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Abstract

We present solutions of the Yang–Mills equation on cylinders R × G/H over coset spaces of odd 
dimension 2m + 1 with Sasakian structure. The gauge potential is assumed to be SU(m)-equivariant, pa-
rameterized by two real, scalar-valued functions. Yang–Mills theory with torsion in this setup reduces to 
the Newtonian mechanics of a point particle moving in R2 under the influence of an inverted potential. We 
analyze the critical points of this potential and present an analytic as well as several numerical finite-action 
solutions. Apart from the Yang–Mills solutions that constitute SU(m)-equivariant instanton configurations, 
we construct periodic sphaleron solutions on S1 × G/H and dyon solutions on iR × G/H .
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Higher-dimensional Super-Yang–Mills theory appears in the context of string theory for 
example as the low-energy limit of the heterotic superstring. In this limit, heterotic string the-
ory yields ten-dimensional supergravity coupled to N = 1 supersymmetric Yang–Mills theory 
[1,2]. In four dimensions, the full Yang–Mills equation is implied by the instanton equation, 
a first-order anti-self-duality equation. This fact generalizes to dimensions greater than four. The 
higher-dimensional instanton equation is particularly interesting for string compactifications on 
manifolds of the form M10−d × Xd with compact part Xd and maximally symmetric flat space 
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M10−d . Requiring the gauge field on the compact manifold to satisfy the instanton equation is 
closely related to the preservation of N = 1 supersymmetry on the non-compact spacetime part. 
Instantons in higher dimensions were first studied in [3], and solutions to the generalized anti-
self-duality equation have been constructed, for example, in [4–10].

The requirement of supersymmetry preservation in string compactifications of the above type 
translates to a condition on the geometry of the compact internal manifold: imposing the in-
stanton equation on the gauge field on Xd is equivalent to requiring reduced holonomy on 
the compact space. In heterotic compactifications, Calabi–Yau 3-folds have therefore been the 
preferred choice for compactification spaces, leading to phenomenologically interesting mod-
els with N = 1 supersymmetry. Furthermore, G2-holonomy 7-manifolds as well as 8-manifolds 
with Spin(7)-holonomy have been of interest in more general models. A problem of heterotic 
Calabi–Yau compactifications is that they come with a number of scalar fields with undetermined 
vacuum expectation value. Some of these moduli can be fixed by allowing for nonvanishing 
p-forms, so-called fluxes, to exist on the internal compact manifold. Flux compactifications do 
address the moduli problem but enlarge the number of possible string backgrounds significantly, 
leading to the string landscape problem. For a review of flux compactifications, see for example 
[11–13].

Nontrivial background fluxes on the internal compact manifold imply a backreaction on the 
geometry, relaxing the condition on the holonomy of the manifold. Xd is no longer required to 
have reduced holonomy but to admit a G-structure, i.e. a reduction of the tangent bundle struc-
ture group from GL(d) to some subgroup G ⊂ GL(d). If the manifolds admit a real Killing 
spinor [14], they are equipped with a connection with totally antisymmetric torsion. In the fol-
lowing, we will be interested in a connection whose torsion is determined up to a real scaling 
parameter κ . We will consider Sasakian manifolds as a special type of Killing spinor manifolds 
of dimension 2m + 1 with structure group G = SU(m). For a particular choice of metric, these 
manifolds are in addition Einstein. Sasaki–Einstein manifolds have been studied in the context 
of non-compact flux backgrounds as AdS/CFT duals of confining gauge theories or, more pre-
cisely, as type IIB AdS vacua that lead to dual N = 1 Super Yang–Mills theories coupled to 
matter [11,15–17].

In this paper, we concentrate on cylinders R × G/H over coset spaces with Sasakian struc-
ture. We start by repeating the basics of Yang–Mills equations, G-structure and in particular 
Sasakian manifolds in Chapter 2. We use an SU(m)-equivariant ansatz for the gauge connection, 
parameterized by two real scalar functions, to write out the Yang–Mills equation in components 
in Chapter 3. This leads to a system of two coupled second-order ordinary differential equations, 
reducing Yang–Mills theory with torsion to the Newtonian mechanics of a point particle moving 
in R2 under the influence of a potential. The shape of this potential depends on the torsion pa-
rameter κ . The instanton case is recovered for κ = 1. This case has been first studied in [18,19]
and can also be found in [20]. We derive the corresponding particle action in Chapter 4 and dis-
cuss the critical points of zero energy. For a special value of κ , the second-order equations can be 
solved analytically and yield a tanh-kink-type solution, similar to solutions discussed in earlier 
works [21,22]. We construct further finite-action solutions numerically. Considering S1 × G/H

instead of R × G/H , we obtain periodic solutions, so-called sphalerons, which are discussed 
in section 4.2. Taking the product space iR × G/H instead of R × G/H leads to a sign flip in 
the potential. Solutions to this case are known as dyons and can be constructed numerically. We 
present some of them in section 4.3.
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2. Sasakian manifolds

As described in the introduction, compact G-structure manifolds play a key role in string 
compactifications. Particularly interesting in this context are real Killing spinor manifolds (see 
also [23] for details). Besides the round spheres, these are

• 6-dimensional SU(3)-structure manifolds,
• 7-dimensional G2-structure manifolds,
• (2m+1)-dimensional Sasakian manifolds with structure group SU(m),
• (4m+3)-dimensional 3-Sasakian manifolds with structure group Sp(m).

In this note, we consider Sasakian manifolds of dimension 2m + 1, where 1 ≤ m ∈ N. A de-
tailed introduction to Sasakian geometry can be found in [24] and [25]. Let us review the most 
important facts here.

Sasakian manifolds are special types of contact manifolds. According to [26,27], an almost 
contact structure (�, η, ξ) on an odd-dimensional Riemannian manifold (M, gM) is charac-
terized by a nowhere vanishing vector field ξ and a one-form η, satisfying η(ξ) = 1, plus a 
(1, 1)-tensor � such that �2 = −1 + ξ ⊗ η. An almost contact structure is called contact if in 
addition the one-form satisfies

η ∧ (dη)m �= 0. (2.1)

In this case, η is called contact form, and ξ is referred to as Reeb vector field. Contact structures 
are normal if for their Nijenhuis tensor N associated to �,

N�(X,Y ) = �2[X,Y ] + [�X,�Y ] − �[�X,Y ] − �[X,�Y ] ∀ X,Y ∈ �(TM), (2.2)

the relation N = −dη ⊗ ξ holds.1 When the Riemannian metric g on an almost contact manifold 
(M, g) satisfies

gM(�X,�Y) = gM(X,Y ) − η(X)η(Y ) (2.3)

for any two vector fields X, Y ∈ TM, the structure is referred to as almost contact metric. It is 
called contact metric if in addition

dη = 2ω, (2.4)

with a two-form ω(X, Y) := g(X, �Y), is satisfied.
A Sasakian manifold is defined to be a manifold with normal contact metric structure. 

