 

two different concentrations (Fig. 11). 2-bromopalmitate caused a concentration 

dependent decrease in the uptake of glucose from medium, with a marked effect 

when 100µM (Fig. 11A, solid squares) was applied. 

A more detailed view can be achieved considering only the values of the slopes of 

the linear regression of the time series (Fig. 11B). Significant differences (p = 0.04) 

of about 40% exist between wild type cells and iPAT reduced Caco-2 cells, with a 

stronger negative slope in the iPAT reduced Caco-2 cells. This implies a much 

faster consumption of glucose than in the wild type cells. A significant (p = 0.04) 

lower reduction of glucose concentration in medium than in the wild type cells of 

about  40%  could  be  found  in  cells  treated  with  100  µM  2-bromopalmitate, 

supporting a dependence of glucose uptake and palmitoylation events.
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Figure 11: Glucose uptake from medium. Decrease of glucose concentration in 
medium has been measured in one hour steps by HPLC and normalized by the 
starting concentration (A). To measure the degree of decrease a linear regression 
(A,  solid  lines)  was  applied  to  the  raw  data  and  the  resulting  slopes  were 
compared (B). Significant differences between Caco-2 wild type (●, A) and 100 µM 
2-bromopalmitate (■, A) and Caco – siiPAT (♦, A) respectively, could be detected.
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3.5 Lipid and Fatty acid composition is altered in siiPAT cells.

The previous results suggested an impact of the iPAT on intracellular metabolism, 

barrier function and membrane morphology in Caco-2 cells. Keeping in mind the 

fact that palmitoyltransferases utilize intracellular produced palmitate, this ability is 

expected to have consequences for the composition of lipids in the cell to explain 

the physiological effects. 

To test this issue we isolated and compared lipids out of wild type cells and siiPAT 

cells (Fig. 12). In fact a redistribution of the lipid composition could be observed: 

Surprisingly  the  relative  distribution  of  the  lipids  in  wild  type  cells  present  a 

concentration in the more hydrophobic lipids, whereas in iPAT reduced cells the 

distribution tends to the more hydrophilic lipids. Definite differences were found 

with  ca.  60%  in  low  glycosylated  glycolipids  (p  =  0.03),  25%  in  phosphatidyl 

glycerole (p = 0.04) and 12% in phosphatidyl ethanolamine (p = 0.04) respectively 

for the wild type cells. For siiPAT cells noticeable differences are found with 20% 

in phosphatidyl insositole (p= 0.04), 10% in phosphatidyl serine (p= 0.04) and 9% 

in phophatidyl choline (p = 0.04) respectively. 
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Figure 12: Lipid composition of Caco-2 wild type cells compared with -siiPAT cells. 
Relative  values of  the  measured lipid  concentration  have  been compared and 
significant differences are marked. From left to right a decrease in hydrophobicity 
can  be  adopted.  Abbreviations:  Chol.,  cholesterole;  Ph.-Gly.,  phosphatidyl 
glycerole; Ph.-Eth., phosphatidyl  ethanolamine; Ph.-Inos., phosphatydil  inositole; 
Ph.-Ser.,  phosphatidyl  serine;  Ph.-Chol.,  phosphatidyl  choline;  Ph.  acid, 
phosphatic acid; Sphing. A, sphingomyeline peak A; Sphing. B, sphingomyeline 
peak B.
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It could be expected that the increase in unused palmitate (C16:0) by the reduced 

expression of iPAT should lead to an enhanced synthesis of lipids bearing long 

chain saturated fatty acids. This seemed not to be the case. To resolve the cellular 

composition of the lipids an analysis of the complete fatty acids was performed. In 

fig. 13 actually an increase of the long chain fatty acids (C18 and longer) in the 

siiPAT cells compared to the Caco-2 wild type can be observed. But this increase 

focuses  in  the  unsaturated  fatty  acids  (right  half  of  the  figure),  pointing  to  an 

accumulation in processed derivatives of palmitate. 

The key enzymes of palmitate procession include the elongation of palmitoyl  – 

CoA by acetyl – CoA carboxylase to stearic acid (C18:0) (Kim et al., 1989) or an 

introduction of  double bindings by the stearoyl  – CoA desaturase (Brett  et  al.,

1971,  Fulco,  1974,  Jones  et  al.,  1998)  to  palmitoleic  acid  (C16:1  Ω  7).  The 

subsequent  derivates  are  increasing  depending  on  the  procession  step  less 

hydrophobic  than  the  initially  saturated  forms,  that  were  found  in  higher 

concentrations  in  the  wild  type  cells  with  only  two  exceptions:  the  C16:1  Ω 7 

(palmitoleic acid) and C18:1 Ω 9 (oleic acid). The consequence for the resulting 

lipid composition is a shift towards the decrease of hydrophobicity observed in fig. 

13. 
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Figure 13:  Relative values of fatty acid composition of Caco – 2 cells compared to 
siiPAT Fatty acids are sorted depending on their chain length. All differences are 
significant except for C12:0, C14:0, C18:0 and C18:3Ω6.
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3.6 Differences in the palmitoylation pattern of proteins can be 
detected

The results of the fatty acid analysis did not provide sufficient evidence for the 

remaining palmitate. Thus a association with proteins was to be expected. To test 

this hypothesis a analysis of the “palmitome” together with a control of general 

protein biosynthesis was performed. 

While the general expression pattern of the proteins was not strongly altered, the 

palmitoylation of proteins was changed. Using two different kinds of radioactive 

labelling, S35 labelled methionine for biosynthetic protein labelling and H3 labelled 

palmitate for palmitoylation, differences of palmitoylation at three positions could 

be detected. One nearly vanished in the siiPAT clone compared to the wild type 

caco-2 cells (fig. 14 A) .
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Figure 14: Proteine differences in wildtype and siiPAT treated cells. A) Radioactive 
tritium labeled palmitate (left)  compared to S35 labeled methionine (biosynthetic 
labeling of  proteins  within  2  h).  B)  Westernblotting  of  the cytosceletal  proteins 
cyclokeratin and ezrin. 
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3.7 Cytoskeletal implications

A change in the morphology of the cytoskeleton due to the reduction of iPAT has 

already been noted in the electromicrographs in fig. 9 A and B. The comparison of 

cytoskeletal proteins with respect to the modified ultrastructural morphology (see 

fig. 9 A and B) of the brushborder membrane in the siiPAT cell line revealed no 

differences in ezrin  in westernblot  (fig. 14 B).  Ezrin plays a critical  role in the 

organization  of  apikal  brushborder  membrane  and  influences  the  junctions 

between the cells of the brushborder (Saotome et al., 2004).

