Auxiliary function development
for the LISA metrology system

Von der QUEST-Leibniz-Forschungsschule der
Gottfried Wilhelm Leibniz Universitait Hannover
zur Erlangung des Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation
von

Dipl.-Phys. Nils Christopher Brause

geboren am 01.10.1985

in Hannover, Deutschland

2018



Referent: Prof. Dr. rer. nat. Karsten Danzmann
AEI Hannover

Korreferent: apl. Prof. Dr. rer. nat. Gerhard Heinzel
AEI Hannover

Tag der Disputation: 02.05.2018



Abstract

The [Laser Interferometer Space Antenna (LISA)|is a planned gravitational wave
detector to be positioned in space. It consists of three spacecrafts that use
IRange Interferometry (LRI) to measure relative distance changes between them.
An important component of [LISAlis the LISA Metrology System (LMS)| which is
responsible for the distance measurements as well as various auxiliary functions:
The beatnote acquisition allows the to lock to an incoming beatnote signal
with an unknown frequency and amplitude. It measures both with a
[Transform (FFT)|and controls the starting frequencies and gains of the
IPhase Locked Loops (DPLLs)| accordingly. The laser locking algorithm is used to
lock the frequency of one laser to the frequency of another laser. This is done by
locking the difference frequency between two lasers to a constant target and thus
enabling heterodyne interferometry. The amplitude of the incoming beatnote
signal can vary greatly over time. To compensate for that, the [Automatic Gain|

Control (AGC)|functionality observes the amplitudes and reconfigures the gains of
the [DPLLs|accordingly. In the pointing will be measured using an advanced

Differential Wavefront Sensing (DWS) scheme, which track the differential phases
between the segments of a [Quadrant Photo Diode (QPD)| directly instead of
calculating them from the measured phases of the segment [DPLLs| This improves
the|Carrier to Noise Density Ratio (CNR)|in the by a factor of two. The
absolute distance between the spacecrafts is also measured to enable
Interferometry (TDI)|in post-processing. This is done by sending a[Pseudo Random|
code via the laser link to a distant spacecraft, where it is correlated
with a local copy of the same code to determine the travel distance from the
measured delay. Since only one of the three spacecrafts has a radio link to
earth, data has to be transferred between the three spacecrafts. This functionality
is part of the Delay Locked Loop (DLL)} by modulating the data onto the [PRN]|
code. In the course of this thesis, all the necessary auxiliary functions will be
developed, thoroughly described and measured.
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Zusammenfassung

Die [Laser Interferometer Space Antenna (LISA)|ist ein geplanter Gravitation-
swellendetektor, der im Weltraum stationiert werden soll. Sie besteht aus drei
Satelliten, die [Long Range Interferometry (LRI)|nutzen um relative Abstandsan-
derungen zwischen ihnen zu messen. Eine wichtige Komponente von[LISA|ist das
ILISA Metrology System (LMS), welches fiir die Abstandsmessungen sowie diverse
Hilfsfunktionen zusténdig ist: Die Beatnote Acquisition erméglicht dem[LMS]sich
auf eine eingehende Beatnote unbekannter Frequenz und Amplitude zu locken.
Sie misst beides mit einer [Fast Fourier Transform (FFT){und kontrolliert damit die
Startfrequenz und Gains der |Digital Phase Locked Loops (DPLLs)| Der Laser Lock
Algorithmus wird benutzt um die Frequenz eines Lasers auf die eines anderen
zu stabilisieren. Dies wird erreicht indem der Frequenzunterschied beider Laser
konstant gehalten wird, wodurch Heterodyninterferometrie erméglicht wird. Die
Amplitude des Eingangssignals variiert stark im Laufe der Zeit. Um dem entge-
genzuwirken folgt der |Automatic Gain Control (AGC){der Amplitude und passt
die Gains der laufend an. In[LISA] wird die Richtung der Laserstrahlen mit
Hilfe eines weiterentwickelten [Differential Wavefront Sensing (DWS)|Schemas
gemessen, das die differentiellen Phasen zwischen den Segmenten der|Quadrant]
IPhoto Diode (QPD)| direkt misst. Dies verbessert die [Carrier to Noise Density]

Ratio (CNR)|in den|DPLLs|um einen Faktor 2. Der absolute Abstand zwischen den
Satelliten wird ebenfalls gemessen um im Postprocessing [Iime-Delay Interferom;

zu erméglichen. Dies wird erreicht indem ein [Pseudo Random Noise]
Code iiber die Laserverbindung zu einem entfernten Satelliten geschickt
wird, wo er mit einer lokalen Version davon korreliert und so die Entfernung
aus der gemessenen Verzogerung berechnet wird. Da nur einer der drei
Satelliten eine Funkverbindung zur Erde hat, miissen die Daten zwischen den
Satelliten transferiert werden. Diese Funktionalitit ist Teil der
indem die Daten auf den [PRN|Code aufmoduliert werden. Im Laufe
dieser Doktorarbeit werden alle nétigen Hilfsfunktionen entwickelt, vollstindig
vorgestellt und vermessen.

Schlagworte: Interferometrie, Messtechnik, Hilfsfunktionen
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Chapter 1

Introduction

1.1 Gravitational Waves

More than a hundred years ago, Albert Einstein developed his General Theory of
Relativity[1]. This theory extends Newton’s laws of gravitation[2]] to incorporate
the effects of high velocities and strong gravitational fields. According to this
theory, matter and energy bend the fabric of space-time itself, which in turn tells
the contained matter how to move. Among other effects, the theory predicted
the existence of so-called gravitational waves[3]]. These waves are small ripples
in space-time, which are generated by systems with accelerated and spherically
asymmetric motion. Two objects orbiting each other is an example of such a
system.

Just like electromagnetic waves, gravitational waves carry energy, although
this energy has a much smaller impact on the visible matter. This makes it very
hard to measure them. Even Einstein believed that a direct measurement could
probably never be achieved. Despite this, gravitational waves have finally been
measured directly at the [Laser Interferometer Gravitational Wave Observatory]
(LIGO))in September 2015 in the USA[4], origination from the collision and merger
of two massive black holes.

1.2 Gravitational Wave Detectors

is one of several gravitational wave detectors currently in operation on
Earth. Others include Virgo[s]] in Italy and GEO600[6]] in Germany. All those
gravitational wave detectors operate using the same basic principles of
[Range Interferometry (LRI)} A coherent light beam is generated by a Laser and
split into two beams using a half-transparent mirror, a so-called beam-splitter.
Both beams travel orthogonally to each other to a distant mirror in each arm,
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where they are reflected back to the beam-splitter mentioned above. The distance
that both beams travel is the so-called arm length of the detector. At the beam-
splitter, both beams are superimposed and generate constructive or destructive
interference, depending on the phase difference between both beams.

If both beams travelled the same distance, this phase difference would be
zero. When a gravitational wave hits the detector, the space-time will be slightly
stretched or compressed in one direction with the opposite effect in the other
direction. This leads to the beams travelling different distances and therefore
having different phases at the beam-splitter. The emerging interference pattern is
measured with a photodiode and converted into an electrical signal. For small
phase differences, this electrical signal is proportional to the phase difference of
both beams. This measurement method is called homodyne interferometry.

The signals generated by a gravitational wave have usually varying frequen-
cies ranging from the mHz range up to the kHz range[7]. Depending on the
construction and other environmental factors, gravitational wave detector are
limited to a particular range of frequencies. This is known as the bandwidth of
the gravitational wave detector.

1.3 Laser Interferometer Space Antenna

The ground-based gravitational wave detectors are severely limited in bandwidth.
At the lower end of their frequency spectrum, they are limited by environmental
noise such as gravity gradient noise and seismic noise[8]. That means that they
are only able to measure gravitational waves of high frequencies in the range of
10 Hz to 2 kHz.

To be able to measure gravitational waves of lower frequencies, a gravitational
wave detector needs to be positioned far away from the disturbances of Earth, i.e.
in space. Such a gravitational wave detector in space, the |[Laser Interferometer
ISpace Antenna (LISA), is currently being developed[o]] and its launch is planned
for 2034. [LISA| will consist of three instead of two interferometer arms, forming
an equilateral triangle with an edge length of 2.5 Gm. [LISA|will be able to measure
gravitational waves of low frequencies in the range from 0.1 mHz to 1Hz.

In contrast to the gravitational wave detectors on Earth, will not use
the traditional homodyne interferometry mentioned above. Instead, will be
using heterodyne interferometry. In contrast to homodyne interferometry, where
two beams that have been split off a single Laser beam interfere, in heterodyne
interferometry two beams originating from two separate Lasers interfere. The
lasers have different frequencies, and the frequency difference between them
is held constant. Thus they generate a sinusoidal signal on the photodiode, the
so-called beatnote. The phase difference information is embedded in the phase of
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this beatnote.

1.4 LISA Metrology System

In comparison to homodyne interferometry, heterodyne interferometry requires
substantial more complex measurement electronics to extract the phase signal
out of the beatnote. In the case of this measurement electronics is called the
[LISA Metrology System (LMS)| A prototype of the LMS|has been jointly developed
by the Albert Einstein Institute (Max Planck Institute for Gravitational Physics)
in Hannover, the National Space Institute (Technical University of Denmark) as
well as Axcon ApS (The FPGA Power House) in Denmark.

The core functionality of the is digital. It uses 20|Analogue to Digital|
|Converters (ADCs), which are converting the analogue signal from the photodi-
odes into a digital signal. Furthermore, it consists of 8 [Field Programmable Gate]
|Arrays (FPGAs) which are used to process these digital signals. The results can
either be transferred to a [Personal Computer (PC)| or be converted back to an
analogue signal using four [Digital to Analog Converters (DACs)|

The primary function of the consists of measuring the relative phase of
an electronic sinusoidal signal as accurately as possible. This phase measurement
is done using a so-called [Digital Phase Locked Loop (DPLL), which takes the
beatnote as its input and outputs its frequency as well as its amplitude and
relative phase. Therefore it is also called a phase meter, albeit it has a large
number of auxiliary functions[10].

1.5 Auxiliary Functions Outline

This thesis will discuss the auxiliary functions of the

1.5.1 Beatnote acquisition

For the to function correctly, it needs three additional parameters: An ap-
proximate value of the beatnote frequency as well as loop gain parameters, which
depend on the amplitude of the beatnote. In Chapter (3, a beatnote acquisition
system will be developed, which is used to determine these three parameters from
the beatnote. This is done using a[Fast Fourier Transform (FFT), which will be
explained in more detail.
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1.5.2 Automatic gain control

When the beatnote signal changes its amplitude, the gain parameters of the
have to be adapted to ensure continued functionality of the In Chapter 5]
an [Automatic Gain Control (AGC)|system will be developed, which continuously
updates the gain parameters without using the from Chapter

1.5.3 Laser Locking

As explained earlier, in contrast to homodyne interferometry, heterodyne inter-
ferometry requires two lasers to be kept at a specific difference frequency. In
Chapter |4} a Laser locking system will be developed, that continuously measures
the beatnote frequency between two lasers and changes the frequency of one of
the two lasers if the measured frequency deviates from the specified target.

1.5.4 Differential Wavefront Sensing

In an interferometer, the two interfering beams are usually not perfectly parallel
to each other due to misalignment of the optical components of the interferometer
or the spacecraft. This leads to different relative phases on different parts on
the photodiode. Therefore these different phased need to be measured to allow
correction of the alignment. In Chapter [6an efficient system to measure these
phase differences will be developed. It is called Differential Wavefront Sensing]
(DWYS)

1.5.5 Ranging

In the case of the absolute distance between the spacecraft also needs to be
measured. This data is required during post-processing to eliminate Laser noise.
In Chapter 7| a ranging system to measure absolute distance using heterodyne
interferometry is developed. This used a so-called [Delay Locked Loop (DLL),
which can also be used to transfer measurement data between the spacecrafts.

In the following chapters, each of these auxiliary functions will be developed,
its purpose explained, and its performance measured.




Chapter 2

LISA Metrology System

The is an essential component of the mission. Among other things, it
is responsible for scientific measurements, laser control and data transfer. The
primary function is the precise phase measurement of various heterodyne signals,
including the main beatnote, sidebands and the pilot tone. In this chapter, the
basic structure of the current prototype of the LMS will be presented. It is also
called [Elegant Bread Board (EBB)|and can be seen in Figure It is used as the

primary hardware platform for all technologies that are developed in this thesis.
The functions of its key components will be explained in the following sections.
More information about the can be found at [10].

Figure 2.1: The is the current prototype of the on the spacecratft.
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2.1 Overview

A schematic representation of the can be seen in Figure It consists of the
following building blocks:

« Mainboard

Bridge module

+ Clock module

« Five[ADC modules

« DACmodule

« FFTImodule

« Micro controller module

The presented modules will be described in more detail in the following sections.

Clock IADC] IADC] IDAC]
module module 2 module 1 module
A A A
Personal Micro | Bridee |<
Computer controller [~ &
A
Y Y Y Y
[FFT] IADC] ADC] IADC]
modue module 3 module 4 module 5
A

Figure 2.2: A schematic representation of the including the bridge module,
the clock module, five modules, the module, the module and the
microcontroller. Red arrows are serial GBit interfaces, the blue arrow is a parallel
memory interface, and the green arrow are Ethernet and RS232 interfaces.

2.2 Mainboard

The mainboard provides the underlying infrastructure, such as power supplies for
digital and analogue circuits as well as digital interconnects. Most interconnects
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are realised as serial GBit links, which are marked with red arrows in Figure
They have a maximum bandwidth of 3.2 Gbits™'. The interconnect between the
microcontroller and the bridge is a 16 bit parallel memory interface, marked
with a blue arrow. External interfaces are 1000BASE-T Ethernet and RS232,
both provided by the microcontroller, marked with a green arrow. Scientific
measurement data is read out through the Ethernet port, which is also used to
control the LMS| by setting various parameters. The RS232 port is used primarily
for debugging and reprogramming purposes of the microcontroller.

The module and the bridge module are soldered onto the mainboard. All
other modules have the form of Add-In cards and can be replaced when deemed
necessary.

2.3 Micro controller

The microcontroller module used in the is the Embedded Artists’ LPC3250,
which is built around the NXP LPC3250 microcontroller. Among other things, it
features a fast 32 bit ARM core with an[Floating Point Unit (FPU), 64 MB
|Access Memory (RAM)| 128 MB Flash storage as well as a 1000BASE-T Ethernet
transceiver and an external 16 bit parallel memory bus.

The primary task of the microcontroller is to filter the measurement data
using floating-point arithmetic and transmit them to a|PC|via Ethernet. Other
responsibilities include the control of various functions of the autonomously,
e.g. the laser lock algorithm which will be explained in Chapter[g] as well as the
readout of temperature sensors mounted on the mainboard and the modules and
connected via I’C.