Such manifolds admit a reduction of the tangent bundle structure group from SO(2m + 1) to 
U(m), which allows (apart from the existence of the one-form η ∈ �1(M) and two-form ω ∈
�2(M)) for the introduction of invariant forms PM ∈ �3(M) and QM ∈ �4(M) that satisfy the 
following relations:

PM = η ∧ ω, QM = 1

2
ω ∧ ω, η�ω = 0. (2.5)

The contraction is defined as η�ω = ∗M(η∧∗Mω) by use of the Hodge star operator on (M, gM)

(see for example [8]). All these forms are parallel with respect to the canonical connection intro-

1 This is equivalent to the complex structure J induced on the product manifold R × M being integrable.
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duced below. In addition to equation (2.4), the forms satisfy the relations

d ∗M ω = 2m ∗M η, (2.6)

dPM = 4QM, (2.7)

d ∗M QM = (2m − 2) ∗M PM. (2.8)

Condition (2.4) can be generalized. If the structure satisfies dη = αω for some real α, it is referred 
to as α-Sasakian. We will see below that in our case the α-Sasakian structure can be transformed 
into a Sasakian structure by rescaling of basis elements.

If the metric on a Sasakian manifold is proportional to the Ricci tensor, Ric ∝ g, we have 
a Sasaki–Einstein manifold. Note that a Sasakian structure need not necessarily be Einstein. 
Sasaki–Einstein manifolds admit a reduction of the tangent bundle structure group to SU(m). 
A comment on the relation of the structure groups of Sasakian and Sasaki–Einstein manifolds 
will be given in Chapter 2.2.

2.1. Canonical connection

Connections on the tangent bundle TM over a manifold M are locally determined by matrix-
valued one-forms �ν

μ = �ν
σμeσ , using a basis {eσ } of non-holonomic one-forms and Greek 

indices μ = {1, 2, . . . ,2m + 1} to label directions on M . We introduce the so-called canonical
connection on the tangent bundle of a G-structure manifold M as a connection with holonomy 
group G and totally antisymmetric torsion with respect to some G-compatible metric [20]. We 
denote this connection by ∇P , or, locally, by P �ν

μ. All of the above listed real Killing spinor 
manifolds come equipped with canonical 3- and 4-forms PM and QM , and in all these cases the 
torsion of the canonical connection is proportional to the 3-form PM [20]. The canonical con-
nection can therefore be constructed as a sum of the (torsion-free) Levi-Civita connection ∇LC

and the 3-form PM , and is in the Sasakian case given by

P �b
μa = LC�b

μa + 1

m
Pμab, (2.9)

P �a
μ1 = −P �1

μa =LC �a
μ1 + Pμ1a. (2.10)

Another connection in the tangent bundle over M will play a special role in the following. The 
coefficients of any metric-compatible torsionful connection � on TM are uniquely determined 
by the conditions

dgμν − gμρ�ρ
ν − gνρ�ρ

μ = 0, (2.11)

deμ + �μ
νρeν ∧ eρ = T μ, (2.12)

where T μ = 1
2T

μ
νρeν ∧ eρ denotes the torsion two-form. Motivated by its appearance in heterotic 

supergravity, we introduce the torsionful spin connection � with components

�ρ
μν = LC�ρ

μν + T ρ
μν (2.13)

as a metric-compatible connection with totally antisymmetric torsion. This connection will be 
used later on for the construction of Yang–Mills solutions, and we will explicitly compute its 
coefficients. The torsion is chosen to be proportional to the structure constants, Tμνρ ∝ fμνρ . We 
use small indices a = {2, . . . , 2m + 1} for directions on M excluding the contact direction 1. It is 
useful to choose a local orthonormal basis {e1, ea} of T ∗M such that the parallel forms become

η = e1, ω = e23 + e45 + · · · + e2m,2m+1. (2.14)
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Here and in the following, we use the shorthand notation ea ∧ eb = eab . The canonical con-
nection ∇P is compatible with the following family of metrics, all of which are Sasakian up to 
homothety:

gh = e1e1 + e2hδabe
aeb. (2.15)

This can be seen by rescaling the metric with a real parameter γ ,

gh,γ = γ 2(e1e1 + e2hδabe
aeb), (2.16)

and introducing new basis forms ̃e1 = γ e1, ̃ea = γ ehea , such that the metric takes the form

gh,γ = ẽ1ẽ1 + δabẽ
aẽb. (2.17)

Recall that the original basis one-forms satisfy the contact condition de1 = 2ω. For still being 
Sasakian after rescaling, the new structure constants have to satisfy an analogous condition. We 
find

dẽ1 = 2

γ e2h
ω̃ := α(h,γ )ω̃. (2.18)

The structure is therefore α-Sasakian for all α(h, γ ) (hence also for all scaling factors γ ) and 
Sasakian (i.e. dẽ1 = 2ω̃) for the special value α = 2, or, equivalently, γ = e−2h.

For h = 0, the structure becomes Einstein. The value e2h = 2m
m+1 is special, as it makes the 

torsion of the canonical connection totally antisymmetric. Connections with totally antisymmet-
ric torsion are particularly interesting for string compactifications. We will therefore restrict our 
consideration to the latter case from now on and not study the Einstein case in detail.

2.2. Lie algebra structure and connection on Sasakian manifolds

As mentioned in Chapter 2, Sasakian manifolds admit a reduction of the tangent bundle struc-
ture group to U(m), while the structure group on Sasaki–Einstein manifolds reduces further to 
SU(m) (see also [25]). We consider a Sasakian manifold M with metric (2.15), which is not 
Einstein for arbitrary values of the parameter h ∈R but allows for an SU(m) structure. To under-
stand this construction, first note that there is no one-to-one correspondence of the existence of an 
SU(m) structure on M and the Einstein property of the metric. If a manifold is Sasaki–Einstein, 
it must have SU(m) structure group, but the converse is not necessarily true.