Cytokeratin presented a pattern of different sizes that could not be explained in the 

course  of  the  experiments,  but  may  be  due  to  deviating  maturation  or 

phosphorylation  levels  of  this  kind  of  intermedial  filamental  proteins.  This 

cytoskeletal protein has recently been associated with cellular polarity in Caco – 2 

cells (Oriolo et al., 2007). 

Using  phalloidin  –  Alexafluor  543  staining  of  filamentous  actin  only  subtle 

differences could be detected under confocal microscopy (Fig. 15). Compared to 

the wild type the siiPAT clone exhibited a reduction of stained vesicles, whereas 

the basal organization of the actin cytoskeleton remained unaltered. In the apical 

region of the cell a more diffuse pattern of the actin distribution is. Profiling the 

surface  roughness  of  the  apical  staining  revealed  a  higher  number  of  large 

structures, detected by the broader and higher peaks in the profiles (Fig. 15, upper 

row first image) at the apical membrane in the wild type cells then in the siiPAT cell 

line (Fig. 15, profiles).The framing peaks illustrates the lateral plasmamembrane 

and thus the cell borders. This can be seen in the apical micrographs at the apical 

membrane. In the basal layer (fig. 15, images on the right) of the micrographs an 

clear assignment to the individual cell cannot be made but stress fibres are easy to 

identify.
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Figure 15:  Comparison of  the F-actin  distribution in  wild  type  (upper  row)  and 
siiPAT (lower row) treated cells. The profile over the length of a cell (X-axis) was 
taken from the apical layers of confocal images, indicating the intensity of the f-
actin signals (Y-axis). Calibration bar is 15 µm.
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3.8 DRM associated proteins are affected in siiPAT cells

We assumed an effect  on  proteins,  that  depend  on  their  interaction  with  lipid 

domains. For that reason we tested whether the intestinal sucrosase-isomaltase 

(SI),  a  raft  associated  transmembrane  protein  of  type  II,  presents  a  changed 

distribution throughout the cell. Analysis of sucrose step gradient centrifugation of 

triton-X  100  dissolved  Caco-2  wild  type  and  iPAT  reduced  cells  revealed  a 

distribution of the SI from floating fractions to fractions with higher sucrose content 

(fig. 16 A). The differences were more distinct on the low concentration partitions 

(fig. 16A right) than on the high concentration partitions (fig. 16A left). 

To achieve a more polarity based two component system with a simple possibility 

of quantification a brush border membrane preparation was performed following 

Naim  et  al.  (Naim  et  al.,  1988a).  In  that  case  only  brush  border  membrane 

enriched pellets (fig. 16 C, P2) and remaining membrane pellets (fig. 16 C P1) 

have to be quantified and compared. This provides SI distribution ratios bearing 

information about sorting effectiveness inside the cells. In fact the comparison of 

P2/P1 intensity based ratio of Caco-2 wild type and siiPAT cells revealed a striking 

difference (p = 0.04, fig 16 B). 

The enrichment  of  the  SI  in  the  brush border  membrane  fraction  in  the  iPAT 

reduced cells is nearly five times higher than in the Caco-2 wild type cells. All 

samples  were  normalized  by  means  of  the  protein  concentration  allowing  the 

conclusion of a generally lower expression of SI in iPAT reduced cells (fig. 16C). 

Relating to P1 more than 12 times more SI can be detected in the wild type cells, 

whereas P2 only a little more than 2 times more SI can be detected in the wild 

type.

Furthermore Annexin 2, a protein known to be associated with the transport of the 

SI (Jacob et al., 2004), also expose an altered distribution comparable to that of 
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the SI throughout the gradient (Fig. 16A). A test with a marker protein for rafts, 

Flotilin indicate a breakup of raft structures in the siiPAT cell line comparable to 

the situation in induced colitis in mice (Li et al., 2008).

As a control a sucrose gradient with subsequent westernbloting was performed to 

investigate a possible alteration of the distribution of DPP4 (dipeptidyl peptidase 4, 

CD26). In contrast to the SI, this protein is known to be transported independent of 

DRMs.  If  the  affected  membraneous  parts  of  the  cell  are  structures  like  the 

mentioned DRMs, DPP4 should remain unchanged in its distribution throughout 

the gradient. It could be shown that this is the case (fig. 16 A) what supports the 

correlation of DRMs and palmytoilation of proteins.
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Figure 16: Distribution of the raft associated intestinal sucrase-isomaltase (SI) in 
Caco-2 wild type and Caco-siiPAT cells. (A) Sucrose step gradient centrifugation 
of triton-X100 dissolved cells, where the upper panel represents the concentration 
of the gradient, divided into ten steps. The brush border preparation (B, C) and 
subsequent  western  blotting  is  divided  in  P1  and  P2,  where  P2  represents 
enriched brush border membranes and P1 remaining membrane components like 
Golgi,  ER  and  nucleus.  Quantification  of  western  blot  data  reveal  significant 
differences between the ratios of P2/P1 of treated to untreated cells (C).
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3.9 Interacting Proteins

Out of database and FRET data a crude map of interacting proteins in the context 

of the palmitoyltransferase iPAT can be created. The basically used database for 

the  identification  of  protein  –  protein  interaction  in  this  thesis  has  been  the 

database  IntAct  from  EBI  (http://www.ebi.ac.uk/intact/site/index.jsf).  The  minor 

contribution  resulted  out  of  queries  in  the  BOND  database  from  Unleashed 

informatics (http://bond.unleashedinformatics.com/). This resulted in the complex 

interplay of the mentioned proteins found in the appendix. This representation was 

not very intuitive.

Subsequently  applied  filtering  by  concentrating  on  an  iPAT,  annexin  2,  as  a 

member  of  transport  associated  proteins,  and  major  components  of  the 

cytoskeleton like tubulin and actin, used in the context of this thesis resulted in the 

interaction map of figure 17. This graph offers despite its reductive representation 

a number of interesting clues. Out of this data, no direct contact of the iPAT to any 

cytoskeletal element could be expected. Indirect contacts can only be established 

by either annexin 2 or myl 6 (myosin like polypeptide 6). 

Whereas  myl  6  only  contacts  the  actin  cytoskeleton,  annexin  2  also  provides 

possibilities  to  contact  tubulin  via  secondary  mediators.  Although  no  direct 

interaction to annexin is established, via secondary mediators a number of binding 

situations are possible between iPAT and annexin 2. Focussing on the annexin 2 

side of the graph (fig. 17 upper half), there is a clear tendency toward an actin 

interaction. For the consideration of intracellular transport systems, the possible 

constellation of iPAT – COPB – Glucose Transporter Type 4 – annexin 2 seems to 

be of special interest in view of the Glucose data in figure 11. 
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Figure  17:  interaction  map  of  iPAT  in  context  with  annexin  2  and  immediate 
cytoskeletal elements like actin and tubulin. Data were derived from the databases 
BOND and IntAct. 3 instances were accepted between the central proteins iPAT 
and annexin. Blue codes for cytoskeletal elements and connections, green codes 
for iPAT specific interactors, yellow codes for annexin 2 specific interactors
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Using the technique of FRET for the detection of interacting proteins which are 

tagged with fluorescent proteins, that are able to “communicate”, i.e. to transfer 

activation energy from one to the other if a minimum distance of 9 nm is granted a 

number  of  model  proteins  had  been  tested  (fig.  18  A).  The  amount  of  FRET 

signals  were  quantified  and  normalized  to  achieve  a  map  of  comprehensive 

interactions (fig. 18 B). Even when determining a FRET signal of 10% of complete 

fluorescence as threshold (fig. 18 B, red circle), annexin 2 turns out to be a potent 

binding  partner  for  all  tested  proteins  with  a  strong  affinity  for  cytoskeletal 

elements (actin, myosin1a).