2.4 Bridge

The primary function of the bridge is to interface the parallel memory interface
of the microcontroller with the serial GBit interfaces of the other modules. It
collects the measurement data from the [ADC| [DAC|and [FFT| modules, reformats
them and forwards them to the microcontroller. At the same time, it receives
commands from the microcontroller and sends them to the modules mentioned
above. Another essential function is to forward measurement data from the [ADC|
modules to the module to build a closed loop used by the laser locking
facility explained in Chapter

The bridge module consists of a Xilinx Spartan 6 XC6SLX75T FPGA, featuring
eight GBit Transceivers. Seven of those are used to connect to the
and modules.
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2.5 Clock Module

The clock module is used to generate an 8o MHz system clock for the digital
part of the (except the microcontroller, which has its own 50 MHz crystal
oscillator) as well as a highly phase stable 75 MHz pilot tone for jitter correction
in post-processing. Both clocks are generated from a 2.4 GHz clock, which is
divided by 30 and 32 to produce the system clock and the pilot tone, respectively.
More information about the clock module can be found in [11]].

2.6 DAC Module

The [DAC|module is used to convert digital signals back to analogue signals. It
consists of four Texas Instruments DAC5675A DACs with an appropriate analogue
back end as well as a Xilinx Spartan 6 XC6SLX75T FPGA connected to them. The
is mainly used to control a laser with the laser lock explained in Chapter[4]
It is also part of the ranging system, which is explained in Chapter 7

2.7 FFT Module

The module is solely used by the beatnote acquisition system described in
Chapter 3} It is connected to two of the five modules and is used to get a
rough estimate of the frequency and amplitude of the heterodyne signals. As the
name suggests, this is done using the algorithm, which will be explained
in greater detail in the chapter mentioned above. The module consists of a
Xilinx Spartan 6 XC6SLX150T FPGA, which is the largest variant in the Xilinx
Spartan 6 series of FPGAs to provide enough space for the resource-hungry [FFTs|

2.8 ADC Modules

The module consists of the four-channel [ADC]| Texas Instruments ADS6445
with an appropriate analogue front end as well as the Xilinx Spartan 6 XC6SLX75T
connected to it. On the several Digital Signal Processing (DSP)
algorithms are being run. Its primary function is the measurement of the phase
and frequency of the heterodyne signals mentioned above. Several[DPLLs|are used
for this purpose, which is described in more detail in Subsection Another
function is ranging, which is explained in Chapter




2.8 ADC MODULES

2.8.1 Digital Phase Locked Loop

A schematic representation of a standard[DPLL|can be seen in Figure It mainly
consists of the following parts:

« Phase detector

« Low pass filter

loop controller

Start frequency adder

« Phase accumulator

Sine/Cosine [Look-Up Table (LUT)|

The phase detector consists of a multiplier, which multiplies a cosine by the
input signal. It produces a signal consisting of the sum and the difference of the
frequencies of the input signal and the cosine. This signal is low-pass filtered to
remove the sum frequency component. The resulting output is called the Q value
and describes the phase difference between the cosine and the input signal. If the
input signal and the cosine have a phase difference of 2 the Q value is zero.

Therefore the Q value is used as an error signal and is fed into the loop
controller, which calculates the so-called actuator signal. The loop controller is a
[Proportional-Integral (PI) controller with adjustable gains Gp and G in this case.
A starting frequency f;,+ which must be near the actual heterodyne frequency
is added to the actuator signal, and the result f, is fed into an
|Controlled Oscillator (NCO)|

An consists of a|Phase Accumulator (PA)| which integrates the input
frequency to a phase ¢. This phase is then converted to a sine or cosine signal
using a[LUT] which assigns a sine and cosine value to every possible phase value.
This generates the cosine mentioned above, which is multiplied by the input
signal.

By controlling the actuator signal and thereby the the [Pl controller tries
to minimise the error signal in such a way that the phase of the cosine tracks the
phase of the input signal with a phase difference of 2%,

Typically, a sine is also generated by the and multiplied with the input
signal in a separate signal chain. When the is locked, this sine is in-phase
with the input signal and can be used to obtain its amplitude (also called the I
value) when multiplied. However, this part has been left out from the schematic
for the sake of simplicity. It is not essential for the proper function of the
but will be useful for the algorithm in Chapter

More information about the can be fount in [12].
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Go, Gy
Q
Input —> >< _\ > [PI <— fstart
A
S-
§ fout
@
LUT|< A -+
A

A

clock

Figure 2.3: A standard |[DPLL| without the I part, showing the phase detector, loop
controller (PI), the starting frequency fi;,,, the phase accumulator (PA) and the

look-up table (LUT).
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Chapter 3

Beatnote Acquisition

The beatnote acquisition functionality of the is used to find the frequency
and amplitude of an unknown beatnote signal. The frequency is used as a starting
frequency for the in the phase measurement system, and the amplitude is
used to determine the correct gains used in the[DPLLs| The [DPLL|is described in
greater detail in the PhD thesis of Oliver Gerberding|[12].

To detect the frequency and amplitude of an unknown beatnote signal, it is
transformed into its frequency spectrum. In this form, the beatnote frequency
peak should stand out from the surrounding noise and can easily be detected. Its
height denotes the amplitude of the beatnote signal. The decomposition into a
frequency spectrum is performed by an accelerated discrete version of a
[Transtorm (FT)[13]], which is called and is described in the next subsection.

The constitutes the heart of the beatnote acquisition system, alongside
a simple peak finding algorithm, a gain calculation algorithm and some miscel-
laneous helper functionality. An essential feature of the beatnote acquisition
system is also the ability to exclude specific frequencies from detection. These
include multiples of 10 MHz, which are commonly found in a lab environment,
due to its frequent use as reference frequency in electronic equipment, as well as
its harmonics. This frequency exclusion feature is implemented inside the peak
finding algorithm mentioned above, which will be described in more detail later.

3.1 Fast Fourier Transform

The [FFTis a high-speed algorithm that is used to calculate the frequency spectrum
of an equidistantly sampled digitised signal. Even though the samples are
real numbers, the input has the form of N complex numbers representing the
discrete amplitudes in the time domain. These numbers are transformed in such
a way that the result also yields N complex numbers but representing discrete

11



3. BEATNOTE ACQUISITION

amplitudes in the frequency domain. Therefore such an is also called N point
FET

Its most popular variant has been developed by James Cooley and John W.
Tukey in 1965[14] and will be used throughout the thesis. This particular algo-
rithm has been chosen, because it is very fast, relatively easy to implement and
straightforward to parallelise, which is a huge benefit in an based phase
meter.

There are many variants of the [FFI|[15]] [16][17]. Most of them are tailored
towards a specific N, being very efficient at that N. However, the exact N is not
very important and should be changeable in any case. Hence, we will concentrate
on the fundamental algorithm in the following.

The does not need a particular high N because the will also lock,
if the starting frequency is a few kHz away from the actual signal frequency.
Therefore, an N = 1024 has been chosen in this thesis. This results in a frequency
resolution of 78.125 kHz at a sampling rate of 8o MHz. This will be explained in
greater detail, later.

3.1.1 Theory of Operation

The algorithm works by recursively dividing the processing of the N input
data points into smaller In each step, the number of points to be computed
gets divided into two as equally sized parts as possible. In each of the smaller
this process is repeated until the number of points in an[FFI]is a small prime
number.

The algorithm from James Cooley and John W. Tukey only works for
the prime number 2, which means that N has to be an integer power of 2. This
prime number is also called the radix of the and the described particular [FFT]
algorithm is therefore also called a radix-2 Other [FFT]algorithms work for
different radices, but they are not as simple to implement and do not have any
significant advantages over the radix-2

The final 2 point are simple 2 point [Discrete Fourier Transtorms (DFTs)|
and are called butterflies in the context of An|[FFT] of the length N consists
of

N, = g log, (N) (31)

such butterflies and therefore has a complexity of O(Nlog, N). As a comparison, a
that directly implements its defining formula has a complexity of O(N?)[18],
which is much worse.

Each butterfly takes two complex numbers x; and x, as input and has two
complex numbers y; and y, as output, as shown in Figure The butterfly also

12



3.1 FAST FOURIER TRANSFORM

is associated with an additional parameter k that depends on the position of the
butterfly in the It will be explained later.

X1 - N

k

X2 N

Figure 3.1: Schematic of a butterfly. x; and x, are the input numbers of the
butterfly and y; and y, are the output numbers. k is the exponent of the twiddle
factor.

A butterfly looks as follows:
y,(k) = x; + ¥,
ya(k) = xy = 75, (3.2)

with ‘
271

Z=e N. (3-3)

Z is the so-called twiddle-factor. This factor only depends on the size of the

The computation of an 8 point is exemplarily shown in Figure

On the left, the time-dependent input values X, to X; are shown. They are
arranged in bit reversed order. This is done by reversing the binary representations
of the input ordinal numbers. For example in an 8 point the ordinal numbers
range from 0 to 7 and can be represented using three bits. To calculate the input
number required, e.g. at the third input of the first, the binary representation
of 3 has to be written down: 011. Then the numbers are reversed leading to 110,
which represents the number 6. Therefore the third input of the FFT expects the
sixth input number.

The input values traverse through several stages of the that are marked
by red rectangles. Each stage is further divided into one or more butterfly groups,
marked by blue rectangles, and every group of butterflies consists of one or
more butterflies, represented by a cross. As can be seen, an 8 point [FFT] consists
of 12 butterflies in accordance with Equation On the right side, frequency
dependent output values Y, to Y; are shown. They are in ascending order.

The whole N point is divided into

N; = log, N (3-4)
stages. These stages are further divided into
N

gs = 9s+1 (3.5

13
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XA /ANL
AN ||| AN

TR
-

Figure 3.2: Schematic of an 8 point Each cross represents one butterfly. Each
blue rectangle is one group, and each red rectangle is one stage. Labelled in green
are exponents k of the twiddle factors.

groups of butterflies, where s is the stage number, beginning at s = 0. Each stage

consists of N
b N
N.=—== .6

S

butterflies. Therefore, each group consists of

Nps
Npg = o = 2° (37)
g Ngs
butterflies.
Using these numbers, we can finally calculate the exponent of the twiddle-

factor: b
k= N

- , 38
2Nog (3-8)

where b is the butterfly number in its group, beginning at b = 0. E.g. for the
second butterfly in a group of four butterflies, b = 1 and N,,;, = 4. With N = 8,
this results in k = 1. In Figure the parameter k is marked in green.
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3.2 REAL VALUE INPUT DATA

In contrast to an[FT] the and are not computing an integral due to its
discrete nature. Therefore, the input and output units are the same. In case of a
signal from an this would be volts. The output of the is not multiplied

by any additional normalising factors.

3.2 Real value Input Data

In our case, the input to the [FFT]is the[Alternating Current (AC)|from a photodiode
that is digitised by the as described in Section [1.4} and is completely real
data. Therefore, only a real data would be needed, but the algorithm is
intrinsically an algorithm dealing with complex numbers. To solve this problem,
two approaches have been tried. They will be discussed in the following.

3.2.1 Padding the Input

As a first approach, the imaginary part of the input data was padded with zeros.
However, the output data Y}, still consists of complex numbers. They are in this
case symmetrical around the Nyquist-Frequency[19]

Js

fay =5 (3.9)

where f; is the sampling frequency of the Therefore,

Ynok = Yk (3.10)

with N being the number of input data points and k the number of an arbitrary
data point.

This symmetry shows that a real [FFI] does not have more independent output
data points than input data points. Therefore the number of resulting frequency
bins is N

Ny, = 5 (3.11)

However, the more important frequency resolution Afis not affected by this

condition, because it only depends on the number of input values and not on the

number frequency bins. The frequency resolution describes the distance between
two frequency bins in an and can be calculated as

Js

Af = —=. 12

f=% (3.12)

For example, an[FFT|with N' = 1024 points and an input signal with a sampling
frequency of f, = 80 MHz results in a frequency resolution of

Af = 80 MHz
1024

= 78.125kHz. (3.13)

15



3. BEATNOTE ACQUISITION

For Ny, = 512 frequency bins, the available frequency bins are numbered from Y,
to YN, -1 = Ys511. Therefore the frequencies range from

fo=0Af =0Hz (3.14)

to
fNﬂ)_I = fs11 = 511Af = 39.921 875 MHz. (3.15)

To get a real spectrum from an [FFT] the absolute value of its complex output
has to be obtained by multiplying it by its complex conjugate and then taking
the square root. This, however, has the side effect of the phase information loss
of the input signal, since there are now less real output numbers than real input
numbers (512 instead of 1024). Fortunately, the phase information is not relevant
for the beatnote acquisition.

3.2.2 Increasing Efficiency

he process mentioned above is not very efficient since only half of the input
data of the gets filled with the input signal, and the other half of the
stays unused. Fortunately, there are ways to optimise this misuse of precious
computational resources.

One approach is to exploit the symmetry in Equation [3.10] Additionally, there
is another symmetry when an FFT has purely imaginary input data:

Yok = - Y. (3.16)

Using both symmetries, either an N point can be used to compute the
spectrum of two sets of N real data points or an g point [FFT| can be used to
compute the spectrum of N real data points[20].

Computing two separate real with a single complex can result in
cross-talk between both real [FFTs|if the computations are carried out with limited
precision, as it is the case on an[FPGA| The |[ADC]|signal is represented in two’s
complement format with, in the case of the a bit-width of 14 bit. This
fixed bit-width limits accuracy, since arithmetic operations such as addition
and multiplication produce numbers with greater bit-widths, which must be
shortened before further processing can happen. E.g., the multiplication of two
numbers of the length m results in a number of length 2m. Trimming this number
back two a length of m bits for further processing results in an information loss of

50 %. Having said that, two N point [FFTs|require more logic space than a single N
point because of the additional surrounding logic that is part of every

Since for the beatnote acquisition we are only interested in the rough ampli-
tude of a signal, there is no need for high precision spectra. Also, the [FPGA|logic

16



3.3 IMPLEMENTATION

space is limited, and there is more than one anyway. Therefore, the first
method, where an N point[FFT]is used to compute the spectrum of two sets of N
real data points, will be used in the following.

The first set of N real data points are filled into the real part of the input,
and the second set of Nreal data points are filled into the imaginary part of the
same input. Then a standard [FFI]is computed. Extracting the two separate
results from the output of the requires some more computation:

Y, = %(Ym + Yn_m)
Y, = —é (Y= Yn_p) - (3.17)

where m € N¥, k < g Ym is the original output from the FFT and y, and yj
are the extracted results for the first (Y,) and second (Y})) real

Since the does not know about imaginary numbers and the results get
squared in a later step, the factor —i in the calculation of ¥}, can be omitted to
reduce the required computational resources. Finally, the same steps as described
in Section can be executed to obtain a real spectrum.

Note that the |Direct Current (DC)| part cannot be obtained using this method.
According to Equation , the computation of Y, and Y}, would require the
output value Yy which does not exist, because there are only N output values.
Fortunately, the part is not relevant for the beatnote acquisition.

3.3 Implementation

The was written in [Very high speed integrated circuit Hardware Description|
ILanguage (VHDL)|and features synthesis-time configuration of the bit-widths of
its inputs and the number of frequency bins. It consists of three basic parts:

+ One butterfly
+ dual-port memory blocks
« control logic

The[FFT|reaches a duty cycle of approximately 50%. That means, assuming the
input data is sampled with the same frequency that the FFT is clocked with, the
can compute spectra of roughly half of the input data if it runs continuously.
This is more than enough for beatnote acquisition since it will only run at a
frequency of a few Hertz.