The structure of our manifold arises as follows. Starting with a Sasaki–Einstein manifold that 
has structure group SU(m) and admits two Killing spinors ε, ε̃, one may construct the canonical 
connection ∇P by the requirement ∇P ε = ∇P ε̃ = 0. ∇P has holonomy SU(m) and components 
(2.9), (2.10). As ∇P is compatible with the whole family of metrics (2.15),2 deformation of the 
metric does not affect the spinor identities ∇P ε = ∇P ε̃ = 0. The existence of two Killing spinors, 
on the other hand, is in one-to-one correspondence with the existence of an SU(m)-structure. 
Hence, the family gh of metrics preserves the SU(m) structure although the Einstein property is 
lost after deformation of the metric. We therefore have a Sasakian manifold with SU(m)-structure 
that is explicitly not Einstein.

2 The compatibility can be verified by explicitly computing ∇P gh , using gh to raise and lower indices, or by rewriting 
gh in terms of e1 and gh=1 and employing ∇P e1 = ∇P gh=1 = 0. We thank Derek Harland for this comment.
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We will consider Yang–Mills theory on the cylinder Z(M) = R × M over a Sasakian coset 
space M = G/H with structure group SU(m).3 The metric on Z(M) is given by

g = e0e0 + e1e1 + 2m

m + 1
δabe

aeb, (2.19)

where e0 := dτ denotes the coordinate in R direction. The canonical connection on M lifts to a 
connection on the tangent bundle over Z(M) with holonomy group SU(m). We will introduce a 
more general connection on the tangent bundle TZ(M), namely a perturbation of ∇P by parallel 
sections (cf. [20] for details). The holonomy group of this perturbed connection is SU(m + 1). 
This corresponds to having an SU(m + 1)-structure on Z(M) and hence to a principal bundle 
P(Z(M), SU(m +1)). The existence of an SU(m)-holonomy connection in TZ(M) furthermore 
implies the existence of a principal subbundle of P with structure group SU(m). As SU(m)

is a subgroup of SU(m + 1), the corresponding Lie algebras split according to su(m + 1) =
su(m) ⊕ m, where SU(m) acts irreducibly on su(m) and m denotes the (2m+1)-dimensional 
orthogonal complement to su(m). Representation theoretic arguments and the requirement of 
SU(m)-equivariance (see for example [22,28] for details) then allow for a connection of the 
following form, where χ(τ) and ψ(τ) are real functions of the variable τ parameterizing the 
cylinder direction:

A = ∇P + χ(τ)e1I1 + 1√
2m

ψ(τ)eaIa. (2.20)

We denote the generators of su(m) as {Ii}, the dual one-forms by {ei} and the generators of m as 
{I1, Ia}. They are chosen to be dual to the above introduced one-forms {e1, ea}. The frame {ei}
on su(m) can be expressed as a linear combination of the one-forms {eμ} as ei = ei

μeμ, where 
the ei

μ are real functions. Written as matrices, the generators have the following nonvanishing 
entries:

I b
ia = f b

ia,

I b
1a = − 1

m
ωab, −I 0

11 = I 1
10 = 1,

−I 0
ab = I b

a0 = δb
a, −I 1

ab = I b
a1 = ωab. (2.21)

In this basis, the structure constants satisfy

f 1
ab = 2Pab1, f b

1a = m + 1

m
P1ab. (2.22)

Note that these identities differ from the corresponding equations in [20] by a sign. The sign here 
is in agreement with equations (2.21).

3. Yang–Mills equation on Sasakian manifolds

Before specializing to Yang–Mills theory on Sasakian coset spaces, let us review some general 
facts about the Yang–Mills equation. Consider a Riemannian manifold (N, gN) of dimension 
d > 4, and let E be a complex vector bundle over N , endowed with a connection A. We denote by 
F = dA +A ∧A the curvature of this connection and by ∗ the Hodge star operator with respect 

3 A discussion about the Yang–Mills equation on Sasakian manifolds that do not necessarily have coset structure can 
be found in [28].
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to the metric gN . The generalized anti-self-duality equation is well-defined on any manifold 
equipped with an invariant 4-form Q ∈ �4(N), in particular on any G-structure manifold, and 
reads

∗F = − ∗ Q ∧F . (3.1)

Applying the gauge covariant derivative D = d + [A, ·] leads to the torsionful Yang–Mills equa-
tion

d ∗F + [A,∗F] + ∗H∧F = 0, (3.2)

where we have defined a 3-form H via ∗H := d ∗ Q. If d ∗ Q ∧ F = 0, this equation reduces 
to the standard Yang–Mills equation without torsion. The torsionful Yang–Mills equation is the 
equation of motion for the following action, which includes the standard Yang–Mills plus a 
Chern–Simons term:

S =
∫
M

tr
(
F ∧ ∗F + (−1)d−3 ∗ Q ∧F ∧F

)
. (3.3)

The torsion term in the Yang–Mills equation is generated by variation of the Chern–Simons term, 
while the other summands arise from variation of the Yang–Mills term.

For a motivation of the following discussion, recall that a connection with totally antisym-
metric torsion naturally appears in the conditions for supersymmetry preservation in heterotic 
supergravity [29]. On suitably chosen string backgrounds, one can introduce geometric three-
form fluxes that are identified with the torsion of this spin connection. The Yang–Mills equation 
follows from covariant differentiation of the higher-dimensional instanton equation if the three-
form is related to the G-structure four-form as ∗H := d ∗Q. In this case, the Yang–Mills equation 
is the equation of motion of the action (3.3).

Non-BPS Yang–Mills solutions can be constructed when the Yang–Mills equation is not re-
quired to follow from a first-order equation. In accordance with earlier work [7,8,22], we choose 
to identify the three-form H with the torsion of the spin connection, HABC ∝ TABC , and the 
torsion components4 to be proportional to the structure constants on G/H :

Tabc = κfabc, κ ∈R. (3.4)

In explicit examples, the relation of T and H will be chosen such that ∗H = d ∗Q is satisfied for 
κ = 1 and the Yang–Mills equation follows from the instanton equation for this value of κ . Other 
choices are possible and correspond to a rescaling of the parameter κ . Solutions of the torsionful 
Yang–Mills equation can be lifted to solutions of heterotic supergravity if they follow from a 
first-order BPS equation. More general non-BPS Yang–Mills solutions for arbitrary values of κ
can potentially serve as building blocks for non-supersymmetric string solutions.