In the context of the apically sorted SI very similar FRET values could be found, 

suggesting a actin dependent transport mechanism mediated by annexin 2. This is 

not the case with the LPH, which could be shown not to be transported over the 

actin cytoskeleton (Jacob et al., 2003).

Derived out of the FRET data the components and connections for the correct 

transport of  the SI in view of the tested proteins can be drawn (fig. 19 B). Since 

the  secondary  connections  (painted  in  red  in  fig.  19  B)  are  considered  to  be 

enforcements of established connections the distance of the participating proteins 

have been shortened. This leads to a complex of annexin 2, actin, myosin 1a and 

SI with more distant elements like LPH, DPP4 or APN.

FRET measurements could also be performed using a fluorimeter. In this case 

dissolved transfected Cos – 7 cells were used to produce sufficient amounts of 

pEYFP – iPAT. As a negative control pECFP and pEYFP vectors were used (fig. 

19 A,  upper  graph).  After  the subtraction of  background fluorescence the only 

clear  signal  of  an  interacting  protein  could  be  measured has  been a  glycosyl 

transferase (fig 19 A, lower graph). 
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Fig. 18: Interaction detection with FRET
A )Upper panel: FRET measurement of cytosceletal (actin-YFP) and associated 
proteins (myosin1a – CFP). Lower panel: FRET measurement of membrane (SI-
YFP)  and  cytoplasmic  (annexin2-CFP)  proteins.  The  3rd image  highlights  the 
FRET-signals on th cellular background.
B) Polar representation of measured FRET signals in percent of donor areas. The 
measured  proteins  are  the  axes  of  the  polar  system  and  their  partners  are 
represented as symbols on the axes. The red circle on the 10% ring denotes the 
threshold for an interaction.
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Figure 19: FRET data. A) FRET data achieved by fluorimetric measurements. The 
upper graph shows the negative control through the application harvested pECFP 
and  pEYFP  out  of  transiently  transfected  Cos-1  cells.  The  lower  graph  was 
produced using pEYFP – iPAT and pECFP – glycosyltransferase (GT) transiently 
transfected in Cos-1 cells and subsequently harvested.
B) Graph of a possible transport complex of the SI as it could be derived out of 
FRET data.
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3.10 iPAT Deficient Cells Expose a Different Composition of 
Glycolipids

To test whether the contradicting results of the TER measurements (fig. 10) and 

the  seemingly  decomposition  of  lipid  rafts  referring  to  the  distribution  of  raft 

associated  proteins  like  SI  (fig.  16)  could  be  explained  by  the  appearance  of 

glycolipids (Wrackmeyer et al., 2006a), an TLC was performed with subsequent 

orcinol staining. Best results were obtained using tween derived lipid rafts (fig. 20 

A).

Although four congruent orcinol signals could be spotted (fig. 20 A), at least  two 

bands could be identified in the siiPAT derived pattern, that could not be detected 

in  the  wild  type.  One  less  hydrophobic  signal  in  the  lower  section  of  the 

chromatogram on the left side in figure 18 A and one close to the middle in the 

upper half  of the left  lane. Especially the comparatively hydrophilic band in the 

lower part seemed to be a candidate for a high glycosylation and in that case a 

binding site for lectins. It could be expected to find a highly glycosylated lipid or 

better a lipid bearing a strong glycostructure in this band.
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Figure 20: TLC representation of glycolipids isolated from Tween-20 rafts of Caco 
siiPAT and Caco-2 wild type cells (A) and lectin binding assay of isolated glycolipid 
(B). 
A) Result of a TLC followed by orcinol staining. At least the lowest glycolipid signal 
in the siiPAT clone (left lane) does not appear in a detectable amount in the wild 
type (right lane). 
B) Result of a lectin binding assay on the isolated glycolipid off the siiPAT TLC 
from A. The table in the lower half of B explains the binding affinities of tested 
lectins. 
Abbreviations: ConA = Conconavalin A, DBA = Dolichos biflorus agglutinin, DSL = 
Datura stramonium lectin, GSL I = Griffonia simplicifolia lectin I, GSL II = Griffonia 
simplicifolia lectin  II,  ECL  =  Erythrina  cristagalli lectin,  LCA  =  Lens  culinaris 
agglutinin, LEL = Lycopersicon esculentum lectin, LFA = Limax flavus agglutinin, 
PHA-E  =  Phaseoulus  vulgaris Erythroagglutinin,  PHA-L  =  Phaseolus  vulgaris 
Leucoagglutinin,  PSA  =  Pisum  sativum agglutinin,  RCA  =  Ricinus  communis 
agglutinin, SBA = soybean agglutinin, SJA =  Saphora japonica agglutinin, Succ. 
WGA = succinyl  WGA, UEA1 =  Ulex europaeus hemaglutinin  I,   VVA =  Vicia 
villosa agglutinin, WGA = Wheat germ agglutinin
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To investigate the possibility of a lectin binding of this glycolipid an isolating this 

lane  out  of  a  TLC  –  plate  with  a  subsequent  solution  in  methanol  was 

accomplished.  The  transfer  on  a  methanol  resistant  96  well  plate  followed  by 

drying  produced  a  layer  of  this  glycolipid  that  was  accessible  for  further 

investigation. 

Using a kit for the detection of lectin binding, a number of assorted lectins could be 

identified binding to this isolated glycolipid (fig. 20 B). In this lectin binding assay a 

strong evidence for the existence of ß-GalNAC residues could be deduced out of 

the Sophora japonica agglututinin (SJA) binding. Also a α-mannose contingent has 

to be expected considering the strong signal out of the Pisum sativum agglutinin 

(PSA)  binding.  Weaker  signals  could  be  identified  for  GlcNAC (succinyl  WGA 

[succ.  WGA]),  a-GalNAC  (Dolichos  biflorus agglutinin  [DBA]),  NeuAC  (Limax 

flavus agglutinin [LFA]) and ß-Gal (Ricinus communis agglutinin [RCA]). 
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4.Discussion

4.1 2D-Gelectrophoresis is a Valid Instrument for DRM Analysis

Detergent resistant membranes (DRMs) have been identified to be of importance 

for a number of cellular processes before (for a review see Grzybek et al., 2005, 

Orlowski et al.,  2007 or Hanzal-Bayer & Hancock, 2007). But considering the fact, 

that there exist numerous kinds of detergents with different properties (Arnold &

Linke , 2007,  Seddon et al., 2004, Curnow P, Booth PJ.  Biochim Biophys Acta.