After the processing by the the absolute value of the output signal is
calculated. In this case, however, the square root is omitted, and the output is only

17



3. BEATNOTE ACQUISITION

multiplied by its complex conjugate. The reason is that the square root cannot
be easily implemented on an Since the amplitude from the is now
the square of the real amplitude, this has to be considered in the gain calculation
algorithm, which will be described in Section

The result of the[FFT]is finally transferred to the peak finding algorithm, which
will be described in Section [3.4/and then to the gain calculation algorithm.

The whole implementation will be presented in full detail in this section.

3.3.1 The Butterfly

As stated in the previous section, an N point [FFT| consists of n = g log, (N)
butterflies. The required powers of the twiddle factors from Equation 3.2 are
calculated at synthesis-time for a given N since they do not depend on the input
data. They are loaded into a at the initialisation-time of the

Equation [3.2 contains two complex multiplications (¢ kxz) as well as two com-
plex additions. Since both complex multiplications are the same multiplication,
its result can be reused and only counts as a single multiplication. This results in
a total of one complex multiplication and two complex additions.

Since the can only perform real calculations, Equation [3.2| had to be
divided into real and imaginary parts:

Ry, = Ry + R Rx, - 32534,

Sy, = Sx; + 3¢ Rx, + ReF3x,

Ry, = Rxy - (R R, - 3253y

3y, = Sx; - (S2F%Rx, + R MGy (3.18)

Ignoring redundant calculations, this contains four real multiplications and six
real additions:

M,y = RZ 5%,

My, =S¥,
My = RZ*3x,
M., = 325%x,
Ar = Myyrx = Migix
Ay = My + Mgy
Ry, = Rx; + A
Sy; =Sx; + Ay
Ry, = Rx; - A4
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Sy, =3x1 = Ay, (3.19)
where My, Mitix> Mrtix> Mitrxs A1 and A, are temporary variables.
Figure 3.3/ gives a schematic overview of how such a butterfly is implemented

in an [FPGA|

stk gk Sx g Sx Rx;
3
()
\/ v

é

Y l Y

A
3y, Ry, Sy iy
Figure 3.3: Schematic of a butterfly implementation in an|[FPGA| Red is a complex

multiplier, green is a complex subtractor, and blue is a complex adder

The red box shows how a complex multiplication is implemented using real
multipliers and real adders. The green and the blue boxes show the implementa-
tion of complex addition and subtraction using real adders and subtractors.

According to Equation[3.1] an with N = 1024 data points would consist
of N;, = 5120 butterflies and would therefore need 20480 real multiplications and
30720 real additions. Unfortunately, this is way out of the capabilities of any
modern [FPGAJ| Therefore, our [FFT| implementation only uses a single butterfly
which is getting reused in every computation step. The source of the
butterfly implementation can be found in Section

3.3.2 Dual-port Memory Blocks

Another vital part of an implementation is the memory arrangement. There
are two different variants of how the memory can be arranged in an [FFT]imple-
mentation. Both have in common that dual-port[RAM]blocks are used. Dual-port

'E.g. a Xilinx Virtex-6 has only up to 2016 multipliers and adders|[21]
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3. BEATNOTE ACQUISITION

memory is commonly used in[Video Memory (VRAM)|[22]] and register files. It
has the advantage that any two memory cells can be read or written to at the
same time, as opposed to single-port which only allows a single read or
write operation at a time. This is useful since every butterfly operation always
works on two numbers (x; and x,) at the same time. Therefore, these numbers
can be retrieved from and stored in the dual-port memory in a single step, thus
saving time as well as complexity in the control logic.

In the first variant, one dual-port block is used for the input numbers.
Each time a butterfly is computed both input numbers are read simultaneously
from the dual-port RAM|block. The butterfly processes them and writes the, back
to the same memory locations. A schematic overview of this variant can be seen
in Figure

In the second variant, two dual-port blocks are used, with one of them
holding the initial values of the input numbers. Each time a butterfly is computed,
both input numbers are read from one dual-port[RAM|block. The butterfly pro-
cesses them, and the result is stored in the other dual-portblock. After each
stage, the dual-port[RAM]blocks are exchanged by the control logic. A schematic
overview of this variant can be seen in Figure

J X1 l€«—> <> X
> X1 > >< > Xy |l€e—> X <> X
> X > k > X3 Butterfly X3
x3 Butterfly . i % .

5 =]
O o O

o > o
5 . |5 3.

O g 2 o5}
" F XN XN

XN
(b) @ implementation with two dual-port

(a) implementation with only one dual-
portRAM]block. In each stage the numbers
are read from the dual-port block,
processed by a butterfly and stored in the

same dual-port block.

memories. In each stage, the numbers are
read from one dual-port block, pro-
cessed by the butterfly and stored in the
other dual-port block. Then both
dual-port blocks are exchanged.

Figure 3.4: Common memory arrangements in implementations

The second variant is faster than the first variant but comes at the cost of
twice the memory usage and more complex logic. There are also variants, where
only a single-port memory is used, but this is slower since the input numbers
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have to be read out sequentially. The latter setup requires even more complex
logic and takes much longer.

The single dual-port memory arrangement has been chosen in this implemen-
tation to keep space requirements for the low. The availability of dual-port
memory on modern was very beneficial to the speed of our imple-

mentation.

Memory usage

This particular implementation has been written to be used on the
Therefore it accepts input signals with a width of b = 14 bit, which is the resolution
of the used[ADCs| The number of samples can be configured at synthesis time. In
the lab, it has been found to be sufficient to use N = 1024 samples. This results in
a blockRAMlusage of N x 2 x b = 28 kbit per FFT for sample storage. Additionally,

Read Only Memory (ROM)|for the storage of g complex twiddle-factors is needed,

which equates to N« 2 x b = 14kbit. Since the [FPGA|uses block RAM|to store
large amounts of data, this leads to a total of 42 kbit of block RAM|per
Since one can be used to process two real[ADC| channels, this amounts to
21kbit of block RAM|per [ADC| channel. As a comparison, the proprietary
core from Xilinx uses 54 kbit of block per or 27 kbit of block per
channel. This is slightly more, but in return the proprietary [FFI]features a 100 %
duty cycle.

3.3.3 Control Logic

The operation of the is controlled by an [Finite State Machine (FSM)| together
with a bin counter and a butterfly counter. The bin counter is used when reading
new input data or writing the result. It counts from zero to N - 1 and stores N
input values in the dual-port[RAM]block and reads N output values from the dual-
portRAM]block, while the butterfly counter is used to coordinate the butterfly
computations. It counts from zero to Nj, - 1 and sets the memory addresses for x;,

Xy, y; and y, as well as the tk parameter of the butterfly according to the current
butterfly number. The finite state machine consists of six states. A schematic
overview of the state machine can be seen in Figure

The initial state is the idle state, in which the [FFI|resides when the reset signal
to the is lowﬂ Once the reset signal rises, the state machine changes into the
Input state. In this state, data is read from the input port of the FFT and saved
in the dual-port memory blocks. The bin counter counts each input number to

*The reset signal is always active low. That means it is active when it is low (logical zero), and
it is not active when it is high (logical one)
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Figure 3.5: Schematic overview of the finite state machine.

make sure that the correct number of input values are read. After the last input
number has been read and saved into its corresponding memory bin, the actual
computation loop starts. This loop consists of three states.

In the first state, the read state, two complex numbers are read from
the dual-port[RAM|block and given to the butterfly. After that, in the Busy state,
the actual butterfly computation takes place. This is a separate state because
the computation is somewhat complicated and takes quite some time. The third
state in the computation loop is the write state, in which the result from
the butterfly is written back to the dual-port memory blocks. If this was the
last butterfly to compute the finite state machine changes into the Output state,
otherwise it increases the butterfly counter and continues the computation cycle.

In the Output state, the results are read from the dual-port blocks and
written to the output port of the Again, the bin counter makes sure to output
the correct number of complex numbers. From there on, the restarts at the
Input state to accept the next data set.

The source of the control logic implementation can be found in Sec-
tion
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3.4 Peak Finder

The peak finder receives a serial stream of frequency/amplitude pairs and outputs
the frequency/amplitude pair with the highest amplitude. It also evaluates the
user-defined list of ignored frequencies.

The peak finder first initialises an internal frequency/amplitude pair with 0/0.
It replaces this frequency/amplitude pair with a new pair, whenever the ampli-
tude of the new pair is higher than the amplitude of the existing pair and if the
frequency is not on the list of ignored frequencies. The internal frequency/ampli-
tude pair is reset, whenever a frequency/amplitude pair with a frequency value
of 0 arrives, and thus a new spectrum begins.

The frequency/amplitude pair with the highest amplitude found so far is
output and can be used as the starting frequency and for the gain calculation for
a later.

The source of the peak finder implementation can be found in Sec-

tion

3.5 Gain Calculation

To understand the gain calculation algorithm, the influence of gains on the func-
tion of a must be understood. A linear model will be presented to provide
a basic understanding of the relationship between amplitude and gain. To get
absolute values for the gain, a proper non-linear low-level simulation will be
performed.

3.5.1 Linear Model
A general linear model of a|DPLL|looks as follows:[12]]

, , -1 1 14514 ,-2 4 ,-3
L(z) = 4 26 <2GP2‘1 +2G 2 ) 2nz 1vz 27tz , (3.20)
2 1-z1)1-21 4
NAN I\ J
Lpp Lpg Ly Lnco Lipp

where Lppy is the transfer function of the phase detector, with A being the ampli-
tude of the incoming signal. Lpg is a pre-gain that is applied just before the
controller. Lpy is the transfer function of the |PI controller, with G;, and G/ being
the gains of the [P controller itself. Lycq is the transfer function of the
L; pr is the transfer function of the low pass filter, which computes the moving
average of the last four values.
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The pre-gain 2° can be factored into the gains of the [P controller, which
leaves us with the following linear model:

, 21
1-z1/1-2z1 4 (321)

consisting only of the amplitude A of the signal as well as the gains Gp and G
for the [PI controller.

From Equation one can already see how the amplitude influences the
gains. When the amplitude halves both gains have to increase by one and when
the amplitude doubles, both gains have to decrease by one to keep the loop output
the same.

Since according to Section 3.3} the amplitude signal coming from the FFT is
already squared, the square root has to be taken before this signal can be used in
the gain calculation.

With Gpg being the Gp gain for the maximum amplitude, Gy being the G; gain
for the maximum amplitude, Ag being the squared amplitude from the FFT, the
corresponding Gp and Gy gains can be calculated as follows:

A B -1 omzl 1421422423
L(z)=5<2Gle+ZGI z ) 4 +Z  +z27 9+ z

G = G| o (ﬁ)

S

Gy = Gygt| log, (—) , (3.22)

assuming that A, < 1 and 0 < Ag.

To identify proper values for Gp; and Gy, a closer look at the linear model
has to be taken. Since the influence of relative amplitude changes on the gains is
already known, an amplitude of Ag = 1 will be assumed in the following.

To examine the loop stability, the Nyquist stability criterion will be used[23]].
Therefore, the phase margin at the unity gain frequency has to be determined.
For a control loop to be stable, the phase margin should be as large as possible.

Figure [3.6| shows the phase margin for a range of different Gp and Gj gains.
The darker areas are areas of higher phase margins. There seems to be a triangular
area, where the phase margin is particularly large. It is safe to assume that all
values of Gp and Gj outside of this triangle will lead to an unstable phase locked
loop.

3.5.2 Low Level Simulation

Since a real DPLL]is not entirely linear, a Gp and Gy gain resulting in a large phase
margin in the linear model is not a sufficient criterion for loop stability. Therefore
further investigation with a low-level simulation has been performed.
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Figure 3.6: Phase margin of a respect to Gp and Gj gains. The darker an

area, the greater the phase margin.

The simulation has been written in C++ and can be found in Appendix[A.1.1] It
consists of a[DPLI]that is locked to an[NCO] The [NCOJoutputs a sinusoidal signal,
whose frequency slowly changes over time. The simulation has been performed
multiple times with different Gp and Gj gains and the I output of the phase locked
loop has been measured. The result can be seen in Figure

Compared to the analysis of the phase margin of the linear model in the
previous section, the region where a stable operation is possible is different.
This is because of numerous non-linear effects in a low-level simulation that are
not respected in the linear model. The examination of these non-linear effects is
outside the scope of this thesis.

For a better comparison, both measurements have been put on top of each
other in Figure

Although the dark areas of both measurements mostly overlap, they are not
quite the same. That means that non-linear effects play an important role and
should not be neglected in these calculations. The actual gains, where the phase
locked loop runs stable and the phase locked loop has enough phase margin lie
within the dark overlap of both measurements. Good gain values should be taken
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Figure 3.7: Measurement of the I output of ain a low-level simulation with
different Gp and Gy gains. The darker, the greater the I value (arbitrary units).

from this overlapping area. Choosing greater gains results in a higher bandwidth,
therefore Gpy = —4 as well as Gy = -8 have been chosen. These gains will be used
in Equation [3.22]in the rest of this chapter.

3.5.3 Bandwidth and Phase Margin

By inserting the calculated gains from the last section into the Equation [3.21the
corresponding Bode plots can be graphed. Figure[3.9| shows the amplitude part of
the Bode plot. This can be used to measure the unity gain frequency, at which
the amplification is precisely o dB:

As it can be seen, the unity gain frequency is approximately 1.45 MHz. This
also means, that the bandwidth of the is 1.45 MHz, which should be plenty
to follow a free-running Laser. In the presence of plentiful white noise, this
bandwidth might not be enough, but can easily be adjusted if needed. Using this
frequency, we can derive the phase margin from the phase part of the Bode plot.
This can be seen in Figure

Examining the plot at the frequency point of 1.45 MHz, this leads to a phase
margin of approximately 42 °. According to the Nyquist stability criterion, the
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Figure 3.8: Overlay of phase margin calculation and low-level simulation. The
overlapping dark area represents the usable gains.

phase margin should be greater than 30 °[24]. Therefore this value should be
sufficient for a stable control loop.

Outside a simulation, the real unity gain frequency may be lower due to noise
present in the system, e.g. 50 kHz-200 Hz.
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Figure 3.9: The amplitude part of the Bode plots of a phase locked loop using the
gains calculated in the previous section.
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Figure 3.10: The phase part of the Bode plots of a phase locked loop using the
gains calculated in the previous section.
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3.6 Measurements

To test the beatnote acquisition system, the heterodyne signal of two free-running
[Non-Planar Ring Oscillator (NPRO)|lasers has been connected to the[LMS| A[DPLL]
has been locked to this beatnote signal using the beatnote acquisition system, with
the running continuously. The experimental set-up can be sen in Figure

Master Laser

Slave Laser D—> ADC > PLL —>{ PC
A
AL Beatnote
FFT and Acquisiti
) > Acquisition
Peak Finder Algorithm

Figure 3.11: Schematic overview of the beatnote acquisition measurement set-up.
The red lines denote the path of the laser beam whereas the blue arrows denote
analogue electrical signals and the black arrows denote digital signals.