Written out in components, the torsionful Yang–Mills equation on the product space R ×G/H

turns into the following set of equations, where the metric g is assumed to be of diagonal form 
with coordinate-dependent components:

gBB√|g|∂C

(√|g|FCB
)

−FCD

(
1

2
TCDB − �CDB

)
+FC

B

(
1

2
TCD

D − �CD
D

)
−FC

B

(
1

2
TDC

D − �DC
D

)
+ [AA,FAB ] − 1

2
HCDBFCD = 0. (3.5)

4 It has been argued in [8] that for such a choice of HABC and TABC , the Yang–Mills equation on the cylinder over a 
nearly-Kähler coset space follows from an action similar to (3.3). This does not have to hold for other choices of H.
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We study the Yang–Mills equation on the cylinder Z(M) = R × M with metric (2.19), where 
M = G/H is a coset space with Sasakian structure of dimension 2m + 1. In this setup, G is a 
semisimple Lie group and H a closed Lie subgroup. Capital indices A = {0, 1, 2, . . . ,2m + 1}
are used to label all 2m + 2 directions of the product manifold. The upper index will always be 
pulled down behind the lower two ones. This convention is important, as not all quantities do a 
priori have totally antisymmetric indices.

As the free index B runs from 0 to dimG/H , these are 2m + 2 equations. The coefficients 
HABC (with all indices lowered) are the components of the 3-form H, and −�C

AB are the coeffi-
cients of the torsionful spin connection with torsion T C

AB . Equation (3.5)5 has been discussed in 
detail on the cylinder over an arbitrary coset space G/H with gauge connection A = eiIi +φeaIa

in [7,8,21,22], leading to explicit kink-type solutions.
For further specification, we have to compute the components of the 3-form H. According to 

[20], an invariant 4-form on the cylinder over a Sasakian manifold can be constructed as

Q = 2m

m + 1
dτ ∧ PM +

(
2m

m + 1

)2

QM. (3.6)

A direct computation yields

∗ d ∗ Q = − 5

2 · 3!f
KL[RQKLPQ]ePQR. (3.7)

Using the definition ∗H := d ∗ Q and decomposition rules for antisymmetric tensor indices, we 
find

HPQR = −5

2
f KL[RQKLPQ] = −15

2
QKL[PQf KL

R]. (3.8)

At this point, we have to distinguish between indices in cylinder direction (0), contact direction 
(1) and all other directions and find that the following components vanish for all m:

H01r =H0qr =Hpqr = 0. (3.9)

The remaining components depend on the value of m. We demonstrate this by writing out H231
explicitly, using equations (2.5), (2.14) and (2.22). All other nonvanishing components of H
behave in a similar way:

H231 = −2P231Q2323 = 0 for m = 1,

H231 = − 9

16
Pmn1Qmn23 = −2P451 = −f231 for m = 2,

H231 = −4

9
Pmn1Qmn23 = −2(P451 + P671) = −2f231 for m = 3,

H231 = (1 − m)f231 for arbitrary m. (3.10)

Note that the case m = 1 of lowest dimension with H = 0 is special. We will not further discuss 
it here. In order to recover the instanton case for κ = 1, we choose

Hμνρ = (1 − m)Tμνρ = (1 − m)κfμνρ. (3.11)

With this choice and the cylinder metric (2.19), equation (3.5) turns into

5 Note that this equation is not identical to the corresponding equations (2.19) and (2.20) in [22] due to differently 
normalized torsion. The equations presented in the reference follow from our equation (3.5) with cylinder metric gZ =
dτ2 + δabeaeb in the special case of HABC = −TABC .
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∂AFAB −FCD

(
1

2
(2 − m)T B

CD − �B
CD

)
+FCB

(
1

2
T D

CD − �D
CD

)
−FCB

(
1

2
T D

DC − �D
DC

)
+ [AA,FAB ] = 0, (3.12)

where � denotes the torsionful spin connection. The B = 0 equation is identically satisfied. 
Let us take a look at the cases with B > 0. The summand FCμ( 1

2T D
CD − �D

CD) vanishes iden-
tically. From the summand FCμ( 1

2T D
DC − �D

DC), as well as from [AA, FAB ], we obtain terms 
proportional to the functions ei

μ. These terms add up to zero by use of the Jacobi identity and 
SU(m)-equivariance of the connection and will therefore be omitted in the following computa-
tion. We evaluate the remaining terms explicitly. The connection coefficients are derived from 
the Maurer–Cartan structure equation

T A = deA + �A
BCeBC. (3.13)

With

deA = −1

2
f A

BCeBC and T A
BC = κf A

BC, (3.14)

where κ ∈ R is a real parameter, they take the form

�1
bc = 1

2
(κ + 1)f 1

bc, (3.15)

�a
1b = 1

2
(κ + 1)f a

1b + f a
ibe

i
c, (3.16)

�a
bc = f a

ice
i
b. (3.17)

By construction, the value κ = 1 describes the instanton case discussed in [18–20]. For the 
derivation of explicit second-order equations, we will use

T 1 = P1abe
1ab, T a = m + 1

2m
Paμνe

aμν, (3.18)

along with equations (2.22). Using equation (2.20) and omitting the τ -dependence of the func-
tions χ and ψ , we obtain the following curvature:

F = − 1

2

(
1 − 1

2m
ψ2

)
f i

abe
abIi + χ̇e01I1 + 1√

2m
ψ̇e0aIa

+
(

χ − 1

2m
ψ2

)
Pab1e

abI1 + m + 1

m
√

2m
ψ(1 − χ)P1baIae

1b. (3.19)

Inserting F , T A, ωC
AB as above and using

f i
acf

c
ib = 2(m2 − 1)

m
δab, (3.20)

equation (3.12) turns into

χ̈ = (m + 1)2

m

(
((m − 1)κ + 1)χ − ((m − 1)κ + 3)

1

2m
ψ2 + 1

m
χψ2

)
, (3.21a)

ψ̈ =
(

m + 1

m

)2

ψ

(
(m − 1)κ + 2 − m − ((m − 1)κ + 3)χ + χ2 + 1

2
ψ2

)
. (3.21b)

The derivation of the identity (3.20) can be found in Appendix A.
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4. Action functional and potential

The second-order equations (3.21) are equations of motion for the action

S = m

4(m + 1)

∫
R×M

tr

(
F ∧ ∗F + 2

(
m

m + 1

)2

κdτ ∧ ∗MQM ∧F ∧F
)

= Vol(M) ×
∫
R

[
−1

2
(χ̇2 + ψ̇2) −

(
m + 1

m

)2

(
ψ2(1 − χ)2 + m(1 − m)(1 − κ)

(
1

2m
ψ2 − 1

)2

+ m(1 + κ(m − 1))