2004 Nov 3), a deviating characterisation of DRMs depending on the regarding 

detergent is to be expected. In fact interdependencies of types of DRMs could be 

associated to intracellular localization (Castelletti et al., 2008) or cellular proteins 

typically found in those membrane fractions (Seddon et al., 2004). In this light the 

investigation  of  the  proteomics  of  those  different  DRMs  as  an  initial  trial  to 

understand the meaning of defined membrane sections seemed to be necessary. 

Using only a limited number of detergents (Triton-X100, Tween-20, Lubrol and Brij) 

the results were encouraging (see fig. 1). 

The discrimination between highly variable and highly invariable spots or proteins 

is partly due to the size of the spots. The higher number of variable spots is in 

parts  caused  by  the  smaller  size  of  those:  the  smaller  a  spot  the  lower  the 

probability of overlapping spots (Arad & Gotsman, 1999). Nevertheless, focusing 

on invariable spots a high degree of security could be reached. With a number of 

only five invarible spots a reliable result was achieved. Interpreting the spots in 

terms  of  their  proteinous  identity  required  the  observation  of  a  number  of 

preconditions: to constrain the possible number of results a database search has 

to be focused on clade of mammalia, if possible on the species homo sapiens. The 
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second important constraint  was the rejection of  proteins with  a predicted high 

number of  secondary modifications. All  those constraints  affect  the power of  a 

software based identification of proteins out ot a 2D-gel but the results reached 

with the aid of those techniques offered the opportunity of a fast choice for an 

protein to investigate further.

4.2 Palmitoyltransferases are Important Players in the Cell

The decision for the palmitoyltransferase ZDHHC3 was the result of the careful 

observation of the mentioned constraints with the additional advantage of a protein 

with a high affinity for the membrane (Mitchell et al., 2006). The usage of protein 

sequence  analysing  software  that  especially  searched  for  transmembranous 

structures like TMRPres2D (Spyropoulos et  al.,  2004) a membrane association 

can be expected with a high degree of security.

Palmitoyltransferases  or  protein-acyl-transferases  (PATs)  are  a  group  of 

transmembrane proteins,  that  owe  the  ability  to  bind  palmitate  and other  long 

chain  fatty  acids  and  transfer  them  to  other  proteins  at  cysteine  residues,  a 

process which is denominated S-acylation  (reviewed by Dietrich and Ungermann,

2004; Smotrys and Linder, 2004; Basu, 2004). The significance of PATs have long 

been controversial because of missing identification of a consensus sequence for 

targeting palmitate  and even autoacylation may takes place in vitro at the same 

cysteines could be observed as in vivo (Duncan and Gilman, 1996; Dunphy et al.,

2000). But at least in yeast finally essential enzymatic S-acylation for targeting a 

number  of  proteins  to  the  plasma membrane  could  be  identified  (Babu et  al.,

2004).  S-acylation is not a durable protein modification like glycosylation but very 

dynamic. Its half-life often only is a fraction of the proteins half-life (Schweizer et

al., 1996, Stoeckli and Rohrer, 2004). Attached palmitates or other long chain fatty 
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acids are removed by acyl-protein thioesterases (APTs) from proteins (Smotrys

and Linder,  2004)  providing a fine tuning system for membrane association or 

translocation  to  defined  membrane  sections  like  lipid  rafts  of  proteins 

(Chakrabandhu et al., 2007; Lam et al., 2006). One important aspect of this kind of 

fine tuning is the localization and activity control of Ras proteins (Hancock et al.,

1989) and regulatory G-protein alpha subunits by s-acylation (Wedegaertner et al.,

1993; Kleuss and Krause, 2003). A common motif for many PATs is the zinkfinger 

DHHC motif which was described  Putilina et al., 1999 and up to now 23 genes 

with  such  an  motif  could  be  identified  in  the  mouse  and  human  databases 

(Fernandez-Hernando et al., 2006). 

With iPAT expressed in Caco-2 cells we found out of the group of the ZDHHC 

proteins a comparatively highly (see Fig. 1) expressed member in intestinal cells. 

For the first time the Homo sapiens protein was explicitly mentioned in the context 

of a gene expression profile in cancer cells (Choi et al.,  2007). Under the name 

GODZ this protein has been identified previously in the mouse forebrain (Uemura 

et al., 2002). The confocal data of the CFP-tagged iPAT provide a good insight of 

this  localization  (see  fig.  4).  The  Golgi  association  obvious  when  taking  into 

account the Golgi disintegration during apoptosis (see fig. 4 C and D, results and 

Chandran & Machamer, 2008). 

4.3 The Function of the iPAT

The palmitoylation targets of the iPAT are generally unknown apart from a few 

neuronal  proteins.  A  S-acylation  target  of  iPAT  is  the  endothelial  nitric  oxide 

synthase  but  this  function  can  also  performed  by  DHHC-2,  -7,  -8,  and  -21 

(Fernandez-Hernando et al., 2006).  

Also the gamma 2 subunit of the GABA(A) receptor seems to be a probable target 
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but  is  also  palmitoylated  be  the  DHHC-7  palmitoyltransferase,  which  is  more 

common in the neurons (Keller et al., 2004). Another neuronal receptor, the AMPA 

receptor seems to be effected either by the iPAT or by DHHC-7 (Hayashi et al.,

2005). 

4.3.1 Implications on the Morphology

The alterations of cell growth and morphology after siRNA treatment gave a hint 

that other functions may be affected. Implications of  health and disease in the 

context  of  palmitoyltransferases  have  been  observed.  Especially  in  the  neural 

system a number of disease associated changes in palmitoyltransferases could be 

shown.  The loss  of  function  in  the  ZDHHC8 leads to  the  neurodevelopmental 

deficits in mice (Mukai et al., 2008). In prostate cancer palmitoylation events seem 

to stabilize catenin in the plasmamembrane (Fiorentino et al., 2008). The analysis 

of cell size, circularity, and transepithial resistance (TER) provided an interpretion 

of the cell growth, measured by culture dish coverage, that implies an unchanged 

or  even  increased  netto  growth  rate  (figs.  7,  8,  10).  There  are  cues  that  ras 

proteins are involved in control of cell proliferation, transformation, and morpholoy 

(Matallanas et al., 2006, Li et al., 2007a, Li et al., 2007b). 

