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Abstract

This technical report contains additional material to the paper

”Nonlinear moving horizon estimation in the presence of bounded disturbances”
by M. A. Miiller, in Automatica, 2017, 79, 306-314, DOI: 10.1016/j.automatica.2017.01.033,

in particular the proofs of Lemma 7 and Theorem 17. References and labels in this technical report (in particular
Equation labels (1)—(33), references [1]-[20], and all theorem numbers etc.) refer to those in that paper.

I. PROOF OF LEMMA 7
In the proof of Lemma 7, we will make use of the following properties, which hold for all « € K, all 5 € KL,
and all a; € R>o with 7 € ]I[Ln] (for a proof, see, e.g., [15, Appendix A]):
alar + -+ ay) < alnay) + -+ - + a(nay) (34)
B(al—i_+an7t)§/8(na17t)++6(nan7t) (35)
Now consider a moving horizon estimator with some arbitrary (but fixed) estimation horizon N € [>. Since
ZE;LN O(w(ilt), v(ilt)) > maxier,_y.,_, L(w(i]t),v(i]t)), it follows from Assumptions 4-5 that for each ¢ € I>y,
the optimal value function JR(t) := Jn (2(t—N|t),w(t)) of problem (2)~(3) is lower bounded for all i € I,y ;1]
by!
IR (t) = d1y (|@(t = NJt) = &(t = N)J) + (6 + 62) (v, ([0 (ilt)]) + v, ([8(])]))- (36)
Furthermore, since we have Z;‘f;tl_NE(w(ﬂt), v(ilt)) < N maxier, , ., f(w(i[t),v(i[t)), again by Assumptions 4
and 5 and due to optimality we conclude that for each ¢ € Iy, J]Q,(t) is upper bounded by
< 01p(|lz(t = N) = &(t = N)|) + (6 + No2) T (lwll - ne—17) + T ([0l - ne-17))
< 017p(Jx(t = N) = &(t = N)J) + (6 + No2) (T ([[wl]) + 7, ([[v]])- (37)

Combining (36) with (37), we obtain that for all ¢t € Iy and all 7 € H[t—N,t—l]

DGI0]'S 7, (365 + 62))
< (Gt = N) = 2 = W)Y+ (54 N82) (ol + 7, ([01)) /6 + 62)
< (30T el — N) — (¢~ N)D)/(5 +5))

1 (3(6+ N&2 )7, (lwl) 1 (3(6+ N&2)v,(]v])
2 ( 5+ 0o )J”w ( 5+ 0y > (38)
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An analogous upper bound can be obtained for |0(i|t)|, where 1;1 in all three terms on the right hand side of (38)
is replaced by 1;1‘ Finally, again from (36) and (37), we obtain that for all ¢ € I[>

&t — NIty — &t - V)| < 2" (J%(0)/60)

(7, et = N) = &t = N)]) + (6 + Now) (T (awl]) + 7, ([[0]))/1)

<37, alt = N) = lt = N))) + 77306 + Noo P (lw]) /1) + 17136 + Noo7, (loll) /1) (39)

Next, consider some time ¢ € I . We now apply the i-IOSS property (5) with 1 = z(t — N), 2 = Z(t — N|t),
w; = {w(t —N),...,w(t —1)}, wa = {w(t — N|t),...,w(t —1]t)}, and 7 = N. Since z(t) = z(N;x1,w1),
2(t) = 2(tt) = (N;z2,w2), and h(x(i)) = y(i) — v(i) as well as h(2(i[t)) = y(i) — 0(i[t) for all i € I;;_n 1),
from (5) we obtain

2(t) — &(t)] < B(lzr — w2l N) + n(lwr — wallon-17) + Y2, () = o, () [[[o,5-17)

= Bllz(t = N) =2t = NP, N) + m(_sup |w(i) = dGlR)]) +72( _sup  [v(i) = oG))).
relpr—nN,t—1) relp—N,t—1)
(40)
The three terms on the right hand side of (40) can be upper bounded as follows. For the first term, we obtain
Blx(t — N) —2(t — N[t)[, N)
< B(Ja(t = N) —a(t — N)| + [&(t — N[t) — &(t — N)|, N)

"2 B@la(t — N) — i(t — N)|,N) + BEI(t - N|t) — 2(t — N)|, N)