(
χ − 1

2m
ψ2

)2
)]

dτ (4.1)

with potential

V (χ,ψ) = 1

2

(
m + 1

m

)2 (
((1 + κ(m − 1))mχ2 + (κ(1 − m) − 3)χψ2

+χ2ψ2 + (2 − m + κ(m − 1))ψ2 + 1

4
ψ4 + m(m − 1)(1 − κ)

)
, (4.2)

where ∗M denotes the Hodge star operator on the Sasakian manifold M with respect to the 
metric gM = e1e1 + 2m

m+1δabe
aeb, ∗ denotes the Hodge star operator on the cylinder, and 

Vol(M) = √|gM |e1,2,··· ,2m+1 is the volume form on M . This can be verified by a direct com-
putation, presented in Appendix B. Equations (3.21) constitute a gradient system of the form(

χ̈

ψ̈

)
=

(
∂χ

∂ψ

)
V. (4.3)

With our sign convention, this model describes a particle moving in the potential −V . The po-
tential V is symmetric with respect to sign changes of ψ and has the following critical points 
(i.e. χ̈ = ψ̈ = 0) for arbitrary m, κ :

(χ1,ψ1) = (0,0),

(χ2,ψ2) = (1,±√
2m),

(χ3,ψ3) =
(

1

4

(
7 + 3(m − 1)κ + √

P
)

,

± 1

2

√
((1 − m)κ − 1)

(
(1 − m)κ − 1 + 4m + √

P
))

,

(χ4,ψ4) =
(

1

4

(
7 + 3(m − 1)κ + √

P
)

,

± 1

2

√
((1 − m)κ − 1)

(
(1 − m)κ − 1 + 4m − √

P
))

, (4.4)



172 M. Tormählen / Nuclear Physics B 902 (2016) 162–185
Table 1
Critical points and corresponding κ values with vanishing potential.

κ Eigenvalues of Jacobian

(χ1,ψ1) = (0,0) 1 (m + 1)2,
(m+1)2

2
(χ2,ψ2) = (1,±√

2m) any see Appendix C

(χ3,ψ3) = (1,−√
2m)

m−2−√
m(8+m)

2(m−1)
0, positive

(χ4,ψ4) = (−1,±√
2m) 3

1−m

(m+1)2(
m−√

m(m+8)
)

m2 ,
(m+1)2(

m+√
m(m+8)

)
m2

(1,
√

2m)
m−2+√

m(8+m)
2(m−1)

0, positive

Table 2
Values of κ for which more than two critical points lie on the same axis.

κ Critical points V (critical points)
1

1−m
(0,0), (1,±√

2m), (1 ± m,0) 1
2 (m + 1)2,0, 1

2 (m + 1)2

3
1−m

(0,0), (1,±√
2m), (−1,±√

2m), (0,±√
2(m + 1))

(m+1)2(m+2)
2m

,0,0,− (m+1)2

2m2

where the abbreviation

P = (m − 1)2κ2 + κ(8m2 − 6m − 2) + 24m + 1 (4.5)

is used. Finite-action Yang–Mills solutions χ(τ), ψ(τ) must interpolate between zero potential 
critical points. With κ arbitrary, the potential vanishes for the second critical point (χ2, ψ2) =
(1, ±√

2m). We find V (χ1, ψ1) = (κ−1)(m−1)(m+1)2

2m
for the first critical point, which vanishes 

only for κ = 1, as well as lengthy nonzero expressions for V (χ3, ψ3) and V (χ4, ψ4). The critical 
points are listed in Table 1, together with the κ-values for which their potential becomes zero. 
For the values of κ listed in Table 2, more than two critical points are located on the same axis, 
and hence the system may admit analytic solutions. In addition, we note that at κ = m−2

m−1 , five 

of the seven critical points coincide at (0, 0), at κ = m−2−√
m(8+m)

2(m−1)
the point (χ3, ψ3) coincides 

with (χ2, ψ2) and (χ4, ψ4) becomes imaginary, and at κ = 2−m−√
m(8+m)

2(m−1)
, (χ4, ψ4) coincides 

with (χ2, ψ2) and (χ3, ψ3) becomes imaginary.

4.1. Analytic Yang–Mills solutions

Equations (3.21) constitute a system of nonlinear coupled differential equations, hence we 
cannot expect to be able to find analytic solutions. The case κ = 1

1−m
, however, admits an ana-

lytic solution to the Yang–Mills equation, interpolating between the critical points (1, 
√

2m) and 
(1, −√

2m) for arbitrary m. All other critical points are located on the χ -axis and have potential 
V = 1

2 (m + 1)2. The zero-potential critical points are therefore minima of V , and we expect to 
find interpolating finite-action Yang–Mills solutions. With χ = 1, equations (3.21) take the form

χ̈ = 0, (4.6a)

ψ̈ = (m + 1)2

m
ψ

(
1

2m
ψ2 − 1

)
. (4.6b)
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Equation (4.6) is solved by

ψ = ±√
2m tanh

(
±m + 1√

2m
τ

)
. (4.7)

This is a kink solution with finite energy and finite action. A plot of this solution in the 
(χ, ψ)-plane can be found in Fig. 3.

For κ = 3
1−m

, there are three critical points on the χ = 0 axis. However, none of them has 
zero potential, and we do not find any analytic solutions.

4.2. Periodic solutions

A different kind of solutions is obtained by changing from R × M to S1 × M , i.e. when the 
additional direction is not a real line but a unit circle with circumference L. In this case, periodic 
boundary conditions have to be imposed:

ψ(τ) = ψ(τ + L). (4.8)

We restrict the consideration to the analytically solvable case (4.6), which has the periodic solu-
tion

ψ(τ) = ± 2k
√

m√
1 + k2

sn

[
m + 1√

m(1 + k2)
τ ; k

]
. (4.9)

This solution is known as a sphaleron [30]. Sphalerons are unstable solutions of the classical 
equations of motion. sn[u, k] with 0 ≤ k ≤ 1 is a Jacobi elliptic function, details of which can 
be found for example in Appendix B of [22] or in [31]. The Jacobi elliptic function has a period 
of 4K(k), where K(k) denotes the complete elliptic integral of the first kind. The boundary 
condition (4.9) therefore turns into

4K(k)n = m + 1√
m(1 + k2)

L, n ∈ N, (4.10)

fixing k = k(L, n) and ψ(τ ; k(L, n)) =: ψ(n)(τ ). Solutions (4.9) exist if L ≥ 2
3
2 πn (cf. [21,22]). 