Another possibility for altered cell growth may be s-acylation of tubulin (Hiol et al.,

2003).  Interestingly  the  ultrastuctures  from  the  electromicrographs  revealed 

alterations  that  point  to  an  influence  of  the  downregulation  of  iPAT  on  the 

cytoskeleton and membranous intracellular structures (see fig. 9). In figure 15 an 

examination of f-actin reveal a difference between the both types Caco-2 cell lines. 

The profile  of  the Caco-2 wild  type  f-actin  distribution provide a more ordered 

image than its iPAT reduced counterpart. A view that is comparable to the data 

from the electronmicrographs. Those date fit to a colitis like effects. The occurance 

of  small  vesicular  structures  during  induced  colitis  in  mice  (Bou-Fersen  et  al.,

 2008) is quite similar to the observed comparative large vesicular structures found 
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in iPAT down regulated Caco-2 cells. Therefore a closer look at the physiological 

effects of the down regulation of iPAT in Caco-2 cells was necessary to provide 

information of the iPAT function in Caco-2 cells.  

The increase in the TER cannot be explained by those effects. An increase of the 

TER  requires  a  change  in  the  membrane  structure.  Comparing  the  lipid 

composition (see fig. 12) of Caco-2 wild type and iPAT deficient Caco-2 cells did 

not  help  to  explain  the  TER  data,  contrarily,  a  decrease  of  the  isolating 

hydrophobic lipids could be measured. And on the other side an accumulation of 

less hydrophobic lipids with unsaturated fatty acids could be observed.

As  the  ultrastructural  electronmicrographs  revealed  the  “quality”  of  the  villi  is 

strongly  affected  in  iPAT  deficient  Caco-2  cells  (fig.  9  A  and  B).  This  again 

resembles the phenotype of Colitis (Li et al., 2007a, Bou-Fersen et al.,  2008).  

With a changed morphology of the brushborder membrane, a altered uptake of 

nutrients is to be expected. One of the best characterized nutrient uptake systems 

due to its relatively easy accessibility is glucose (Philpott et al., 1992). 

Control of the glucose uptake by palmitoylation dependent regulatory proteins can 

be deduced out of the literature. Heat shock protein 70 (hsp70) up-regulates the 

sodium-dependent glucose transporter (SGLT1) (Ikari et al., 2002) and is directed 

to the membrane by interaction with a cysteine string protein α (cspα), a group of 

proteins that are generally s-acylated (Boal et al., 2007). 

4.3.2 Implications on the Physiology

Our  data  show also  in  this  context  putative  contradictory  results:  if  iPAT  was 

involved  in  the  s-acylation  of  cspα and  hence  the  positive  control  of  glucose 

uptake,  a stable  expression of  siRNA against iPAT should reduce the glucose 

uptake activity.  A reduction in fact can be noted when a general inhibitor of s-

acylation, 2-bromopalmitate, is applied (see fig. 11). The observed raise of glucose 
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uptake in the iPAT deficient Caco-2 cells can only be explained by redistributed 

palmitate. Palmitate has to be considered as an intracellular static pool with low 

concentration tolerances due to its high hydrophobicity. It only can be  tolerated in 

small concentrations before producing micelles (Levin et al., 2009). 

A comparison of the quantification of cellular fatty acid composition between Caco-

2 wild type cells and iPAT deficient Caco-2 cells approves this (see fig. 13). 

A  regulation  of  intracellular  palmitate-CoA  concentration,  the  substrate  of 

palmitoyltransferases,  takes  generally  place  by  cytoplasmic  acyl-CoA  binding 

proteins (ACBPs) (Faergeman and Knudsen, 1997). Keeping in mind that iPAT is 

highly expressed in Caco-2 wild type cells, the loss of a majority of iPAT has to 

produce  an  intracellular  excess  of  palmitate-CoA,  that  cannot  be  caught  by 

ACBPs. 

4.4 Regulation of the Palmitate Concentration

Downstream of the fatty acid synthesis, which stops at C16:0-CoA (palmitate-CoA) 

the  modifications  of  the  fatty  acids  take  place.  Those  are  prolongation, 

desaturation, and lipid biosynthesis (Zakim & Herman, 1969). If iPAT controls the 

intracellular level of palmitate-CoA, the level of processed palmitate should raise 

also if iPAT is reduced. We could show that this is in fact the case (see figs. 13). 

An increase in the unsatturated long chain fatty acids compared to the situation in 

untreated cells approves the higher availability of palmitate for further processing. 

As  mentioned  above  the  lipid  composition  also  seems to  have  shifted  toward 

hydrophilic lipids. This can be explained as a result of the enhanced intracellular 

production of long chained unsaturated fatty acids.

The fact that an oversupply of a highly hydrophobic fatty acid like palmitate finally 
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lead  to  a  reduction  of  hydrophobic  elements  in  the  membrane  appears  to  be 

confusing. The reason for the shift towards in many cases multiple unsatturated 

fatty acids can be found in the simultaneous enforced influx of  glucose. Since 

glucose has been shown to be an inductor of stearoyl-CoA desaturase (Jones et

al., 1998) an increase of unsaturated long chain fatty acids has to be the result. 

Following  the  elongation  of  surplus  palmitate  the  substrate  for  stearoyl-CoA 

desaturases does exist in higher amounts in the iPAT deficient Caco-2 than in wild 

type Caco-2 cells.

4.5 Model for Colitis

The  starting  point  of  this  thesis  had  been  the  analysis  of  DRMs  and  their 

associated proteins.  Changing  the  lipid  composition of  those structures should 

have consequences for the regarding proteins.

In this study the sucrase-isomaltase (SI) was used as a raft associated membrane 

bound protein (Alfalah et al., 1999) to observe effects of reduced iPAT on such 

proteins.  Because  of  the  significant  changes  in  the  lipids,  which  resembles  a 

resolution  of  the  DRMs,  marked  changes  in  the  distribution  of  the  SI  were 

expected. Our results show convincing changes in the DRM association of the SI 

without a complete block of internalisation in DRMs, what implies a transport and 

maturation mechanism independent of palmitoylation and intact DRMs (fig. 16). 

Proteins, like DPP4, that are independent of DRMs anchored in the membrane are 

not affected. Nevertheless, the disruption of DRM association of the SI connected 

with associated proteins like Annexin 2 or typical raft proteins like Flotilin mirrors 

an image of colitis situations (Li et al., 2008). A significant difference in the division 

of SI in the brush border membrane contingent with a high enrichment in the iPAT 

reduced cells compared to the wild type cells does not contradict those data. This 

may reflect  a  palmitoylation  dependent  mechanism for  the retention of  the  SI. 

Which  kind  of  regulation  may  take  place  at  this  particular  step  remain  to  be 
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elucidated. 