The resulting amplitude and frequency as measured by the as well as the
frequency measured by the [DPLL] can be seen in Figure As it can be seen,
the can successfully lock to the heterodyne frequency and follow it.

More measurements of the beatnote acquisition can be seen in Chapter
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— FFT frequency [MHz]
——  FFT amplitude [1]
—— DPLL frequency [MHz]
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2 | | | | |
188 189 190 191 192 193 194
Time [ s]

Figure 3.12: The Amplitude (red line) and the @ Frequency (blue line) of an
incoming beatnote signal are used to lock a|DPLL}(green line).
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Chapter 4

Laser Locking

For the phase measurement of the to work, heterodyne interferometry
is required. Heterodyne interferometry can be accomplished by two different
methods. The first method is using one Laser and an [Acoustic-Optic Modulator]
to create a second laser beam with a slightly different frequency/25]].
The second method is using two lasers, which are being adjusted in such a way
that they have a fixed frequency difference. In both cases, both beams can then
interfere with a beam splitter, and the heterodyne frequency can be measured
with a photodiode[26].

The current baseline for is to use frequency-locked lasers to establish
the heterodyne scheme. Due to varying Doppler shifts between the spacecrafts,
a frequency plan has been created that provides the laser lock frequencies to
be used at any given time[11]. Since this cannot be accomplished with the first
approach, the second method has been chosen to be implemented in the
Having two lasers at a fixed frequency difference is called a laser lock. How this
laser lock is accomplished will be discussed in the following sections.

4.1 Traditional approach

Traditionally, a laser lock has been achieved using an analogue[Phase Locked Loop|
In this scheme, two free-running lasers are interfered using a beam splitter,
creating a heterodyne signal. This heterodyne signal can then be measured with
a photodiode. It is mixed with a constant reference frequency, which is usually
generated using a signal generator. This generates the sum frequency as well as
the difference frequency of both signals. The sum frequency is filtered out using
a low-pass filter, and the remaining signal form the error of the To keep the
phase difference between the heterodyne signal and the reference signal at 2{, the
PLL aims to minimise the error signal. The Q value is processed by a[PI controller
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4. LASER LOCKING

generating a suitable actuator signal to achieve this, which is used to actuate
one of the two free-running lasers to shift its phase to match the phase of the
reference signal. This stabilises the phase of the heterodyne signal at the phase of
the constant reference. A schematic representation can be seen in Figure

Master Laser

Slave Laser D Reference

Pl (e« \

Figure 4.1: Schematic overview of an analogue laser lock. The red lines denote
the path of the laser beam whereas the black arrows denote analogue electrical
signals. Thee slave laser is controlled by keeping the measured difference phase
at a constant target.

There are two significant drawbacks to this approach: Firstly, the frequency
of the laser already has to be very close to the reference frequency, otherwise, the
[PLL] will not lock. This is very hard to automate in analogue circuitry. Secondly,
the analogue is very prone to cycle slips. They can happen when the phase
difference between the reference signal and the heterodyne signal is greater than
180 ° or lower than -180 °. For the [P controller, this looks like a phase difference
of the opposite sign and the phase of the heterodyne signal is shifted in the wrong
direction.

Therefore this approach is not suitable for[LISA] In the following section, a
digital frequency lock will be developed instead. It compares the heterodyne fre-
quency and the reference frequency directly instead of its phases. This eliminates
the issues of the analogue laser lock.
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4.2 Building Blocks

To create a laser lock, the first step is to interfere two free-running lasers using
a beam splitter. This creates a heterodyne signal, that can then be measured
with a photodiode. The difference frequency of the two lasers must lie within
the bandwidth of the photodiode. Since we are using the entirely digital
to accomplish the laser lock, the heterodyne frequency also has to lie below the
Nyquist frequency of the which is 40 MHz[10]. Therefore the lasers have
to be tuned to a small frequency difference in the order of 20 MHz. This rough
tuning is done in software on a microcontroller, which is explained in further
detail in Section Since the frequencies of free-running lasers tend to drift a
lot, the lasers should also have been warmed-up for some time to minimise this
drift and allow for an easier lock acquisition.

The heterodyne frequency will then be digitised by one of the on the
Its frequency and amplitude will be determined using the beatnote acqui-
sition algorithm discussed in Chapter|sl To get a more precise measurement, a
[DPLL] will be locked to the heterodyne frequency. The rough frequency deter-
mined by the beatnote acquisition algorithm will be used as starting frequency for
the and the amplitude will be used to set the corrects gains for the

The user has to supply a target frequency difference to which the two lasers
shall be locked. This target frequency is then compared to the measured hetero-
dyne frequency. The result of this comparison is called the error value. This value
is a measure of the deviation of the current heterodyne frequency from the target.

A controller is then used to calculate the so-called actuator value from the
error value. This actuator value is designed in such a way, that the error value
gets minimised. The controller has a second actuator output, whose purpose will
be described later. The implementation of the controller will be described in full
detail in Section

Both actuator values will be sent to two where they are converted back
to analogue signals. These analogue signals are used to control one of the two
lasers. The laser that is being controlled is called the slave laser, and the laser that
is not being controlled is called the master laser since it is still free running and
the frequency of the slave laser depends on the frequency of the master laser.

The laser used in the laboratory experiments can be tuned by either
varying the temperature of the laser crystal or by actuating a piezo that slightly
changes the geometry of the laser crystal[27]. The first method is used for a
coarse adjustment of the laser frequency, whereas the second method is used for
fine-tuning the laser frequency[28]]. Also, the temperature-based actuation has a
bandwidth of under 1 Hz whereas the piezo-based actuation has a bandwidth of
up to 30 kHz. The two actuator signals mentioned above are used to actuate the
slave laser in both ways.
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4. LASER LOCKING

After being actuated the slave laser will change its frequency accordingly.
This leads to a change in the heterodyne frequency of the two lasers. If the con-
troller works correctly, the heterodyne frequency should draw near to the target
frequency. This whole laser locking mechanism forms a closed loop, allowing
the heterodyne frequency to stabilise very close the target frequency. Even if the
frequency of the master laser changes, the slave laser frequency should follow
very fast.

A schematic overview of the whole laser lock can be seen in Figure

Master Laser

Slave Laser D—) ADC > DPLL

AA

target

Controller frequency

DACs

AA

Figure 4.2: Schematic overview of a laser lock. The red lines denote the path of
the laser beam whereas the blue arrows denote analogue electrical signals and
the black arrows denote digital signals. The slave laser is controlled by keeping
the measured difference frequency at a constant target.

As is can be seen, the path of the various optical and electrical signals form a
closed loop. Therefore this setup is also called a control loop.

4.3 Laser Lock Controller

The laser lock controller transforms the error signal produced by the subtraction of
the current frequency and the target frequency into two actuator signals tailored
to minimise the error signal.

In control theory, there are four different base types of controllers, from which
any other linear time-invariant controller can be constructed[29]:

« Bang-Bang controller

+ Proportional controller
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4.3 LASER Lock CONTROLLER

« Integral controller
« Derivative controller

In the laser lock controller, only the proportional and the integral controller types
are used. When used together these two are called a[P] controller.

The proportional controller works by multiplying its input signal by some
constant factor »p. This factor is also called the gain. The transfer function Hp(z)
of such an proportional controller with the gain »p can be written as:

Hp(z) = np. (4.1)

If the gain is »p = 1, the proportional controller does not change the signal. This
situation is called unity gain, since |H| = 1.

The integral controller works by first integrating its input signal over time
and then multiplying the result with a gain s;. The transfer function Hj(z) of such
an integral controller with the gain s can be written as:

Z—l

I_II(Z) = %Il _ 51 : (42)

The unity gain frequency of an integral controller is at z = s + 1:

(%I + 1)_1
H(z) = q————
1- (%I + 1)
_ !
- 1
Gr D0 =53 (43)
S Gg+1)-1
%!
=—=1.
"

regardless of the value of .
When combining these two controllers to form a [PI| controller, the transfer

functions are added: -1

z
HPI(Z) =xup + %11 e . (44)

That means that the input signal is fed to both controllers at the same time and
the results of both controllers are added together.

However, in this implementation, an additional delay is added to the propor-
tional controller in such a way that both paths through the [PI controller have the
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same delay. This is done by multiplying the proportional part t with z™1. This
leads to the following equation:

/ -1 z! & -1
H} (z) = npz N =<%P+1_Z_l>z . (4.5)

A schematic overview of a[P]| controller can be seen in Figure

Input —— 21 > 1
Output
> Z_l > Hp

Figure 4.3: Schematic overview of a controller used in the laser lock controller

The laser lock controller uses two [PI controllers to generate the two actuator
signals for the piezo input and the temperature input of the slave laser. The first
controller uses the error signal to generate the actuator signal for the piezo
input of the laser. Hence it is also called piezo controller. Since the piezo input
only has a small dynamic range and the temperature input, on the other hand,
has a very wide dynamic range[28]], the actuator signal for the piezo shall be kept
near zero. Therefore, the output of the piezo controller can directly be used as an
error signal for the second [P] controller| The output of the second [P] controller
can then be used as the actuator signal for the temperature input of the slave
laser. Hence it is also called temperature controller. Whenever the piezo actuator
signal gets too large, it will be compensated by the temperature controller by
adjusting the temperature actuator signal. A schematic overview of the laser lock
control circuit can be seen in Figure

The transfer function of the piezo controller is identical to Equation

1-2z71

H, (z)={xp + P z ! (4.6)
pZt - szt > 4

where P is the gain of the proportional controller for the piezo and M athempet

is the gain of the integral controller for the piezo. For the temperature controller

'As if it were compared against zero.
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Input ——> PI Piezo

PI (——> Temperature

Figure 4.4: Schematic overview of the [P controller arrangement in the laser lock
controller

the transfer function can be written as a concatenation of two [PI controllers:

%Ipzt -1 %Itmp -1
Htmp(Z) =\, " S z (4.7)

1-2z71 1-2z71

where - is the gain of the proportional controller for the temperature and
M is the gain of the integral controller for the temperature.
For an overview how this laser lock controller fits into the bigger picture see

Figure

4.3.1 Gains

Due to the much lower bandwidth of the temperature actuator in comparison to
the piezo actuator, the gains of the temperature controller are much lower than
the gains of the piezo controller. The gains in Table |4.1have been found to work
reliably.

‘%P n

First [PT controller -5 -1
Second [Pl controller | -7 -4

Table 4.1: Gains for the individual controllers of the Laser Lock.

By inserting these gains into the transfer functions, the corresponding Bode
plots can be graphed. They can be seen in Figure |4.5/and Figure The laser lock
controller shows a clean integrator-type response and doesn’t show a significant
phase drop until about 10 MHz. This should not affect the bandwidth of the laser
lock, which mainly originates from the bandwidth of the as the frequency
sensor as well as the bandwidth of the piezo and temperature actuator in the laser.
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Figure 4.5: The amplitude part of the Bode plots of the laser lock controller.
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Figure 4.6: The phase part of the Bode plots of the laser lock.
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4.4 Automatic Algorithm

As stated in Section the heterodyne frequency must be within the bandwidth
of the photodiode and below the Nyquist frequency of the to successfully
establish a laser lock. Since this is not always the case and there might not be the
possibility to manually adjust the frequency of the slave laser in the future, there
is the need for an automatic algorithm to acquire a proper heterodyne signal.

To fulfil this requirement, an algorithm in the form of an has been
developed to accomplish this task. This algorithm does not rely on any
previous adjustments of the laser heterodyne frequency and only expects two
free-running lasers, one of which can be controlled by the

The is roughly divided into five parts:

« Temperature scan
« Temperature set

« Piezo adjustments
« Lock

+ Check

These parts will be described in more detail in the following sections.

4.4.1 Temperature Scan

The temperature scan is the first stage after the is powered up and has
initialised itself. A given temperature range will be scanned on the slave laser
while the beatnote frequency and amplitude are observed using the from
Chapter (3l This has to be done slowly, because of the low bandwidth of the
temperature actuator of a few Hz. During the temperature scan, the temperature
with the highest beatnote amplitude will be determined. This is the point where
the beatnote frequency lies within the bandwidth of the photodiode, which is
100 MHz is this experimental set-up, and below the Nyquist frequency of the
LMS]

The temperature scan has two parameters, which are the begin and the end
of the temperature range that should be scanned. This range has to be chosen in
such a way that the temperature, at which the beatnote frequency lies within the
measurement bandwidth, is within this temperature range. The more extensive
this temperature range is, the longer the scan takes. Therefore for testing purposes
in the context of this thesis, a rather small range of approximately +0.5 °C has
been chosen.

A schamatic overview can be seen in Figure
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Tinax = Tlaser
Amax = AFFT

Tinax = 0
Apax =0 —>
Taser = Tbcgin

Taser = Tmax

Figure 4.7: A temperature range is scanned for the maximum FFT amplitude. If it
is over a given threshold, the Laser is set to the corresponding temperature.

4.4.2 Temperature Set

After the temperature scan has completed the whole range, the found amplitude
will be compared against a user set threshold. If the amplitude is higher than the
threshold, the corresponding temperature will be set at the slave laser. Otherwise,
the temperature scan will start from the beginning.

After the temperature value has been set, the phase meter will wait for 3s
to let the temperature settle and the beatnote frequency stabilise. The beatnote
frequency should now lie within the measurement bandwidth of the phase meter.
If not, the temperature scan will start from the beginning.

4.4.3 Piezo Adjustments

After making sure that the beatnote frequency lies within the measurement
bandwidth of the phase meter, finer adjustments have to be performed. The
beatnote frequency has to be shifted near the desired locking frequency using
the piezo in the slave laser. To determine how the voltage has to be changed to
achieve a particular change in beatnote frequency, the piezo voltage is increased
by approximately 0.1V while observing changes in the beatnote frequency. If
the beatnote frequency increases, the coefficient between voltage and frequency
is positive, otherwise it is negative. Whether the voltage of the piezo has to be
lowered or increased to shift the heterodyne frequency in a given direction will
be memorised for later use.

At this point, the sign of the current frequency is also determined. This is
done by XNORing the direction of the change in voltage with the direction of the
change in heterodyne frequency. If both directions are the same, the heterodyne
frequency is positive. Otherwise, it is negative. The signedness of the heterodyne
frequency is essential for the [LISA| heterodyne frequency plan{i].
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After that, the target frequency will be approached step by step. In that
process, the sign of the target frequency is taken into account. The beatnote
frequency should then be within approximately 1 MHz of the target frequency. If
these adjustments fail, the process will be retried from the temperature set step.
After repeated fails, the temperature scan will be re-initiated.

A schamatic overview can be seen in Figure

Srast = FrpT
P=0 P = P P <Py & P> Pag & ‘fFFT - ftarget|
S=1 P=P+5 Ty, JrET > flast JrET < flast < threshold ?

S=-1

Figure 4.8: Calculate the signedness of the piezo. Draw the heterodyne frequency
near the target frequency.