The topological charge of the sphaleron ψ(n) is zero due to the periodic boundary conditions. 
This solution is interpreted as a configuration of n kinks and n antikinks, alternating and equally 
spaced around the circle. The tanh-solution from Chapter 4.1 arises from the Jacobi elliptic func-

tion in the limit k → 1. In the limit k → 0, the elliptic function approaches sin

(
m+1√

m(1+k2)
τ

)
. 

In analogy to results in [32], our solution (4.9) with positive sign has the following total energy, 
with E(k) denoting the complete elliptic integral of the second kind:

E[ψ] =
L∫

0

dτ

(
1

2
(∂τψ)2 + V (1,ψ)

)

=
√

2 · 4nm2(m + 1)

3(1 + k2)
3
2(

1

4m2

(
3k4 + (6 + 32m2 + 24m)k2 + 16m2 − 24m + 3

)
K(k)

+ 2

(
3

m
− 2

)
(1 + k2)E(k)

)
. (4.11)
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4.3. Dyons

Replacing the coordinate τ in R direction by iτ changes the signature of the metric from 
Riemannian to Lorentzian:

g = −e0e0 + e1e1 + e2hδabe
ab. (4.12)

The Yang–Mills equations (3.21) remain unchanged, except for the fact that the second-order 
derivatives now come with a minus sign:

(χ̈ , ψ̈) → (−χ̈ ,−ψ̈). (4.13)

This corresponds to a sign flip of the potential, so that we have to study V instead of −V . 
Dyons are finite-energy solutions to the second-order equations obtained by this sign flip. Just as 
Yang–Mills solutions, they can interpolate between two critical points (kink), or start and end at 
the same point (bounce). Solutions that oscillate around a minimum can exist as well, but they 
do not lead to finite energy and hence will not be considered in the following.

4.4. Discussion and summary of solutions

Recall that in our sign convention, instanton solutions interpolate between minima and dyon 
solutions between maxima of V . In both cases, solutions that start or end at a saddle point are 
possible as well. With this in mind, we can expect the following solutions:

• κ arbitrary: there exist at least two zero-potential critical points at (0, ±√
2m) for all κ . 

According to Appendix C, they can be minima or saddle points of V , depending on the 
value of κ . This means that we can always find interpolating solutions, either of dyon or of 
Yang–Mills type. These solutions have to be constructed numerically unless κ = 1

1−m
.

• κ = 1: this is the instanton case. Yang–Mills solutions exist between (0, 0) and (1, ±√
2m)

(cf. [20]). We do not expect to find any finite-action dyon solutions, as the zero-potential 
critical points of V are minima.

• κ = 1
1−m

(κ = −1 for m = 2): in this case, we find three nonzero critical points along the χ
axis. An analytic Yang–Mills solution interpolates between the two remaining zero-potential 
critical points, which are minima for all m. This solution for arbitrary m is presented in 
Chapter 4.1.

• κ = 3
1−m

(κ = −3 for m = 2): we find four zero-potential critical points. Two of them are 
located at the lines with χ = 1 and χ = −1, respectively. We do not find any analytic solu-
tions along the χ = ±1 and χ = 0 axes. There should, however, be a number of numerical 
solutions interpolating between various pairs of critical points.

We do not expect any analytic dyon solutions, as the zero-potential critical points are minima 
in the analytically solvable cases. For a better understanding, we present the case m = 2 as an 
example. The potential for various interesting values of κ is shown in Fig. 1, and further dyon and 
Yang–Mills solutions for this example are presented in Figs. 2 and 4. The list of zero-potential 
critical points can be found in Table 3.

5. Conclusion and outlook

Using a special ansatz for the gauge connection, we have derived a system of explicit 
second-order Yang–Mills equations on the cylinder over a class of Sasakian manifolds. We 
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Fig. 1. Potential plots for various values of κ and m = 2. (For interpretation of the colors in this figure, the reader is 
referred to the web version of this article.)
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Fig. 2. Some solutions of the Yang–Mills equation for various values of κ and m = 2. (For interpretation of the colors in 
this figure, the reader is referred to the web version of this article.)
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Fig. 3. Analytic solution of the Yang–Mills equation for κ = −1 and m = 2. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

Fig. 4. Some numerical dyon solutions for various values of κ and m = 2. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)
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Table 3
Critical points and corresponding κ values with vanishing potential for m = 2.

κ Eigenvalues of Jacobian

(χ1,ψ1) = (0,0) 1 9,
9

4
(χ2,ψ2) = (1,±2) any

9

4

(
5 + κ + √

5(1 + κ)
)

,
9

4

(
5 + κ − √

5(1 + κ)
)

(χ3,ψ3) = (1,−2) −√
5

9

2

(
5 − √

5
)

,0

(χ4,ψ4) = (−1,±2) −3
9

2

(
1 + √

5
)

,
9

2

(
1 − √

5
)

(1,2)
√

5
9

2

(
5 + √

5
)

,0

have constructed the corresponding action and potential, discussed the behavior of the critical 
zero-potential points and found analytic as well as numerical solutions of Yang–Mills, dyon and 
sphaleron type.

A similar discussion for cylinders over certain SU(3)-structure manifolds can be found in [22]. 
A comparison with our results illustrates that Sasakian and SU(3)-structures are fundamentally 
different. The perhaps most striking fact is that the 3-symmetry of the SU(3)-structure manifold 
is recovered in the shape of the potential, whereas the potential in the Sasakian case is symmetric 
only under sign changes of the variable ψ . Furthermore, the Sasakian potential does not admit 
as many solutions with straight trajectories in the (χ, ψ)-plane as the SU(3)-structure potential 
does. In the latter case, the distribution of κ-dependent and κ-independent zero-potential critical 
points allows to systematically associate certain types of solutions (kinks, bounces) to intervals 
of the deformation parameter κ . In particular, there are always three critical points on the real 
axis. The Sasakian potential admits fewer κ-independent zero-potential critical points, and they 
are not as regularly distributed as in the SU(3)-structure case. The range and type of our solutions 
is therefore significantly different.

In spite of these differences, we have found that Sasakian manifolds do admit various inter-
esting solutions. This, and in particular the fact that we have found an analytic kink-type solution 
of the Yang–Mills equation, makes them potentially interesting for non-supersymmetric string 
compactifications. It may be worth studying the instanton solution (4.7) in the context of the 
AdS/CFT duality mentioned in the introduction.