Feeding experiments with polyunsatturated fatty acids (PUFAs) in induced colitis 

models   (Li  et  al.,  2008) strongly  point  to  the  importance  of  the  fatty  acid 

metabolism in barrier function and maintenance of the brush border membrane. 

The  results  of  those  experiments  strongly  resemble  the  effect  of  the  down 

regulation  of  the  iPAT:  although  acute  physiological  effects  diminished,  a 

reassociation of proteins with DRMs did not occur. 

It is unlikely, that the iPAT take influence directly on the SI and database searches 

as visualized in figure 17 could not provide any hints on an interaction. The closest 

indirect associated protein out of the database analysis was annexin. Although the 

technique of FRET offered an opportunity for testing a number of interactions none 

of the used model proteins did produce any positive result in interacting with iPAT. 

Nevertheless the analysis of the FRET data provided the opportunity to produce a 

sketch of the transport system in which the SI and LPH are involved in(fig 19 B). 

The data support an closer association of the SI to the actin cytoskeleton than to 

the tubulin. On the other hand, the LPH seems be able to use both systems in the 

same amount with a lower affinity to actin. This fits to the data provided by Jacob 

et al. (2003). Interestingly a positive signal with the iPAT was produced by the 

signal sequence of the glycosyltransferase. 

All mentioned data and explanations are not able to explain the increase in the 

TER.  The  missing  factor  can  be  found  in  the  glycolipids.  The  analysis  of  the 

glycolipid composition established a additional hydrophilic glycolipid in the iPAT 

reduced Caco-2 cell line. Glycolipids are able to bind lectin like structures, a well 

known  fact  in  the  context  of  the  identification  of  blood groups (Haslam et  al.,

 2008). Recently Wrackmeyer et al. (Wrackmeyer et al., 2006a) could show that a 

lectin, intelectin, to connect a number of Glycolipids and produce a comparable 

robust network. The results in figure 20 show that the isolated glycolipid is able to 

bind lectins. This proposes that the increase in the TER is in its majority the result 

of interconnected lectins and glycolipids (fig. 21). 
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Figure 21: Lectin binding of glycolipids. Visualization of the Influence of glyclipids on the 
stability of a membrane seen in the context of lectin binding with or without an additional 
glycolipid.
A)  Under  normal,  wild  type,  conditions  the  number  of  high  glycosylated  lipids  is  low. 
Glycolipid-lectin interactions are limited.
B) An additional hydrophobic glycolipid enables a larger number of lectins to bind to the 
surface. This causes a more rigid packaging of the lectin-glycolipid network.
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Figure 22: Storage function of the iPAT. This model proposes a storage function of 
the iPAT indicated by the usage of siRNA.
A) Normal function of iPAT in Caco-2 cells. The iPAT takes over palmitate out of 
the neosynthesis of fatty acids by the FAS complex.
B) Introduction of siRNA against iPAT leads to a surplus of palmitate in the cells, 
that has to be utilized immediately. 
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Therefore a model can be proposed (see fig. 22), in which the palmitoyltransferase 

iPAT not only mediate the transfer  of  palmitate or  other long chain fatty acids 

(Hallak et  al.,  1994;  Dietrich and Ungermann, 2004) to other proteins but  also 

balance concentration of  intracellular palmitate-CoA level,  thus functioning as a 

fine tuning instrument  in  multiple  cellular  processes.  In  our  case this  could be 

observed in the increase of long chain fatty acids, the uptake of glucose, and the 

changed cell morphology. Due to the high expression rate, iPAT provides a field of 

activity  comparable  to  ACBPs  on  a  membrane  bound  level  beside  its  own 

palmitoylation targets.

4.6 Perspective

The  observation  of  this  sensitive  tuning  system  presented  here  offers  the  an 

opportunity to influence intracellular systems by means of a comparable simple 

molecule,  the  palmitate.  Considering the  presented effects,  the  combination  of 

enhanced glucose uptake and the retention of SI at the brush border membrane, 

implications for diseases like general deficiencies in the digestion of sucrose or 

diabetis are possible. Targeting the iPAT may in future offer the possibility for fine 

tuning  and  recovering  of  intestinal  diseases  like  colitis.  Moreover  the  role  of 

glycolipids  in  the  establishment  of  DRMs remain  to  be  elucidated  providing  a 

possible interplay with nontransmembranous like lectins proteins to stabilize the 

plasmamembrane. 
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Abbreviations

AMPA = α-Amino-3-hydroxy-5-methyl-4-isoxazol-propionic acid

APT = acyl-protein thioesterase

ARF = ADP ribosylation factor

CFP = Cyan fluorescence protein

CHS-3 = Chitin synthase 3

CoA = Co-enzyme A

COPB = Beta coat protein

DPP4 = dipeptidyl peptidase

DRM = Detergent resistant membrane

ER = Endoplasmic retiulum

FAS = fatty acid synthase complex

FRET = Fluorescence resonance energy transfer

gage1 = G antigen 1

GODZ = Golgi apparatus–specific protein with the DHHC zinc finger

domain

GPI  = glycosyl phosphatidylinositol

GT = glycosyltransferase

HSN1 = hereditary sensory neuropathy type I

HSP70= Heatshock protein 70

iPAT = intestinal PAT ()

KDS = 3-ketodihydrosphingosine

MYL 6 = Myosin light polypeptide

NADPH = Nicotinamidediphosphate + H+

PAGE = Poly acrylamide gel electrophoresis

PAT = Proteine acyl transferase

PBS = Phosphate buffered saline

PCR = Polymerase chain reaction

PI3K = Phosphinositole 3 phosphate kinase
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PUFA = Poly unsaturated fatty acids

RT-PCR = Reverse transcriptase PCR

SARS = Severe acute respiratory syndrome

SGLT1 = sodium-dependent glucose transporter

SI = sucrosase-isomaltase

SPT = serine palmitoyltransferase

SYT 3 = Synaptotagmin 3

SYTL 4 = Synaptotagmin like protein 4

TER = Transepithelial resistance

TLC = Thin layer chromatography

TPPC = Trafficking protein particle complex

YFP = Yellow fluorescence protein
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Appendix

BLAST Alignment ZDHHC3
Alignment of the human ZDHHC3 protein (iPAT) using NCBI-Blast. Only the top 10 matching sequences are shown.