4.4.4 Lock

After the beatnote frequency has been brought near enough to the target fre-
quency, a[DPLL]is locked to the beatnote frequency using the frequency and gains
from the beatnote acquisition algorithm from Chapter [3 Once the has
successfully established a lock, which means the frequency output of the is
close to the frequency measured by the the laser lock controller is turned on
and should lock the slave laser to the master laser in a small amount of time. In
case of failure, the process will be restarted at the point of setting the temperature.
After repeated fails, the temperature scan will be re-initiated.

4.4.5 Check

Once the laser lock has been established, it will regularly be checked for validity.
This is done by comparing the frequency output of the DPLL] with the frequency
measured by the [FFT] If their difference is greater than 0.5 MHz, the lock will be
re-initiated.

A schematic overview of this algorithm can be found in Figure

The source code for the automatic lock acquisition algorithm can be found in
Section|A.3.1
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DPLL lock
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FFT Frequency
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Figure 4.9: Schematic overview of the laser lock
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4.5 Measurements

In this section, various phase meter signals from different acquisition phases will
be shown and further analysed. This will also demonstrate the correct function
of the beatnote acquisition system.

4.5.1 Temperature Scan

During the temperature scanning phase, the temperature signal of the slave
laser is slowly monotonically increased from a predefined lower bound to a
predefined upper bound. This can be seen as a green line in Figure While
the temperature of the master laser is raised, its frequency and therefore also the
frequency difference between the master laser and the slave laser changes. This
frequency difference is measured by the in the beatnote acquisition system
and is depicted by the blue line. Alongside the frequency of the input signal,
its amplitude is also measured by the in the beatnote acquisition system,
which can be seen as a red line in the figure mentioned above. The closer the
frequency difference draws to zero, the higher its measured amplitude gets due
to the limited bandwidth of the photodiode, the and other components.
Whenever the frequency difference is outside of the bandwidth of the phase meter
or the photodiode, the does not measure anything useful anymore, which
translates to random frequency changes and a near zero amplitude. This makes
the detection of a useful heterodyne signal very easy.

4.5.2 Temperature Set

After a useful heterodyne signal has been found in the previous step, its corre-
sponding frequency is set. This change in the temperature signal of the slave
laser is mostly a step function and results in some ringing in the frequency of the
slave laser. Therefore, the phase meter will wait a few seconds until the difference
frequency stabilised itself at a value of a few MHz. This can be seen in Figure

4.5.3 Piezo Adjustments

Once the difference frequency is inside the bandwidth of the photodiode and
the the piezo signal of the slave laser will be used to bring the difference
frequency as close as possible to the target locking frequency, which is 9 MHz in
this case. The piezo signal activity is depicted as a yellow line in Figure As it
can be seen, the difference frequency changes proportionally to the piezo signal.
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4.5.4 Lock

After the difference frequency has been brought near the target frequency, a[DPLL]
is locked to this frequency. The frequency measured by the is depicted by
the black line in Figure As it can be seen the lock of the is acquired very
fast, and its measured frequency is almost identical to the frequency measured by
the The small difference between both measured frequencies is mainly due
to the limited precision of the frequency measurement of the Once the
has acquired a proper lock, both laser lock [PI controllers are turned on, and the
difference frequency stabilises quite fast at the target lock frequency.

As it can be seen in Figure [4.14]the lock controlling the laser piezo reacts much
faster than the lock controlling the temperature of the laser. On the other hand,
the piezo signal has only a limited actuator range. Therefore, larger offsets are
being compensated by the temperature signal, to keep the piezo signal near zero.
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Figure 4.10: The temperature scanning phase of the automatic laser locking
algorithm. The green curve shows the slow increasing of the temperature actuator
signal of the slave laser. The blue and red coloured curve show the frequency and
amplitude measured by the in the beatnote acquisition system.
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Figure 4.11: When the temperature is set, it behaves like a step function (green
line). This results in a lot of ringing in the frequency difference (blue line), which
will eventually settle at a usable heterodyne frequency.
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Figure 4.12: The piezo signal (yellow line) is adjusted to bring the frequency
difference (blue line) as close as possible to the target locking frequency, which is
9 MHz in this case.
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—— FFT frequency [MHz]
—— Temperature Signal [1]

Piezo Signal [1]
— DPLL frequency [MHz]
10 T T T T T T T T T

_ | | | | | | | | |

190 191 192 193 194 195 196 197 198 199 200
Time [ s]

Figure 4.13: First the DPLL is locked to the difference frequency (black line) and
then the laser locks for the piezo and temperature control of the laser are turned
on to keep the difference frequency at the target frequency.
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Figure 4.14: The temperature signal keeps the piezo signal near zero.
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4.6 Performance

To have a look at the performance of the laser lock, the deviation of the measured
lock frequency from the target lock frequency has been plotted. This can be seen

in Figure

—— Frequency deviation [kHz]
80 T T T T T T T T T

40 + 2

-20

-40 _

-60

| | | | | | | | |

200 205 210 215 220 225 230 235 240 245 250
Time [ s]

Figure 4.15: Performance of the laser lock: Difference between measured lock
frequency and target lock frequency.

As it can be seen, the difference between the measured lock frequency and
the target lock frequency is at all times less than 10 kHz, which is about 0.1 % of
the target lock frequency of 9 MHz. On average the deviation is even less than
5 kHz, which corresponds to about 0.05 %.

The spectrum of this signal can be seen in Figure As expected from a
mostly constant signal, there is a reasonably large DC|part. Also, the amplitude
at the Nyquist frequency is higher than the average, but this does not seem to
affect the performance of the laser lock.
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Figure 4.16: Performance of the laser lock: Spectrum of the difference between
measured lock frequency and target lock frequency.

The laser lock could be held in its locked state for multiple weeks. Therefore
this is a very stable lock.

54



Chapter 5

Automatic Gain Control

If the amplitude of an incoming signal changes significantly over time, the gains
of the DPLL] have to be slowly adjusted according to the current amplitude of the
input signal. This is called has traditionally been used in
IModulation (AM)|radio receivers to adapt to changing signal strength[30], which
is what is needed here.

Due to the binary logarithmic nature of the gains in the current im-
plementation of the (see Equation|[3.22), these will only be adjusted if the
input amplitude doubles or halves. Fortunately, as the following measurements
show, this does not seem to be a problem. Otherwise, there would also be the
possibility to implement more fine-grained control of the gains. The amplitude of
the incoming signal can be obtained in two ways, either from the described
in the previous chapter or from the I value of the Both methods will be
looked at in the following.

5.1 FFT Amplitude

The has been used in the previous chapter to calculate the initial gains for
the Unfortunately, the amplitude calculated by the heavily depends
on the input frequency. If the signal frequency lies precisely between two [FF]
frequency bins its measured amplitude is halved in comparison to the measured
amplitude of a signal which frequency lies precisely in the middle of a frequency
bin. This is because the signal power is distributed amongst both frequency bins.
This effect is illustrated in Figure

As it can be seen, the position of a frequency relative to the frequency bins of an
[FFT|spectrum has a significant effect on the measured amplitude of the peak as well
as on the form of the spectrum. This could lead to random fluctuations in the gains
and potential performance issues. When applying a flat-top window function for
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Figure 5.1: The frequency of the red spectrum lies in the middle of a frequency
bin, the frequency of the blue spectrum lies in the middle between two frequency
bins. This has a huge effect on the measured amplitude.

the FFT input signal, this effect can be reduced[31]. Also, the amplitude loss due
to the offset from the bin centre is deterministic and could be corrected using an
appropriate algorithm. However, both methods cannot be easily implemented
in the Therefore the cannot reliably be used to perform continuous

adjustments of the DPLL| gains.

5.2 Phase Locked Loop I Value

On the other hand, the I value of the is not frequency dependent and will,
therefore, be used in the following.

The current gains Gp and Gy can be calculated using the I value and the full
amplitude gains Gps and Gy calculated in Section 3.5}
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o= el ()
Gi = Gir+|logs (7) | 5

This result is similar to Equation with the difference, that the I value
from the is not squared in contrast to the amplitude value of the which
eliminated the need for an additional square root.

To simplify the above design, instead of recalculating each gain from the
current amplitude, a common additional gain can be computed. This additional

gain G has the following form:
G= {log (i)‘ (5.2)
2 |A| . .

With this additional gain, the Gp and Gj gains could stay fixed at their full-
amplitude values Gps and Gyg, and only the new pre-gain needs to be modified at
runtime.

This method works because of the properties of the logarithm. Whenever
the absolute Amplitude |A| halves, its inverse |—;‘| doubles. Therefore, when the
argument of the logarithm to the base two doubles, its result increased by one:

In(2x) In(2)+In(x) ) In (x)
n@2 I @

log, (2x) = =log, (x) + 1. (5.3)

5.2.1 Additional Gain Calculation

After the startup of the AGC algorithm, it will wait for a 1ms to let the I value
of the settle. The currently set gains for the are assumed to be the
correct gains for the current amplitude. Therefore the current amplitude is saved.
All further gain calculations will use this amplification as a reference.
Unfortunately, equation [5.2| cannot be implemented directly in To
calculate the additional gain from the I value, first, its absolute value is taken.
Then the leading zeros of the two’s complement representation are counted[32].
From this, the amount of leading zeros of the two’s complement of the reference
amplitude is subtracted. The resulting value is then used as the additional gain.

5.2.2 Applying the Additional Gain

There are three possible ways to apply the additional gain G to the system:

« Apply directly to the input signal just before the phase detector.
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+ Apply directly to the error signal just after the phase detector and before
the [PI controller.

+ Add to the Gp and G gains.

All of these ways are equivalent because the phase detector is a multiplier just
like a gain. Multiplication is a linear operation and therefore commutative[33]].
Hence, the order of the multiplications does not matter in principle. However,
when using finite precision arithmetic, the multiplication order does matter in
practice. In this thesis, the additional gain will be added to the Gp and Gj gains,
because this is the most straightforward way to implement. The current gains
can, therefore, be calculated with:

Gp = Gpr + G
Gi = G+ G. (5.4)

5.2.3 Averaging the I Value

For a given input signal intensity, the I value of the is not constant. Instead
it has the form of a cos (x)? function as shown in Figure If the would
directly use this signal, the pre-gain G would rapidly change its value, which
would lead to an unstable or non-functional

There are two possibilities to convert this periodical signal into a usable slowly

varying signal for the

« Take the maximum from a given number of samples.
« Moving average over a given amount of time.

The first method would only work with a perfectly sinusoidal input signal. Unfor-
tunately, in the real world, there will be noise on top of the input signal. Therefore,
any transients or spikes that are bigger than the average amplitude will directly
be visible to the and cause the same problems as with the raw amplitude.

The second method acts as a low-pass filter and would remove any transients
and spikes. This would result in a much more smooth signal for the On
the downside, the averaged amplitude would only be about half as big as the
unprocessed amplitude. However, this can easily be accounted for in the
algorithm. Therefore this method has been chosen in this thesis.

This finally leads to the scheme presented in Figure

The averaging is done with a|Cascaded Integrator Comb (CIC)|filter[34] of
order 2 and a reduction rate of 1 : 2!, At a sampling rate of 80 MHz, this results
in a new set of gains every 12.8 ys.
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Figure 5.2: The I'value is a cos (x)2.




5. AUTOMATIC GAIN CONTROL

Y

Input —o—)@ < PI > —|— <— fitart

S-
g fout

¢
LUT PA
A
o J
2
<

O
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algorithm and the result is applied as an additional gain to the [PI| controller.

A

Y

AGC

60



5.3 C++ SIMULATION

5.3 C++ Simulation

To prove that this approach to is actually working, a simulation has been
performed. The simulation has been written in C++ and can be found an Ap-
pendix

The simulation consists of an[NCO} whose amplitude is varied over time from
approximately 5% to 100 %, a[DPLL to track the the output of the as well as

the block as explained above.
Figure 5.4/ shows the amplitude of the amplitude modulated signal from the

NCO)jas well as the amplitude measured by the [DPLL) that tracks the signal. Both
values match quite well.

T T T T T T T T T
k —— Input amplitude
—— DPLL Ivalue

0.8 |

Amplitude
5%
(@)}

e
=

0.2 |

|
0 01 02 03 04 05 06 07 08 09 1

O | | |

Time [l/fmathrms] '106

Figure 5.4: Input and output amplitude of a|DPLL| with |AGC|

Figure [5.5/shows the frequency of the as well as the measured frequency
of the As it can be seen, both frequencies match each other very well. That
means that the can track the signal from the very well, even at very
low amplitudes, thanks to the

As a comparison, Figure 5.6| shows the measured frequency of the DPLL] with
the block disabled. As it can be seen, the fails at very low amplitudes.
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Figure 5.5: Input and output frequency of aIDPLLl with |AGC|
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Figure 5.6: Input and output frequency of awithout
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5.4 Implementation

The algorithm has been implemented in for use in the The
implementation can be found in Section[B.2.1

It takes the amplitude of the input signal, which is calculated as described
in Section and emits the processed gains as described in Section as its
output.

5.4.1 VHDL Simulation

Before using the VHDL implementation in the it has been simulated to
ensure its proper function and to make further small optimisations along the way.
The corresponding VHDI] testbench that is used to test the[VHDL]implementation
can be found in Section The test conditions were identical to those in the
C++ simulation.

Figure 5.7/ shows the amplitude of the amplitude modulated signal from the
as well as the amplitude measured by the that tracks the signal. As in
the C++ simulation, both values match quite well.

Figure[5.8| shows the frequency of the as well as the measured frequency
of the As with the C++ simulation, both frequencies match each other very
well. That means that the can track the signal from the very well,
even at very low amplitudes, thanks to the

As a comparison, Figure [5.9| shows the measured frequency of the with
the block disabled. As with the C++ simulation, the fails at very low
amplitudes. Also, in contrast to the C++ simulation, the does not regain
control over the lock and stays unlocked.

5.4.2 Performance Measurement

To test the algorithm in an experiment, a signal generator is used to generate
a 9 MHz sine signal, that can be tracked by the This sine signal is slowly
decreased in amplitude using a simple variable voltage divider. The result is
tracked by an enabled

Figure shows the frequency measured by the as well as the ampli-
tude of the input signal as measured by an[FFT] As it can be seen, the [DPLL| has
no problems tracking the input signal down to very low amplitudes, thanks to
the [AGCl

For a comparison, Figure[5.11)shows the same setup but with the[AGC]disabled.
As it can be seen, the fails to track the input signal at low amplitudes. That
means that the algorithm is working correctly.
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Figure 5.7: Input and output amplitude of a|DPLL| with |AGC|

The reason for the failing lock is the [P] controller of the When its gains
are too low for the current amplitude, the error signal is not amplified enough,
resulting in a too small actuator signal. In this case, the is not able to follow
the input frequency fast enough, and the lock fails. When the gains are too high
for the current amplitude, the error signal is amplified too much, resulting in
substantial overshoot in the frequency. This also results in the lock failing.
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Figure 5.8: Input and output frequency of a [DPLL| with |AGC|
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Figure 5.10: Frequency measured by aIDPLI_l with |AGC|
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Figure 5.11: Frequency measured by a without
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Chapter 6

Differential Wavefront Sensing

For and [LISA]in particular, heterodyne interferometry is the method of choice
for phase measurements. In these applications, proper pointing is very important
to achieve high measurement performance. Pointing is sensed using which
works by interfering the local reference laser and the remote laser on a[Quadrant|
IPhoto Diode (QPD)|35]. This results in different phases on each segment, which
can be read out as phase differences A¢. This is illustrated in Figure

WLW
R

Figure 6.1: Interfering two laser beams on a results in phase differences Ag
between the segments.

has numerous advantages in comparison with the also commonly used
Differential Power Sensing (DPS)| Instead of measuring the differences in phase
g g p

between the quadrants of the in the differences in power between
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the quadrants of the photodiode are measured. This has the disadvantage of a
lower optical gain as well as more susceptibility to amplitude noise. Also, with
DWSY] it is precisely measured what is needed to increase the heterodyne contrast.