To complete the discussion, it would be interesting to consider Yang–Mills and dyon solutions 
on cylinders over G2-structure manifolds, i.e. 8-dimensional manifolds with Spin(7)-structure. 
We are planning to present results for this case in the near future. In addition, the analysis for the 
3-Sasakian case is still missing. Another open question is how the Yang–Mills and dyon solutions 
change when considering cones and sine-cones instead of cylinders. On conical manifolds, the 
second-order equations acquire a first-order friction term, hence the analysis might have to be 
done numerically.
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Appendix A. Sum of structure constants

Proposition 1. Let M be a Sasakian manifold of dimension 2m + 1 with structure group SU(m)

and metric

gM = e1e1 + 2m

m + 1
δabe

ab. (A.1)

Let R ×M be the cylinder with structure group SU(m +1). Then the Lie algebras corresponding 
to the structure groups admit a splitting su(m + 1) = su(m) ⊕ m, as described in Chapter 3. 
We use indices a = (1, 2, . . . , dimm) to label the generators of m, indices i, j for the remaining 
generators of su(m) and ̃a = (1, 2, . . . , dim su(m + 1)) for all su(m + 1) indices. In this setup, 
the SU(m + 1)-structure constants satisfy equation (3.20):

f i
acf

c
ib = 2(m2 − 1)

m
δab. (A.2)

Proof. To see this, note first that the components of the metric (A.1) take the form

(gM)11 = 1, (gM)ab = 2m

m + 1
δab. (A.3)

The Killing form of su(m + 1) induces the following metric on m:

(gK)μν = f d̃
μc̃f

c̃

d̃ν
. (A.4)

The structure constants are normalized such that they satisfy

f 1
ab = 2Pab1 f b

1a = m + 1

m
P1ab. (A.5)

Hence, the Killing metric takes the following values:

(gK)11 = f d̃
1̃cf

c̃

d̃1
= f d

1cf
c
d1 = 2(m + 1)2

m
=: X, (A.6)

(gK)ab = 2(f d
a1f

1
db + f d

aif
i
db) = 2

(
2(m + 1)

m
δab + f d

aif
i
db

)
. (A.7)

This metric matches the metric (A.1) up to rescaling of structure constants by the factor 
√

X. We 
therefore find

(gM)11 = 1

X
(gK)11 = 1, (A.8)

(gM)ab = 1

X
(gK)ab

= 2

X
(f d

a1f
1
db + f d

aif
i
db)

= 2

X

(
2(m + 1)

m
δab + f d

aif
i
db

)
= 2m

m + 1
δab. (A.9)

We conclude that both summands in (gM)ab must be proportional to δab, hence f d
aif

i
db

!= βδab

with some real parameter β ∈ R. This leads to



180 M. Tormählen / Nuclear Physics B 902 (2016) 162–185
2

X

(
2(m + 1)

m
+ β

)
δab = 2m

m + 1
δab ⇒ β = 2(m2 − 1)

m
(A.10)

and proves equation (A.2). �
Appendix B. Action

Proposition 2. The Yang–Mills equations (3.21) on the cylinder over a Sasakian manifold are 
equations of motion for the action

S = m

4(m + 1)

∫
R×M

tr

(
F ∧ ∗F + 2

(
m

m + 1

)2

κdτ ∧ ∗MQM ∧F ∧F
)

= Vol(M) ×
∫
R

[
−1

2
(χ̇2 + ψ̇2) −

(
m + 1

m

)2

(
ψ2(1 − χ)2 + m(1 − m)(1 − κ)

(
1

2m
ψ2 − 1

)2

+ m(1 + κ(m − 1))

(
χ − 1

2m
ψ2

)2
)]

dτ (B.1)

with potential

V (χ,ψ) = 1

2

(
m + 1

m

)2 (
((1 + κ(m − 1))mχ2 + (κ(1 − m) − 3)χψ2

+χ2ψ2 + (2 − m + κ(m − 1))ψ2 + 1

4
ψ4 + m(m − 1)(1 − κ)

)
, (B.2)

where ∗M denotes the Hodge star operator on the Sasakian manifold M with respect to the 
metric gM , and ∗ denotes the Hodge star operator on the cylinder.

Proof. To see this, we compute the summands tr(F ∧ ∗F) and tr(dτ ∧ ∗MQM ∧F ∧F) sepa-
rately. For the first summand, we find

tr(F ∧ ∗F) = 1

2
tr(2F0μF0μ +FμνFμν)Vol(R× M)

= 1

2
tr

(
2F01F01 + m + 1

m
F0aF0a

+ m + 1

m
F1bF1b +

(
m + 1

2m

)2

FabFab

)
Vol(R× M)

= 1

2

(
−4

m + 1

m

(
χ̇2 + ψ̇2

)
− 4

(
m + 1

m

)3

ψ2(1 − χ)2

+
(

m + 1

2m

)2
((

1

2m
ψ2 − 1

)2

f i
abf

j
abf

n
imf m

jn

− 16(m + 1)

(
χ − 1

2m
ψ2

)2
))

Vol(R× M), (B.3)
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using Vol(R × M) = √|gZ |dτ ∧ e1···(2m+1), the components (3.19) of the curvature and the 
following explicit expressions for the trace of Ii, Iμ in the representation (2.21):

tr(I1I1) = I a
10I

0
1a + I b

1aI
a
1b + I 0

11I
1
10 + I 1

10I
0
11 = −2

m + 1

m
, (B.4)

tr(IiIj ) = I b
iaI

a
jb, (B.5)

tr(I1Ij ) = 0, (B.6)

tr(IaIa) = 2(I b
a0I

0
ab + I b

a1I
1
ab) = −8m (sum over a). (B.7)

The combination f i
abf

j
abf

n
imf m

jn of structure constants in equation (B.3) can be simplified by use 
of the following relation. The commutator of two generators in the representation (2.21) takes 
the form

[Ia, Ib]dc = f i
abI

d
ic + f 1

abI
d
1c. (B.8)

Inserting the explicit expressions for I1 and Ia leads to the identity

f i
abf

d
ic = ωbcωad − ωacωbd − δc

aδ
d
b + δc

bδ
d
a + 2

m
Pab1ωcd. (B.9)

We use this expression to rewrite the sum of structure constants in equation (B.3) and find∑
a,b,c,d,i,j

f i
abf

j
abf

n
imf m

jn =
∑

a,b,c,d,i,j

(
ωbcωad − ωacωbd − δc

aδ
d
b + δc

bδ
d
a + 2

m
ωabωcd

)
(

ωbdωac − ωadωbc − δd
a δc

b + δd
b δc

a − 2

m
ωabωcd

)
=

∑
a,b,c,d,i,j

(2ωbcωadωbdωac − 2ωacωbdωacωbd

+ 4

m
ωabωcdωbdωac − 4

m
ωabωcdωbcωad − 4

m2
ωabωcdωabωcd

+
(

8

m
− 4

)
ωabωab + 2(δd

a δd
a − δd

a δc
b)