NP 057682 ZDHHC3 [Homo sapiens] 1    MMLIPTHHFRNIERKPEYLQPEKCVPPPYPGPVGTMWFIRDGCGIACAIVTWFLVLYAEF  60
ZDHHC3 isoform 7 [Pan troglodytes] 1    ............................................................  60
ZDHHC3 isoform 2 [Macaca mulatta] 1    ..........D.................................................  60
ZDHHC3 (pred) [Canis familaris] 1    ..........D.................H.S.............................  60
ZDHHC3 (pred) [Equus caballus] 1    ..........D.............I...H.S.............................  60
ZDHHC3 (pred) isoform 2 [Canis fam.] 1    ..........D.................H.S.............................  60
ZDHHC3 (pred) isoform 1 [Equus cab.] 1    ..........D.............I...H.S.............................  60
ZDHHC3 [Rattus norvegicus] 1    ..........D.............A...F...............................  60
ZDHHC3 [Bos taurus] 1    .....A....D.............I...H.R.A...........................  60
ZDHHC3 (pred) isoform 5 [Canis fam.] 1    ..........D.................H.S.............................  60
ZDHHC3 (pred) isoform 5 [Pan trog.] 1    ............................................................  60
ZDHHC3 (pred) isoform 3 [Macaca mul.] 1    ..........D.................................................  60
ZDHHC3 [Mus musculus] 1    ..........D.............A...F...A.A.........................  60
BAC37939 unnamed prot. [Mus mus.] 1    ..........D.............A...F...A.A.........................  60
ZDHHC3 isoform 3 [Pan trog.] 1     ...........................................................  59
ZDHHC3 (pred) isoform 1 [Macaca mul.] 1     .........D.................................................  59
ZDHHC3 (pred) isoform 4 [Pan trog.] 1     ...........................................................  59
ZDHHC3 (pred) isoform 2 [Pan trog.] 1     ...........................................................  59
ZDHHC3 (pred) isoform 3 [Canis fam.] 1    ..........D.................H.S.............................  60
ZDHHC3 (pred) isoform 1 [Pan trog.] 1     ...........................................................  59

NP 057682 ZDHHC3 [Homo sapiens] 61   VVLFVMLIPSRDYVYSIINGIVFNLLAFLALASHCRAMLTDP------------------  102
ZDHHC3 isoform 7 [Pan troglodytes] 61   ..........................................------------------  102
ZDHHC3 isoform 2 [Macaca mulatta] 61   ..........................................------------------  102
ZDHHC3 (pred) [Canis familaris] 61   ..........................................------------------  102
ZDHHC3 (pred) [Equus caballus] 61   ..........................................------------------  102
ZDHHC3 (pred) isoform 2 [Canis fam.] 61   ..........................................------------------  102
ZDHHC3 (pred) isoform 1 [Equus cab.] 61   ..........................................------------------  102
ZDHHC3 [Rattus norvegicus] 61   .............A............................------------------  102
ZDHHC3 [Bos taurus] 61   ................V...L.....................------------------  102
ZDHHC3 (pred) isoform 5 [Canis fam.] 61   ..........................................RRPAPCNKSLCSCKRSID  120
ZDHHC3 (pred) isoform 5 [Pan trog.] 61   ..........................................------------------  102
ZDHHC3 (pred) isoform 3 [Macaca mul.] 61   ..........................................------------------  102
ZDHHC3 [Mus musculus] 61   .......V.....A............................------------------  102
BAC37939 unnamed prot. [Mus mus.] 61   .......V.....A............................------------------  102
ZDHHC3 isoform 3 [Pan trog.] 60   ..........................................VRTCTEMAFTLLGRGASF  119
ZDHHC3 (pred) isoform 1 [Macaca mul.] 60   ..........................................VSMKQCQTSSCPSKTGCD  119
ZDHHC3 (pred) isoform 4 [Pan trog.] 60   ..........................................VKSGHCRIGECTFQTTWD  119
ZDHHC3 (pred) isoform 2 [Pan trog.] 60   ..........................................------------------  101
ZDHHC3 (pred) isoform 3 [Canis fam.] 61   ..........................................V-----------------  103
ZDHHC3 (pred) isoform 1 [Pan trog.] 60   ..........................................------------------  101

NP 057682 ZDHHC3 [Homo sapiens] 103  -------------------GAVPKGNATKEF-IESLQLKPGQVVYKCPKC----CSIKPD  138
ZDHHC3 isoform 7 [Pan troglodytes] 103  -------------------............-..................----......  138
ZDHHC3 isoform 2 [Macaca mulatta] 103  -------------------............-..................----......  138
ZDHHC3 (pred) [Canis familaris] 103  -------------------............-..................----......  138
ZDHHC3 (pred) [Equus caballus] 103  -------------------............-..................----......  138
ZDHHC3 (pred) isoform 2 [Canis fam.] 103  -------------------............-..................----......  138
ZDHHC3 (pred) isoform 1 [Equus cab.] 103  -------------------............-..................----......  138
ZDHHC3 [Rattus norvegicus] 103  -------------------............-..................----......  138
ZDHHC3 [Bos taurus] 103  -------------------............-..................----......  138
ZDHHC3 (pred) isoform 5 [Canis fam.] 121  PTSGSLCNEGIESIFSLLL............-..................----......  175
ZDHHC3 (pred) isoform 5 [Pan trog.] 103  -------------------............-..................----......  138
ZDHHC3 (pred) isoform 3 [Macaca mul.] 103  -------------------............-..................----......  138
ZDHHC3 [Mus musculus] 103  -------------------............-..................----......  138
BAC37939 unnamed prot. [Mus mus.] 103  -------------------............-..................----......  138
ZDHHC3 isoform 3 [Pan trog.] 120  PEKLDKPVSGRSKCLL---............-..................----......  171
ZDHHC3 (pred) isoform 1 [Macaca mul.] 120  LICINGERLEGVTSIVL--............-..................----......  172
ZDHHC3 (pred) isoform 4 [Pan trog.] 120  PTPVKVLGQGNNSVSQILA............-..................----......  174
ZDHHC3 (pred) isoform 2 [Pan trog.] 102  -------------------............-..................----......  137
ZDHHC3 (pred) isoform 3 [Canis fam.] 104  -------------------SEA.V.SGV..IGL.GAI..SLFKSLNSNI.LDRW.TSV.N  144
ZDHHC3 (pred) isoform 1 [Pan trog.] 102  -------------------............-..................----......  137
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NP 057682 ZDHHC3 [Homo sapiens] 139  RAHHC-------SVCKRCIRKMDHHCPWVNNCVGENNQKYFVLFTMYIALISLHALIMVG  191
ZDHHC3 isoform 7 [Pan troglodytes] 139  .....-------................................................  191
ZDHHC3 isoform 2 [Macaca mulatta] 139  .....-------................................................  191
ZDHHC3 (pred) [Canis familaris] 139  .....-------................................................  191
ZDHHC3 (pred) [Equus caballus] 139  .....-------................................................  191
ZDHHC3 (pred) isoform 2 [Canis fam.] 139  .....-------................................................  191
ZDHHC3 (pred) isoform 1 [Equus cab.] 139  .....-------................................................  191
ZDHHC3 [Rattus norvegicus] 139  .....-------................................................  191
ZDHHC3 [Bos taurus] 139  .....-------................................................  191
ZDHHC3 (pred) isoform 5 [Canis fam.] 176  .....-------................................................  228
ZDHHC3 (pred) isoform 5 [Pan trog.] 139  .....-------................................................  191
ZDHHC3 (pred) isoform 3 [Macaca mul.] 139  .....-------................................................  191
ZDHHC3 [Mus musculus] 139  .....-------................................................  191
BAC37939 unnamed prot. [Mus mus.] 139  .....-------................................................  191
ZDHHC3 isoform 3 [Pan trog.] 172  .....-------................................................  224
ZDHHC3 (pred) isoform 1 [Macaca mul.] 173  .....-------................................................  225
ZDHHC3 (pred) isoform 4 [Pan trog.] 175  .....-------................................................  227
ZDHHC3 (pred) isoform 2 [Pan trog.] 138  .....-------................................................  190
ZDHHC3 (pred) isoform 3 [Canis fam.] 145  A.ASSLTDLVVGV...............................................  204
ZDHHC3 (pred) isoform 1 [Pan trog.] 138  .....-------................................................  190