Therefore is using
Phase differences can be read out with a phase meter using a [DPLL|in an

FPGA| Up until now, this is implemented with four independent |DPLLs| Each
DPLI] detects the phase of a single quadrant of a[QPD| These four phases are then
linearly combined to calculate the signals:

Ax=¢p—- @+ ¢c— ¢p
Ay =@a+ ¢~ ¢c— ¢p> (6.1)

where Ax is the phase difference in the x direction and Ay is the phase dif-
ference in the y direction. ¢, to ¢p are the relative phases on the respective

segments of the as denoted in Figure

Figure 6.2: Arrangement and names of the segments of a

Each of the signals has a power C and a noise density of N. This leads to a
|Carrier to Noise Density Ratio (CNR)|for a single signal of:

_ N% (6.2)

Since the frequency measured in those four (hereafter called segment
is approximately the same when used with a[QPD] the overall frequency
can be measured by feeding the sum of the four signals from the into a
separate (hereafter called common [DPLL). Assuming the noise in the four
channels are uncorrelated to each other and the signal, this will result in the noise
getting added incoherently. Therefore the overall equates to:[36]

S

0= C+C+C+¢C
\/NOZ+N02 + N2+ N2
4 4C _C

— — =2 =

- '4N02 - ZNO NO
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= 28S. (6.3)

After adding the four signals from the QPD, the increases by a factor of
2. This greatly improves the stability of the common assuming that the
DWS|signals are small. Otherwise destructive interference in the summation of
the segment signals can reduce the [CNR|

Unfortunately, the segment do not benefit at all from this higher
of the common even though the individual frequencies are very close to
each other and not of great interest. Furthermore, these five take up
a significant amount of space inside the Therefore the question arises
whether these five can be merged so that the subsystem benefits
from the improved of the common

The new method (initial idea by Prof. Dr. Gerhard Heinzel) described in this
chapter aims to improve this situation significantly by combining these five
into a single so-called This features high signal to noise
ratio measurements resulting in a more stable operation as well as lower space
requirements in the [FPGA| while still being able to measure the overall frequency
as well as the signals. This new approach also will allow Equation 6.3[to
hold for larger DWS signals. Due to its construction, no destructive interference

can happen in the DPLL

6.1 New Approach

Instead of tracking the phase of each individual quadrant of the like in a
traditional setup as described above, the phase differences Ax and Ay
as defined in Equation|[6.1]as well as the average phase ¢,y of the whole are
tracked directly. The average phase is defined as:

1
avg = 7 (0a+ @+ ¢C * ¢p) - (6.4)

Since the signals from a[QPD]have four degrees of freedom in phase, which
would all be tracked by a traditional system, a fourth phase value has to be
tracked here as well to have the same amount of degrees of freedom. This fourth

phase value is called the ellipticity ¢ of the signals and is defined as:

E=QA—@Pp—¥c+ ¢p- (6.5)

The ellipticity usually is not measured as it is roughly constant and of little
interest, since it cannot be controlled. However, its value is necessary for the

function of the DPLL) design.
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To understand how the DPLL) design works, a standard [DPLL]as used
in [12] will be extended step by step in the next section, until the DPLL| has

been constructed.

6.2 Design

The [DPLL] presented in Section [2.8.] will be extended in the following subsections
until the alternative DPLL)| design has been constructed.

6.2.1 Phase Detector

To extract the phase error information from all four channels of a quadrant
photodiode, four separate cosines, as well as four separate phase detectors in the
form of multipliers, are needed instead of just one of each. This can be seen in

Figure

Input A,B,C.D ;6_(\ >\ > OABCD

T

COSAB,.CD

Figure 6.3: The phase detector of the DPLL{design consists of a multiplier
and a low pass filter.

These four phase error signals are then summed up to obtain the average
phase error, which is processed as before. Analogue to the calculation of the
average phase error, the error signals E,, E; as well as the additional phase
error signal E are also calculated. This can be seen in Figure

6.2.2 Phase Calculation

In a traditional DWS|design, the phases of each [QPD|segment are tracked sepa-
rately and therefore have their corresponding and [P] controllers. In the
new [DWS|design, each DWS|phase is tracked independently of the others. There-
fore each phase error signal is connected to a [PI controller.

Additionally, the [Pl controller for the average phase also accepts the starting
frequency as the starting value for its integrator. It does not have to be added
separately, anymore. Therefore the output of this [PI| controller is the actuator
frequency, which is then fed into the phase accumulator to obtain the actuator
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phase. All other [PI| controllers have starting values of zero and therefore directly
output their respective actuator phases. This can be seen in Figure

These actuator phases then have to be recombined to be fed to the sine/cosine
look-up table of each[QPD|channel. To calculate the phases for each[QPD]channel,
Equation[6.1 Equation [6.4] and Equation [6.5|can be inverted. This leads to:

PA = Qayg T Ax + Ay + ¢
goB:qoan—Ax+Ay—e
PC = Qayg + AX - Ay -
PD = Qayg — Ax - Ay +¢. (6.6)

A schematic representation of the implementation can be seen in Figure

6.2.3 Complete Picture

Putting all the components that have been developed in the course of the last
section together leads to a design. A schematic overview of that
design can be seen in Figure

In the next sections, the will be implemented in C++ and VHDL]
several simulations will be performed to validate the design, and some perfor-
mance measurements will be performed to confirm its performance.
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Figure 6.4: Phase Error Calculation in of the DPLL| design.

76



6.2 DESIGN
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Figure 6.5: Calculation of the actuator phases of the design.
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Figure 6.6: Calculation of the phases of the individual quadrants in of the

DWS[DPLIdesign.
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6.3 C++ Simulation

To prove that this new approach to is working, a low-level simulation has
been performed. The simulation has been written in C++ and can be found an
Appendix

The simulation implements the as well as four additional
each simulating one channel of a[QPD]

Over the run time of 10° time steps, the average frequency of the four
is varied between 0.1 fg and 0.3 fg in a sinusoidal manner with a frequency of 10~
cycles per time step. Also the[DWS|phase is varied between 0.127 and 0.327in a
sinusoidal manner with a variation frequency of 10 cycles per time step.

Using the following values for the gains of the [P controllers, the could
successfully track each DWS|phase as well as the overall frequency:

Controlled phase ‘ P gain Igain

Pave -10  -12
Ax -12 -14
Ay -12 -14
£ -12 -14

Table 6.1: Gains for the individual [P]| controllers of the

The result of the simulation can be seen in the following two figures. Figure
shows a comparison of the overall input frequency to the measured frequency of
the simulation. The difference between both can be seen in Figure (6.9} which is in
the order ofo.1% of the sampling frequency. Figure shows a comparison of
the simulated DWS| phase to the measured phase of the simulation.

As it can be seen, the can successfully track the overall frequency of
the input signal, and the DWS| phase can successfully be followed.

As mentioned before, there is no such thing as a “starting phase” in the[DWS|
as there is a “starting frequency” in a[DPLL] Therefore the phase tracking
always starts at zero. Due to the lower gains in the [PI controllers for the
phases, the measured phase difference lags behind the input phase difference by
a smidgen. This is not a problem since the signals are expected to change
slowly compared to the frequency. Even lower gains are therefore possible.
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Figure 6.8: Simulation of the DPLL} showing the ability to successfully track

the average input frequency.

81



6. DIFFERENTIAL WAVEFRONT SENSING

5 T T T T
—— Frequency difference

Frequency [ fs]

| |
0 01 02 03 04 05 06 07 08 09 1

— 5 | | |

Time [1/fmathrm5] * 106

Figure 6.9: Simulation of the showing difference between its input
and output frequency.
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Figure 6.10: Simulation of the DPLL] showing the ability to successfully
track the phase difference in the horizontal direction.
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6.4 Implementation

Since the underlying idea has been proven to work in a low-level simulation, the

DWS|[DPLL{needs to be implemented in actual [VHDL|code. The implementation
p p
can be seen in Appendix

6.4.1 VHDL Simulation

This implementation has also been simulated with a test bench similar to the
low-level C++ simulation. The test bench can be found in Appendix The
result of the simulation can be seen in the following two figures. Figure
shows a comparison of the simulated overall input frequency to the measured
overall frequency of the simulation. The difference between both can be seen in
Figure which is in the order ofo.o1% of the sampling frequency. Figure
shows a comparison of the simulated DWS| phase to the measured DWS|phase of
the simulation.

As it can be seen, that the can successfully track the overall frequency
of the input signal and the DWS|phase can successfully be followed.

As expected, the results of the VHDL simulation are identical to the results
of the C++ simulation. Therefore the code can now be tested in a circuit in the
following section.
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Figure 6.11: Simulation of the DPLL} showing the ability to successfully

track the average input frequency.
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Figure 6.12: Simulation of the showing difference between its input
and output frequency.
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Figure 6.13: Simulation of the DPLL} showing the ability to successfully

track the phase difference in the horizontal direction.
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6.5 Measurements

Multiple measurements have been performed, which will be described in the
following subsections.

6.5.1 Functional Measurements

The first measurement has been performed with all four inputs being tied
to the same Single Element Photo Diode (SEPD)|using a four-way signal splitter.
Using the digital laser lock described in Section |4} two lasers have been locked to
a difference frequency of 9 MHz, interfered with a beam splitter and measured
with the mentioned above. The results of this measurement can be seen in
Figure 6.14] Both [DWS|values show deviation of less than 5 - 10™* - 27 from zero.

1073
2 T T T T T T T
—— Measured Ax

15| —— Measured Ay | |

0.5 | 2

Phase [27rad]
o
|

-0.5 | 2

-1F |

=15} 2

| | | | | | |
184 186 188 190 192 194 196 198 200
Time [s]

Figure 6.14: Measurement of the with an

It can be seen that the DPLL| can successfully track the overall frequency
of the input signal. Since all four[ADC|inputs are measuring the very same signal,
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there are no differential phases.

The second measurement has been performed with the four inputs
connected to a while both laser beams were not perfectly parallel. The
beatnote frequency is left at 9 MHz. The results of this measurement can be seen

in Figure [6.15
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Figure 6.15: Measurement of the with a

As it can be seen, the angles have been measured successfully.

89



6. DIFFERENTIAL WAVEFRONT SENSING

6.5.2 Performance Measurements

The increased should improve the overall stability of the in
contrast to a single DPLL! This should result in being able to lock onto signals

with smaller amplitude and a lower in comparison with a single DPLL

Varying Amplitude

To test the ability to lock onto signals with a smaller amplitude, the as
well as a single have been fed with signals of varying amplitudes ranging
from 10 mV up to 1000 mV (peak to peak). The single DPLL could acquire a proper
lock down to 85 mV, which corresponds to a digital signal with a width of about
3bit. The on the other hand, could acquire a proper lock down to
45 mV, which corresponds to a digital signal with a width of about 2 bit.

This is an increase of a factor of approximately two as expected.

Varying Noise

To test the ability to lock onto signals with a lower|CNR| the DWS|DPLL]as well as
a single[DPLL have been fed with signals of varying[CNRs|ranging from 86.5 dB Hz
down to 43.9 dB Hz. This has been accomplished by adding noise onto a signal
with a constant amplitude using a simple op-amp based circuit. The single DPLL
could acquire a proper lock down to 53.7dB Hz, while the on the
other hand, could acquire a proper lock down to 45.8 dB Hz.

This is an increase of approximately 8 dB, which is even more than expected.
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Chapter 7

Ranging and Data Transfer

Ranging allows the to measure absolute distances between the space-
crafts. Theses absolute distances are needed in post-processing for [Time-Delay|
Interferometry (TDI) to remove laser frequency noise[37]. Also, there is a need
for data transfer between the three spacecrafts, because only one of them
has a connection to the earth at a given time. The ranging and data transfer
functionality of the is accomplished through the already existing laser links
between the satellites and is implemented through a Initial development
has been done by Juan José Esteban Delgado[38] on different hardware using
“The MathWorks Simulink”. The VHDL implementation, further development,
optimisations and extensions will be shown in the next sections. In the course of
its development, it has been subsequently extended to increase its reliability and
performance to fulfil the strict requirements of

7.1 Operational Principle

To make ranging possible, a[Pseudo Random Noise (PRN)|code is phase modulated
onto the laser beam on the transmitting side. This phase modulation generates
multiple sidebands, whose collective power does not exceed more than 1% of the
carrier power. The [PRN]code has been hand-crafted using numerical optimisation
techniques with an even length of 1024 so-called chips[39]. Each chip can have a
value of either +1 or -1 and is 32 clock cycles in length, which means the chip
rate is 2.5 MHz at a clock frequency of fg = 80 MHz. This leads to signals of at
least 1.25 MHz in the phase modulation as well as its harmonics.

The on the receiving side does not track those megahertz signals. They
are directly visible in the quadrature output of the IQ-demodulator of the
i.e. in its error signal. The therefore, demodulates the code from the
error signal of the where they are insignificantly suppressed.
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7. RANGING AND DATA TRANSFER

On the receiving side, the remote code will then be correlated with a
locally generated one. The offset in time between the local code and the
remote code that maximises the correlation thus equals to the travel time of
the transmission. Using this technique, the time which the code needs to
travel from the transmitter to the receiver can be measured absolutely.

A block diagram of the whole set-up can be seen in Figure

Laser

> > PLL

Laser EOM

PRN code x data DLL [«—

Figure 7.1: Schematic block diagram of the ranging subsystem of the On
the transmitting side (left) a[PRN| code is modulated onto the laser beam. This
laser beam is interfered with a second laser beam on the receiving side (right),
generating a heterodyne signal. This signal is measured by a photodiode, and its
frequency is tracked by a[DPLL] The [PRN]|code is demodulated by the from
the quadrature output of the The Laser beams are marked as red, analogue
signals are marked in blue and digital signals are marked in black.

Four spectra of a[PRN]code modulated signal with typical modulation indices
can be seen in Figure This figure has been generated with the C++ code in
Appendix The different [PRN| codes that can be used can also be found there.

In addition to ranging, the is also used to transfer data. With each [PRN]|
sequence, 32 data bits can be transmitted, where each data bit is 32 chips in length.
The data to be transmitted is first transformed into values of +1 and -1, where
a 0 corresponds to a -1 and a 1 corresponds to a +1. Then it is attached to the
code by using multiplication. The data modulated code will then be
phase modulated onto the laser beam on the transmitting side.