)
= 4m − 8m2 + 8 + 8 − 16 +

(
8

m
− 4

)
2m + 4m − 8m2

= 16(1 − m2), (B.10)

using the fact that ωabωab = 2m and that only the components of ωab with b = a+1 or b = a−1
are nonzero. To avoid confusion, the summation indices have been explicitly displayed at this 
point. Note that all indices are being summed over. Inserting this back into equation (B.3) yields

tr(F ∧ ∗F) = 4
m + 1

m

(
−1

2

(
χ̇2 + ψ̇2

)
−

(
m + 1

m

)2

ψ2(1 − χ)2

+ (1 − m2)
m + 1

m

(
1

2m
ψ2 − 1

)2

− (m + 1)2

m

(
χ − 1

2m
ψ2

)2
)

Vol(R× M)
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= 4
m + 1

m

(
−1

2

(
χ̇2 + ψ̇2

)
−

(
m + 1

m

)2 (
ψ2(1 − χ)2

− (1 − m)m

(
1

2m
ψ2 − 1

)2

+ m

(
χ − 1

2m
ψ2

)2
))

Vol(R× M). (B.11)

For the second summand in the action, note that dτ ∧∗MQM ∧F ∧F is a form of top degree 
in on the cylinder Z(M). A convenient way to compute the components of this form is to apply 
the Hodge star operator. We find

∗Z(M)(dτ ∧ ∗MQM ∧F ∧F) = ∗M(∗MQM ∧F ∧F)

= 1

4n!(n − 4)!QμνρσFαβFγ δεμνρσξ1···ξn−4εξ1···ξn−4αβγ δ

= 1

4
QμνρσFαβFγ δδ

μνρσ
αβγ δ

= 1

4
QμνρσF [μνFρσ ]

= 3ωμνωρσF [μνFρσ ], (B.12)

using n := 2m + 1 = dimM as well as Q = 1
2ω ∧ ω ⇔ Qμνρσ = 4!ωμνωρσ . This result implies

dτ ∧ ∗MQM ∧F ∧F = 3ωabωcdF [abFc]dVol(R× M). (B.13)

We find

tr(dτ ∧ ∗MQM ∧F ∧F)

= 3ωabωcd tr(F [abFc]d)Vol(R× M)

=
(

m + 1

2m

)4
((

1

2m
ψ2 − 1

)2

3ωabωcdf i[abf
j
c]df n

imf m
jn

− 8
m + 1

m

(
χ − 1

2m
ψ2

)2

3ωabωcdP[ab|1|Pc]d1

)
Vol(R× M)

=
(

m + 1

2m

)4
(

2

(
1

2m
ψ2 − 1

)2

ωabωcdf i
bcf

j
adf n

imf m
jn

− 32(m2 − 1)

(
χ − 1

2m
ψ2

)2
)

Vol(R× M), (B.14)

by use of f 1
abf

i
ab = 0 and 3ωabωcdP[ab|1|Pc]d1 = 4m(m − 1). The sum of structure constants 

simplifies to

ωabωcdf i[abf
j
c]df n

imf m
jn = 16(m2 − 1). (B.15)

This identity is proven by writing the structure constants in terms of equation (B.9) and eval-
uating all sums explicitly. As the computation follows the same pattern as the derivation of 
equation (B.10), we do not present the details here. We find
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tr(dτ ∧ ∗MQM ∧F ∧F)

=
(

m + 1

2m

)4

32(m2 − 1)

((
1

2m
ψ2 − 1

)2

−
(

χ − 1

2m
ψ2

)2
)

Vol(R× M).

(B.16)

Now the identities (B.11) and (B.16) can be inserted into the action. This leads to the result 
(B.1), taking into account that the volume form on the cylinder satisfies Vol(R × M) = dτ ∧
Vol(M). �
Appendix C. Eigenvalues of the Hesse matrix

Let us once again consider the potential (4.2):

V (χ,ψ) = 1

2

(
m + 1

m

)2 (
((1 + κ(m − 1))mχ2 + (κ(1 − m) − 3)χψ2

+χ2ψ2 + (2 − m + κ(m − 1))ψ2 + 1

4
ψ4 + m(m − 1)(1 − κ)

)
. (C.1)

The critical points (χ, ψ) of V that satisfy ∂χV = ∂ψV = 0 are listed in equation (4.4), and the 
eigenvalues of the matrix⎛⎝ ∂2V

∂χ2
∂2V

∂χ∂ψ

∂2V
∂ψ∂χ

∂2V

∂ψ2

⎞⎠ (C.2)

have been presented in Table 1. The eigenvalues at the critical point (χ2, ψ2) = (1, ±√
2m) need 

a more detailed discussion. They are given by

(λ1, λ2) =
(

1

2

(
m + 1

m

)2 (
(5 + κ(m + 1))m + (1 + κ(m − 1))

√
m(8 + m)

)
,

1

2

(
m + 1

m

)2 (
(5 + κ(m − 1))m − (1 + κ(m − 1))

√
m(8 + m)

))
. (C.3)

λ1 is greater than zero for

κ > κ+ := − 5m + √
m(8 + m)

m(m + 1) + (m − 1)
√

m(8 + m)
(C.4)

and smaller than zero otherwise. λ2 is greater than zero for

κ < κ− := −5m + √
m(8 + m)

m(m − 1) − (m − 1)
√

m(8 + m)
(C.5)

and smaller otherwise. We have κ− > κ+ for any positive integer value of m > 1. The extremum 
of the potential at (1, ±√

2m) is therefore

1) a saddle for κ > κ−,

2) indefinite for κ = κ−,

3) a minimum for κ− > κ > κ+,

4) indefinite for κ = κ+,

5) a saddle for κ+ > κ. (C.6)
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This observation is in agreement with the remaining cases listed in Table 1: since κ+ > 3
1−m

, we 
find one positive and one negative eigenvalue for (χ4, ψ4).

We can expect Yang–Mills solutions when the extrema at (1, ±√
2m) are minima, i.e. for 

κ− > κ > κ+ (in particular for κ = 1), or saddle points, and dyon solutions when they are saddle 
points. As λ1 and λ2 do not simultaneously become smaller than zero for any fixed value of κ , 
the critical points never become maxima.
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