PEY Bafe(t - N) - #(t — N)N) + 863737, (2(t — N) — &(t — N)])). V)
T B(67 (30 + No)T,(lw])/51), N) + B3, (B0 + Noa), (lol))/51), N) @1

©.00 . R .
< ep2Pla(t — N) — #(t — N)PU(N) + cg67(32,/c, )P/ “(t — N) — &(t — N)[PU(N)

+ 567 (3/ )"/ T ()P (8 + Noz) /61)"/ W (N) + c567 ((3/c, )"/ “F, (0])P/*((6 + N&) /61)7/“ ()
(42)

For the second term on the right hand side of (40), we obtain

m( sup fw(@) —@(ift)]) <nllwll+  sap  |a(ift)])

1€l N 1-1) 1€l N, 1-1)

(38),34) 4 (3017,(lz(t = N) —2(t — N)|)

<y <4vw1 < 515, ))

+ 714, (300 + No2)7, ([|v]]) /(8 + 62))) + 1 (4llwl]) + 714y, (3(8 + No2), (Jwl) /(8 + 82)))

(10),8) a o A ac
< a1(36)" (01/(0 + 62)) z(t — N) — (¢t — N)|**

+e13(0 + No2)7, ([[v[)/(6 + 02))™ + v (4llwl]) +e1(3(8 + No2)7,, (lwl]) /(6 + 62))™ (43)
Analogously, for the third term on the right hand side of (40), we obtain

Y2 sup  |v(i) — 0(i[t)])

veljt—N,t—1)

< <4%_1 <35wp(!fﬂ(t _6]4\:)52_ 2t — N)I)))

+92(47,  (3(8 + No2 )Ty, ([[wll) /(8 + 62))) +v2(4]l0]]) + 72(4, (3(6 + No2)7, ([[v]]) /(5 + 62)))

10,68 o ) e
< e2(30p)2(01/(8 + 62))** |2(t = N) — (¢ — N)[**

+c2(3(0 + No2)7, (lwl])/ (6 4 62))* + 72 (4][v]]) + c2(3(6 + Noa) 7, ([[v]]) /(6 + 62))*2 (44)

Inserting (42)—(44) into (40) results in (12) with B, Pw, and @, as defined in (13)—(15), which completes the
proof of Lemma 7. g




II. PROOF OF THEOREM 17

The proof of Theorem 17 proceeds similarly to the one of Theorem 14. Applying again Lemma 7 with U(s),
01, 02, and ¢ as in the theorem statement and explgiting the fact that 7/ ¢q < 1, it follows that (16) holds for all
t € I>n with ¢, and ¢, given by (29)—(30) and (3 defined by

B(r,N) := cg(2P + 6°(3¢y/c, )"/ " )P g

+c1 (3Ep)°‘1r“"1N0‘1/€°‘1N + 02(3Ep)°‘2r“a2Na2m°‘2N. (45)
for all » > 0 and all N gﬂzl. Since k < 1/e, it follows that both NN and N2 g N are decreasing in NV
for N € I>;. Hence also §(r, N) is decreasing in NV for N € I>; and fixed » > 0. But this means that for N = 0,

we can again extend /3 arbitrarily such that 3 € KL and B(r,0) > r for all r > 0.

Now fix p > 0 and let ryax(N) := max{(1/2)(8(emax,0) + Pw(Wmax) + ©v(Vmax)), (1 + 1) (pw(Wmax) +
©u(Umax)) }- As in the proof of Theorem 14, we have ryax(N) = O(N®) with o = max{a;, as}. But then, since
impy 00 Nglsév =0 for all e; > 0 and all 0 < g9 < 1, it follows that for each & satisfying max{q, k', k**} <
& < 1, there exists Ng € [>1 such that for all N € >y, the following three conditions are satisfied:

3cg(2F + 67 (38, /¢, )P/ ™) 2P rinax (N )P g™ < &
361(3Ep)°‘12““1rmaX(N)“°‘1_lNalf<calN < aV
3c2(3Cp) 22002y (N) 22 7L Va2 02N < G N (46)

Then, for all N € II>p, and for all 0 < 7 < ryax(N), it follows that B(2r,N) < ra?y < ra™N—No. From here, we
can proceed as in the proof of Theorem 9, replacing (N/Ngy)~% by &¥~™No at the respective places. U
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