On the receiving side, a simple multiplication of the local code and the
remote code reveals the transmitted data. At the end of this process, the data
has to be transformed back to Os and 1s before it can be further processed using
the same mapping as on the transmitting side. The actual modulated data does not
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Figure 7.2: Linear spectrum of a code modulated 10 MHz carrier with four
different modulation indices

have any influence on the performance and stability of thgDLL] However, without
the presence of data, a higher performance [DLL|could be built. An explanation
for this can be found in Section|[7.2.1

7.2 Structural Overview

ADLI] consists of four basic parts:
« The local [PRN| code generation

The code correlator
+ The loop controller

The control [FSM]

and can operate in two different modes:
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7. RANGING AND DATA TRANSFER

+ Acquisition mode
« Tracking mode

The different modes will be described later.

The generation of the local PRN] code starts with a counter which is continu-
ously counting. To its value a static start offset determined during the acquisition
phase as well the actuator offset calculated by the servo loop controller is added.
The origin of these offsets will be described in more detail below. The result is
then used as an address for a[LUT] that contains six different [PRN] codes, one for
each of the six one-way links of The same code as used on the transmit-
ting side is selected and fed into the correlators. The result of the correlators is
then used in the servo loop controller as well as in the control during the
acquisition phase.

7.2.1  PRN Code Correlator

The[PRN|correlator is used to correlate the input signal with the localPRN|code and
to recover the embedded data. To accomplish that, the input signal is multiplied
by the locally generated [PRN|code, and its result is then sent through a series of
two [Integrate-And-Dump (IAD)|filters to calculate the correlation and recover
the data.

In this implementation, the input of a correlator has a width of 16 bit. After
the multiplication with the code, the signal has a width of 40 bit, which stays
constant for the rest of the correlator.

An[[AD|filter continuously integrates over its input signal. After a fixed period
it “dumps” its integration value to its output and resets its integration value to
zero. Then the process starts from the beginning.

The first filter dumps every data period, which is every 12.8 ps. This
results in a data rate of 78.125 kbit s™*. To recover the transmitted data, the sign
of the output of this first filter is read and transformed back to binary data
as described earlier.

After the ﬁrst filter, the absolute value of the output is calculated and sent
to the second filter. Due to the usage of the absolute value, the modulated
data is not present anymore has no impact on the rest of the

The second [[AD|filter then dumps every [PRN|code period, which is approxi-
mately every o.4 ms. Since the absolute filter eliminated the sign, the output of
the second [[AD|filter is always positive and corresponds to the amount of correla-
tion between the input signal and the locally generated PRN] code.

Without the presence of data, the first filter could be omitted, resulting
in a single longer coherent filter, and thus improving the performance of the
[DLL
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A schematic block diagram of the correlator can be seen in Figure

[PRN]code

address

|

[LUTI

I I
Input signal ntegrate I > I _ | Integrate

—> Correlation

and dump “|and dump

T o 1

Data bit clock [PRNIcode clock

Figure 7.3: Schematic block diagram of a correlator. The Input signal gets
multiplied with the local[PRN] code and travels through a series of two filters
to extract the transmitted data and calculate the correlation.

There are three of these correlators inside the One is the punctual
correlator, which functions as described above, and the other two are the early
and late correlators. The difference between the early and late correlators and
the punctual correlator is that the former ones use a local PRN positively or
negatively delayed by half a chip, which corresponds to 200ns. In case the
punctual correlator has the maximal correlation, the early and the late correlator
output the same amount of correlation. If the offset of the punctual correlator is
slightly off, one of the early and late correlators has a slightly higher correlation
than the other one. Therefore the difference of the correlation of the early and
late correlator is a measure for the direction in which the offset of the punctual
correlator has to be shifted to achieve maximum correlation. This can thus be
used as an error signal for the loop controller. A schematic block diagram of the
error signal generation can be seen in Figure

7.2.2 Loop Controller

The loop controller consists of a simple [Pl controller, which takes the difference
between the early and late correlator as its input error signal. This error signal
is plotted as a function of the delay in Figure As it can be seen, the loop
controller only works for a limited amount of delay. Therefore the control [FSM]is
used to set a rough delay as a starting point. This is described in greater detail in
the next subsection. The output of the [PI| controller is used as actuator signal and
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Figure 7.4: Three correlators are used in the One gives the correlation and
the other two combined give the error signal for the loop controller. Delay signals
are represented as solid lines, the input signal is represented as a thick line, clocks
are represented by dotted lines and correlation signals are represented by dashed
lines.

is added as an offset to the code address counter as described earlier. In this
implementation width of the input and output width of the [Pl controller is 40 bit.

7.2.3 Control Finite State Machine

The control controls the transition between acquisition mode and tracking
mode. When the starts, the is in acquisition mode. In this mode all
possible code offsets are scanned through until an offset with a correlation
above 10 % is found. After that, the switches to tracking mode where the
offset mentioned above is not modified anymore. In tracking mode, the loop
controller as well as the early and late correlators are switched on to form a closed
loop. It is possible to leave the tracking mode and switch back to acquisition
mode when the measured correlation falls below 10 %. However, this does only
happen when the unlocks or the transmitted [PRN|code changes or vanishes.

As a side function, the control FSM also generates the timing signals for the
filters in the correlators. For that purpose, it is using the clock of the glsPRN
code address counter mentioned above as a time base. To generate the dump
signals for the first filter, the clock is divided by 32. The resulting clock is
divided by 32 a second time to generate the dump signals for the second
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10

Delay [1]

Figure 7.5: The difference between the early and late correlator as a function of
the delay.

filter.
A complete block diagram of the can be seen in Figure
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: ? data clocks !
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Control | Acquisition v PRN code v :
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Figure 7.6: Schematic block diagram of a This includes the counters for the
local code address, the early, punctual and late correlators, the loop filter and
the control [FSM| Delay signals are represented as solid lines, the input signal is
represented as a thick line, clocks are represented by dotted lines and correlation
signals are represented by dashed lines.

7.3 Detailed Enhancements

To improve the performance and reliability of the to a level that meets the
requirements of [LISA| numerous modifications and optimisations to the had
to be made, especially to the data recovery part.

7.3.1  Data Recovery Improvements

Data recovery in the as presented up until now has been found to only work
for small delays without a big dynamic range. The reason for this is that the
timing signals used by the correlators are directly derived from the PRN code
address counter, without taking any offset from the acquisition phase or the loop
controller into account. If the measured delay now approaches 16 chips, which is
half a data bit, each local data period contains half of two different remote data
bits, which causes many errors. This is illustrated in Figure

To prevent this from happening, the current implementation of the DLL] has
been modified. The timing signals are now being derived after the offsets from the
acquisition phase, and the loop controller has been added to the[PRN]code address
counter. This corresponds to the effective @ code address, which is also used
to drive the [PRN|code [LUT] With these modifications, the timing signals and the
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Remote
PRN]

Local
Timing

— Chips

—+ Data boundaries

Figure 7.7: If the delay between the local and remote code approaches 16
chips, the mismatch between remote data bits and local data timing signals can
lead to a high Bit Error Rates (BERs)|

data bits are in sync at all times. A version of Figure 7.6 with this implemented
can be seen in Figure

Counter

..... Derived &
data clocks
Y Delay ;
Control | Acquisition i
ini offset : H

e Correlators | - - -4 --> Correlation

State PRN code
Machine address

Error signal

Integrator |« Input signal

Figure 7.8: To fix the high originating from the mismatch between the
local data timing signals and the remote data bit boundaries, the offsets from the
acquisition mode and the loop controller are taken into account when generating
the data clock signal. The change from Figure [7.6|is marked in red.

7.3.2 Timing Glitches

Now that the offsets from the acquisition mode and the loop controller are taken
into account, every time the delay is recalculated by the loop controller, this also
affects the timing signals and leads to another problem that can be a source of
bit errors. This problem has its roots in the particular way the timing signals are
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derived from the [PRN|code address. The data timing signal is a clock and should
have a rising edge every 32 chips. Therefore the 5™ bit of the effective PRN code
address is used for this purpose. Every time the address passes a multiple of 32,
there is a rising edgd]in the data timing signal. If the delay calculated by the loop
controller gets smaller, the chance that the PRN code address jumps from just
over a multiple of 32 to just under a multiple of 32 gets higher. This causes an
extra rising edge in the data timing signal and therefore an extra (erroneous) data
bit. The higher the dynamic range of the delay of the remote PRN code is, the
higher is the possibility for this to happen. This effect is illustrated in Figure

38 T T T T I

37 |-

36

35|

34 -

33

32 -

PRN address

31

30

29 |- 2

28 | | | | |
0 2 4 6 8 10 12

Time [1]

Figure 7.9: When the PRN address gets smaller, in certain circumstances this can
cause an additional rising edge in the timing signal for the data and therefore in
erroneous data.

To prevent this effect, a filter was developed and installed between the output
of the loop controller and the offset adder. At each clock cycle, the output of this
filter can only change by no more than +1. Since the PRN code address counter

'A signal change from 0 to 1
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only counts up by one per clock cycle, this leads to a flat line, if the output of the
loop controller gets smaller, thus not allowing the address counter to have a
negative slope. The source code of this filter can be found in Appendix The
effect of this filter to the PRN code address can be seen in Figure
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Figure 7.10: By not allowing the PRN code address to have a negative slope, the
glitch in the data timing signal can be prevented. This results in a low

7.4 Measurements

In the following section, the performance of the implementation will be
examined. To do this, the Will be fed with an artificial signal that mimics a real
signal that is to be expected on the spacecraft. It contains the main beatnote,
sidebands, pilot tone, the code modulation, which will be demodulated by
the as well as some noise.

The artificial signal is generated by the so-called|Digital Signal Simulator (DSS)|
This device has been developed by Iouri Bykov at the Albert-Einstein-Institute
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in Hanover in the context of the development of the LMS[[10]. It can be seen in
Figure

Figure 7.11: Theis use to create artificial signals that mimic those expected in

the spacecraft.

7.4.1 Timing Performance

The timing performance is measured by comparing the change in the delay
measured by the with the change in the measured frequency of the
Due to the slight difference in the clock frequencies of the and the [LMS[40],
there is a measurable frequency shift on the This frequency can also be used
to calculate the change in the delay, which can be compared to the change in the
delay measured by the

Change in delay from the DPLL

To calculate the change in the delay from the measured frequency of the
first the difference between the clock frequencies of the and the must
be determined.

In an experiment, the has been set to a carrier frequency of fp = 17 MHz.

The frequency measured by the on the can be seen in Figure
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Figure 7.12: Frequency difference measured by the DPLL

It is approximately f; = 17.000187 45 MHz. Since the clock frequency of both
systems is f, ~ 80 MHz, this leads to a clock frequency difference Af of:

Jo
Afax = (L - fp) 7 ~ 882Hz. (7.1)
clk
This means that a[PRN|code sequence is JacAew . 1000011 times longer on

clk
the compared to the[LMS] Since each [PRN|code consists of 1024 chips, each
with a length of 32 clock cycles, this leads to an accumulation of delay of

1024 x 32 1024 x 32

AtpryN = - ~ 4.52ns (7.2)
Jae  fak + Afak
each PRN code sequence. At a [PRN|code sequence rate of Npgy = N 0;:111: =
2441 Hz, this leads to a change in delay of:
At = NppnAtpry = 11pss™. (7.3)
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Change in delay from the DLL
The delay measured by the in the same period can be seen in Figure

1074
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Figure 7.13: Delay measured by theDLL

The delay curve is linear and has a slope of approximately At =12 uss™, which

fits quite well to the result from the [DPLL

7.4.2 Bit Error Rate

In the presence of noise, the data recovery in the can produce incorrect bits
from time to time. A measure for the amount of these errors is the which
is measured in bits™*. The requirements for the state, that at a bit rate of
15 kbit s, the shall not be higher than 1pbit s™[10]].

In our implementation, the bit rate is b = 78.125kbits™", which leave a lot
of room for [Forward Error Correction (FEC)| codes. A so-called (n,k) code
encodes n data bits with k code bits. This reduces the usable data rate by a factor

1
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of R = 7. This factor is also called the reduction rate. Due to our high bit rate, we
can use (n,k) codes with a reduction rate as low as R = 0.192.

Every set of k code bits that represents n data bits is called a valid codeword.
Every other set of k code bits is called an invalid codeword. An invalid codeword
should not appear in encoded data and indicates an error, that may be
correctable depending on the particular code and the number of erroneous
bits. The so-called codeword distance d of an (n,k) code is the number of
bits that need to be changed to get from one valid codeword to another valid
codeword. Generally speaking, the higher the codeword distance d, the better the
ability to correct errors. With a given bit rate b the maximum an (n,k)
is able to correct is[41]:

d-1 n
2n b

Table [7.1]lists a selection of codes that could be used in the along
with their reduction rate R as well as their codeword distance d and the resulting
maximum BER| E they are able to correct.

E =

(7.4)

Name Reduction rate Code word distance  Bit error rate

R d E
(3,1) Hamming[l42|] 0.333 3 1.28-107°
(5,1) Repetition 0.2 5 2.56 - 107°
(16,4) Hadamard 0.25 8 4.48-107°
(26,5) 0.192 22 134-1074
Reed-Solomon|[43]]

Table 7.1: An incomplete list of codes, that can be used in the to reduce
the of the data demodulated by the

In lab measurements with our enhanced with a[CNR|of up to 75 dB Hz
without any [FEC| a of up to 100 pbits™ have been measured. That means
with any of the above code applied the requirements could easily be achieved.
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Chapter 8

Summary

In the course of this thesis, many technologies have been developed for the
All of these auxiliary functions of the LMS|will help to make possible.

In Chapter [3|a system to acquire a lock to an unknown beatnote fre-
quency has been developed. It uses an to compute a frequency spectrum of
the input signal of the The peak in this frequency spectrum is then used
to get the approximate frequency of the input signal as well as its amplitude. Its
frequency is used as the starting frequency for the and the amplitude is
used to calculate its initial gains. This has turned out to be very reliable, being
able to establish a[DPLL]lock to [LISAHike signals automatically.

In Chapter[g]a fully digital laser frequency offset lock has been developed. Two
separate lasers are being interfered on a beam splitter, and the resulting beatnote is
measured with a photodiode and digitised with an[ADC] The difference frequency
of the two lasers is then continuously measured with a[DPLL] It is compared to
a target frequency, and the resulting error value is further processed by two
controllers. The resulting actuator values are used to change the frequency of
one of the two lasers. This leads to the frequencies of the two lasers being locked
to one another and thus a constant difference frequency. All this is governed
by a which uses the beatnote acquisition from the last chapter to control
the and the [P]| controllers The system performs very well, being able to
establish a frequency lock between free running lasers automatically. This
enables heterodyne interferometry for [LISA]

In Chapter [5] the has been extended with an algorithm. The
amplitude of the input signal can change significantly during the operation of
the Therefore the amplitude is measured continuously through the I output
of the IQ-Demodulator in the When the measured amplitude changes, the
gains of the are regularly adjusted accordingly. This results in a stable lock
of the even down to very small input amplitudes. It has been shown that
this could not have been achieved without the [AGCl
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In Chapter [6] the has been developed further to directly track
signals. The is an integral part of the that tracks differential phases
between the segments of a The differential phases usually are calculated
by adding and subtracting the measured phases from four independent
with each of them being connected to a separate segment of the The new
so-called developed in this chapter can track these phases directly.
Apart from that it also tracks the ellipticity € of the laser beam as well as the
overall phase on the That results in a twice as high [CNR]in the
as compared to the traditional approach. This means that the new is
more resistant to noise, as several measurements have shown.