NP 057682 ZDHHC3 [Homo sapiens] 192  FHFLHCFEEDWTTYGLNREEMAETGISLHEKMQPLNFSSTECSSFSPPTTVILLILLCFE  251
ZDHHC3 isoform 7 [Pan troglodytes] 192  ....................................V.......................  251
ZDHHC3 isoform 2 [Macaca mulatta] 192  .......................A............V.......................  251
ZDHHC3 (pred) [Canis familaris] 192  ................T..GT..ARL.....K...KV.......................  251
ZDHHC3 (pred) [Equus caballus] 192  ............S.R.T.K.T..AR...Q..KP..KV.......................  251
ZDHHC3 (pred) isoform 2 [Canis fam.] 192  ...........----------------------------.K...................  223
ZDHHC3 (pred) isoform 1 [Equus cab.] 192  ...........----------------------------.K...................  223
ZDHHC3 [Rattus norvegicus] 192  ...........----------------------------.K...................  223
ZDHHC3 [Bos taurus] 192  ...........----------------------------.K...................  223
ZDHHC3 (pred) isoform 5 [Canis fam.] 229  ...........----------------------------.K...................  260
ZDHHC3 (pred) isoform 5 [Pan trog.] 192  ...........----------------------------.K...................  223
ZDHHC3 (pred) isoform 3 [Macaca mul.] 192  ...........----------------------------.K...................  223
ZDHHC3 [Mus musculus] 192  ...........----------------------------.K...................  223
BAC37939 unnamed prot. [Mus mus.] 192  ...........----------------------------.K...................  223
ZDHHC3 isoform 3 [Pan trog.] 225  ...........----------------------------.K...................  256
ZDHHC3 (pred) isoform 1 [Macaca mul.] 226  ...........----------------------------.K...................  257
ZDHHC3 (pred) isoform 4 [Pan trog.] 228  ...........----------------------------.K...................  259
ZDHHC3 (pred) isoform 2 [Pan trog.] 191  ...........----------------------------.K...................  222
ZDHHC3 (pred) isoform 3 [Canis fam.] 205  ............S-----------------------------D.................  235
ZDHHC3 (pred) isoform 1 [Pan trog.] 191  ...........----------------------------.K...................  222

NP 057682 ZDHHC3 [Homo sapiens] 252  GLLFLIFTSVMFGTQVHSICTDETGIEQLKKEERRWAKKTKWMNMKAVFGHPFSLGWASP  311
ZDHHC3 isoform 7 [Pan troglodytes] 252  ............................................................  311
ZDHHC3 isoform 2 [Macaca mulatta] 252  ............................................................  311
ZDHHC3 (pred) [Canis familaris] 252  ............................................................  311
ZDHHC3 (pred) [Equus caballus] 252  ............................................................  311
ZDHHC3 (pred) isoform 2 [Canis fam.] 224  ............................................................  283
ZDHHC3 (pred) isoform 1 [Equus cab.] 224  ............................................................  283
ZDHHC3 [Rattus norvegicus] 224  A...........................................................  283
ZDHHC3 [Bos taurus] 224  ............................................................  283
ZDHHC3 (pred) isoform 5 [Canis fam.] 261  ............................................................  320
ZDHHC3 (pred) isoform 5 [Pan trog.] 224  ............................................................  283
ZDHHC3 (pred) isoform 3 [Macaca mul.] 224  ............................................................  283
ZDHHC3 [Mus musculus] 224  A...........................................................  283
BAC37939 unnamed prot. [Mus mus.] 224  A.....................G.....................................  283
ZDHHC3 isoform 3 [Pan trog.] 257  ............................................................  316
ZDHHC3 (pred) isoform 1 [Macaca mul.] 258  ............................................................  317
ZDHHC3 (pred) isoform 4 [Pan trog.] 260  ............................................................  319
ZDHHC3 (pred) isoform 2 [Pan trog.] 223  ...........................R..RKNQPREHTGS.QSV.ET..GD...N.FN.  282
ZDHHC3 (pred) isoform 3 [Canis fam.] 236  ............................................................  295
ZDHHC3 (pred) isoform 1 [Pan trog.] 223  ........................AADDHPGR.C.MP.                        260

NP 057682 ZDHHC3 [Homo sapiens] 312  FATPDQGKADPYQYVV  327
ZDHHC3 isoform 7 [Pan troglodytes] 312  ................  327
ZDHHC3 isoform 2 [Macaca mulatta] 312  ................  327
ZDHHC3 (pred) [Canis familaris] 312  ................  327
ZDHHC3 (pred) [Equus caballus] 312  ................  327
ZDHHC3 (pred) isoform 2 [Canis fam.] 284  ................  299
ZDHHC3 (pred) isoform 1 [Equus cab.] 284  ................  299
ZDHHC3 [Rattus norvegicus] 284  ................  299
ZDHHC3 [Bos taurus] 284  ................  299
ZDHHC3 (pred) isoform 5 [Canis fam.] 321  ................  336
ZDHHC3 (pred) isoform 5 [Pan trog.] 284  ................  299
ZDHHC3 (pred) isoform 3 [Macaca mul.] 284  ................  299
ZDHHC3 [Mus musculus] 284  ................  299
BAC37939 unnamed prot. [Mus mus.] 284  ................  299
ZDHHC3 isoform 3 [Pan trog.] 317  ................  332
ZDHHC3 (pred) isoform 1 [Macaca mul.] 318  ................  333
ZDHHC3 (pred) isoform 4 [Pan trog.] 320  ................  335
ZDHHC3 (pred) isoform 2 [Pan trog.] 283  .SR.C.            288
ZDHHC3 (pred) isoform 3 [Canis fam.] 296  ................  311
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Complete BLAST ZDHHC3 Tree
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Interaction map for ZDHHC3
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