In Chapter |7/ a system for absolute distance measurements as well as data
transfer over the laser links has been developed. The absolute distance measure-
ment between spacecrafts is called ranging. In the case of ranging is needed
in post-processing for [TDI| The data transfer function is needed because only one
of the three spacecrafts has a radio link to the earth. Both functionalities
have been implemented using a The transmitting spacecraft modulates a
onto the laser beam, which is demodulated by a[DPLL]on the receiving space-
craft. In the the demodulated [PRN] code is then correlated with a local copy
of the same [PRN|code shifted by a specific delay. From the delay that results in the
highest correlation, the distance between the two spacecrafts can be calculated.
To transfer data between spacecrafts, data bits can be modulated onto the @
code without interfering with the ranging. They are extracted by the In the
course of this chapter, there have also been made many improvements in compar-
ison to a previous implementation written in “The MathWorks Simulink”.
Also have been looked at to reduce the to meet the requirements of
This allowed the to operate with high stability and reliability as well
as at the data rate required by
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Appendix A

C++ Source Code

A.1 Beatnote Acquisition

A.1.1 C++ Simulation

#include <iomanip>

#include <iostream>

#include <fstream>
#include <sstream>

#include <tuple>

#include <hdlsim.hpp>

using namespace hdl;

//#define SINGLE

template<unsigned
unsigned
unsigned
unsigned
unsigned

class gain_sim

{

private:

int
int
int
int
int

// declare signals

wire<std_logic> clk;
wire<std_logic> clk2;
wire<std_logic> reset;

wire<fixed_t<false,
wire<fixed_t<false,
wire<fixed_t<false,
wire<fixed_t<false,
wire<fixed_t<true,
wire<fixed_t<true,
wire<fixed_t<false,
wire<fixed_t<true,
wire<fixed_t<true,
wire<fixed_t<true,
wire<fixed_t<true,
wire<fixed_t<true,

freq_bits = 16,
bits = 14,
int_bits = 34bits,
n=2,

r o= 4>

0, freq_bits>> freq;

0, freq_bits>> freq_start;

0, freq_bits>> freq_out;

0, freq_bits>> freq_out_slow;
log2ceil(int_bits)+1, 0>> p_gain;
log2ceil(int_bits)+1l, 0>> i_gain;

0, freq_bits>> phase;

0, bits>> sine;

0, bits>> factor;
0, 24bits>> 1;

0, 24bits>> q;

0, 24bits>> i_slow;
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wire<fixed_t<true, 0, 24bits>> g_slow;

// implement testbench
part testbench;
void tb_func(uint64_t time)

{

switch(time % 2)

{

case 0:
clk = 0;
break;

case 1:
clk = 1;

// slowly vary frequency

freq = 0.1514sin(2.l,std::acos(-1.1)4static_cast<long double>(time)
/100000.1)+0.251;

#ifdef SINGLE

std::cout <<
<<
<<
<<
<<
<<
<<

#endif

}

break;

}

if(time < 10)
{

reset = 0;

time << " "

sine << " "

freq << nn
freq_out_slow << " "
i_slow << " "

g_slow << "™ "
std::endl;

freq = freq_start;

}
else
reset = 1;

public:
gain_sim()

{

// set initial values
freq_start = 0.25;

factor = 1.;

// connect components

nco(clk,
reset,

wire<std_logic>(1),

freq,

wire<fixed_t<false, 0, freq_bits>>(0.),

sine,

wire<fixed_t<true, 0, bits>>(),
wire<fixed_t<false, 0, freq_bits>>());

pll<@, int_bits>(clk,

reset,
wire<std_logic>(1),
sine,

freq_start,

p_gain,

i_gain,

freq_out,
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clkdiv<power (2,

r)>(clk,
reset,

wire<std_logic>(1),

clk2);

cic_down<n, r>(clk,

clk2,

reset,
wire<std_logic>(1),
freq_out,
freq_out_slow);

cic_down<n, r>(clk,

clk2,

reset,
wire<std_logic>(1),
i,

i_slow);

cic_down<n, r>(clk,

clk2,

reset,
wire<std_logic>(1),
q,

g_slow);

// create testbench part
testbench
tb_func(time); 1});

}

~gain_sim()

= part({ }, { clk,

hdl::cleanup();

}

reset, freq },

[this] (uint64_t time) { this->

void run(unsigned int duration, int pgain, int digain)

{

p_gain = pgain;

i_gain

igaing

simulator sim(testbench);

sim.run(duration);
#ifndef SINGLE

std::cout << pgain << " " << qgain << " " <K< j_slow << " " << std::endl;

#endif
}
15

int main()

{

wire<int> freq;
wire<int> freq_start;
freq = freq_start;

#ifdef SINGLE

int pgain
int digain
#else

-3;
_5;
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159 // loop through gains
160 int lower = -15;

161 int upper = 5;

162 for(int pgain = lower; pgain <= upper; pgaint+)
163 for(int igain = lower; digain <= upper; igaint+)
164 #endif

165 {

166 gain_sim<> sim;

167 sim.run (20000, pgain, tigain);

168 }

169 return 0;

170}

A.2 Automatic Gain Control

A.2.1 C++ Simulation

#include <array>
#include <iomanip>
#include <iostream>
#include <fstream>
#include <sstream>
#include <tuple>

0o~NOUDdWNRE

#include <hdlsim.hpp>

©o

10 using namespace hdl;

12 // automatic gain control module
13 template <typename B, bool sign, unsigned int fbits, unsigned int fbits2>
14 void agc(wire<B> clk,

15 wire<B> reset,

16 wire<fixed_t<sign, 0, fbits>> amp,
17 wire<fixed_t<sign, 0, fbits2>> 1in,
18 wire<fixed_t<sign, 0, fbits2>> out)
19 {

20 wire<B> reset2(0);
21 wire<fixed_t<true, log2ceil(fbits2)+1, 0>> gain;

22

23 // wait for amplitude to be non-NULL until reset is Llifed.
24 part({ clk, reset, 1},

25 { reset2 },

26 [=] (uinte4_t)

27 {

28 if(reset == static_cast<B>(false))

29 reset2 = static_cast<B>(false);

30 else if(amp != fixed_t<sign, 0, fbits>(0))

31 reset2 = static_cast<B>(true);

32 }’ llll);

33

34 part({ clk, reset2, amp},

35 { gain },

36 [=] (uint64_t)

37 {

38 if(reset2 == static_cast<B>(false))

39 gain = fixed_t<true, log2ceil(fbits2)+1, 0>(0);
40 else
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{
gain = fixed_t<true, log2ceil(fbits2)+1, 0>(0);
// increase gain if amplitude halves.
for(unsigned int ¢ = 1; c < fbits; c++)
if(lamp.get().at(fbits-1-c))
gain = fixed_t<true, log2ceil(fbits2)+1, 0>((signed)c-6);
else
break;

3
}, "agc");

// apply gain
barrel_shift(in, gain, out);

}

// testbench class
template <unsigned int freq_bits = 16,
unsigned int bits = 14,
unsigned int int_bits = 3xbits,
unsigned int n = 2,
unsigned int r = 10>
class test
{
private:
// declare signals
wire<std_logic> clk;
wire<std_logic> clk2;
wire<std_logic> reset;
wire<fixed_t<false, 0, freq_bits>> freq;
wire<fixed_t<false, 0, freq_bits>> freq_start;
wire<fixed_t<false, 0, freq_bits>> freq_out;
wire<fixed_t<false, 0, freq_bits>> freq_out_slow;
wire<fixed_t<true, log2ceil(int_bits)+1l, 0>> p_gain;
wire<fixed_t<true, log2ceil(int_bits)+1l, 0>> 1i_gain;
wire<fixed_t<true, log2ceil(24bits)+1, 0>> gain;

wire<fixed_t<true, 0, bits>> amplitude;
wire<fixed_t<true, 0, bits>> sine_tmp;
wire<fixed_t<true, 0, 24bits>> sine_long;
wire<fixed_t<true, 0, bits>> sine;
wire<fixed_t<true, 0, 2xbits>> 1;
wire<fixed_t<true, 0, 2xbits>> g_out;
wire<fixed_t<true, 0, 24bits>> g_in;
wire<fixed_t<true, 0, 2xbits>> i_slow;
wire<fixed_t<true, 0, 24bits>> g_slow;

// implement testbench
part testbench;
void tb_func(uint64_t time)
{
switch(time % 2)
{
case 0:
clk = 0;
break;
case 1:
clk = 1;
freq = 0.2+0.114s7n(2.lxstd::acos(-1.1)«static_cast<long double>(time)
/100000.1);
amplitude = 0.251+0.2414cos(2.l,std::acos(-1.1)xstatic_cast<long double>(
time)/1000000.1);
break;

}
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101

102 if(time % 2048 == 0)

103 std::cout << time << " "

104 << freq << " "

105 << freq_out_slow << " "
106 << d_slow << " "

107 << g_slow << "™ "

108 << amplitude << " "

109 << std::endl;

110

111 if(time < 10)

112 {

113 reset = 0;

114 freq = freqg_start;

115 amplitude = 0.5;

116 }

117 else

118 reset = 1;

119 }

120

121 public:

122 test()

123 {

124 // set dinitial values

125 freq_start = 0.25;

126 p_gain = -5;

127 i_gain = -7;

128

129 // connect components

130 nco (clk,

131 reset,

132 wire<std_logic>(1),

133 freq,

134 wire<fixed_t<false, 0, freq_bits>>(0.),
135 sine_tmp,

136 wire<fixed_t<true, 0, bits>>(),
137 wire<fixed_t<false, 0, freq_bits>>());
138

139 mul(sine_tmp, amplitude, sine_long); // amplitude modulation
140 round(sine_long, sine);

141

142 pll<o, int_bits>(clk,

143 reset,

144 wire<std_logic>(1),
145 sine,

146 freq_start,

147 p_gain,

148 i_gain,

149 freq_out,

150 i,

151 q_out,

152 g_in);

153

154 clkdiv<power (2, r)>(clk,

155 reset,

156 wire<std_logic>(1),
157 clk2);

158

159 cic_down<n, r>(clk,

160 clk2,

161 reset,

162 wire<std_logic>(1),
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freq_out,
freq_out_slow) ;

cic_down<n, r>(clk,

clk2,

reset,
wire<std_logic>(1),
i,

i_slow);

cic_down<n, r>(clk,

clk2,

reset,
wire<std_logic>(1),
q_out,

q_slow);

#ifdef NOAGC
assign(q_out, gq_in);

#else

// automatic gain control
agc(clk, reset, i_slow, g_out, g_in);

#endif

// create testbench part
testbench = part({ }, { clk, reset, freq, amplitude },

}

{ this->tb_func(time); });

void run(unsigned int duration)

{

simulator sim(testbench);
sim.run(duration);

}
+s

int main()

{

test<> t;
t.run(1000000) ;
return 0;

}

[this] (uint64_t time)

A.3 Laser Locking

A.3.1

Automatic Algorithm

#include
#include

#include
#include

<cmath>
<cstdio>

"'state_machine.h"
"utils.h"

#define DEBUG

// register defs

uint32_t

dacl_ctrl = OxFFFFFFFF; // slot 1
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uint32_t adc2_ctrl = OxFFFFFFFF; // slot
uint32_t adc3_ctrl = OxFFFFFFFF; // slot
uint32_t adc4_ctrl = OxFFFFFFFF; // slot
uint32_t adc5_ctrl = OxFFFFFFFF; // slot
uint32_t adc6_ctrl = OxFFFFFFFF; // slot

oOulh wWwN

void update_dacl_ctrl()
{
// carry out changes to CTRL1 registers
write_reg(l, sRegw_dac_dsp_DSP_CTRL1, dacl_ctrl);
}

void update_adc2_ctrl()
{
// carry out changes to CTRL1 registers
write_reg(2, sRegw_adc_dsp_DSP_CTRL1, adc2_ctrl);
}

void update_adc3_ctrl()
{
// carry out changes to CTRL1 registers
write_reg(3, sRegw_adc_dsp_DSP_CTRL1, adc3_ctrl);
b

void update_adc4_ctrl()
{
// carry out changes to CTRL1l registers
write_reg(4, sRegw_adc_dsp_DSP_CTRL1, adc4_ctrl);
}

void update_adc5_ctrl()
{
// carry out changes to CTRL1 registers
write_reg(5, sRegw_adc_dsp_DSP_CTRL1, adc5_ctrl);
}

void update_adc6_ctrl()
{
// carry out changes to CTRL1 registers
write_reg(6, sRegw_adc_dsp_DSP_CTRL1, adc6_ctrl);
}

// ADC

#define MAIN_A (1 << 0)
#define MAIN_B (1 << 1)
#define MAIN_C (1 << 2)
#define MAIN_D (1 << 3)
#define PILOT_A (1 << 4)
#define PILOT_B (1 << 5)
#define PILOT_C (1 << 6)
#define PILOT_D (1 << 7)
#define SB_1 (1 << 8)
#define SB_2 (1 << 9)
#define DLL_1 (1 << 10)
#define DLL_2 (1 << 11)

// DAC
#define LOCK_1 (1 << 0)
#define LOCK_2 (1 << 1)

void laser_lock::write_pzt(uint32_t value)

{
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}

if(channel
write_reg(l, sRegw_dac_dsp_LOCK_CH1_PZT_OFF, value);
else if (channel == 2)
write_reg(l, sRegw_dac_dsp_LOCK_CH2_PZT_OFF, value);

== 1)

void laser_lock::write_temp(uint32_t value)

{

}

if(channel == 1)
write_reg(l, sRegw_dac_dsp_LOCK_CH1_TEMP_OFF, value);
else if(channel == 2)
write_reg(l, sRegw_dac_dsp_LOCK_CH2_TEMP_OFF, value);

void laser_lock::update_plls(int32_t p, int32_t 1,

{

3

int slot

(channel == 1 ? 4 : 5);

write_reg(slot, sRegw_adc_dsp_MAIN_PLL_A_GAIN_P,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_B_GAIN_P,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_C_GAIN_P,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_D_GAIN_P,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_A_GAIN_I,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_B_GAIN_TI,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_C_GAIN_TI,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_D_GAIN_I,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_A_GAIN_I2,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_B_GAIN_I2,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_C_GAIN_I2,
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_D_GAIN_I2,

void laser_lock::lock_plls(uint32_t pir, int32_t p,

{

}

int slot

(channel == 1 ? 4 : 5);

write_reg(slot, sRegw_adc_dsp_MAIN_PLL_A_FREQ, pi
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_B_FREQ, pi
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_C_FREQ, pi
write_reg(slot, sRegw_adc_dsp_MAIN_PLL_D_FREQ, pi

update_plls(p, i, i2);

if(channel

{

== 1)

int32_t 1i2)

P);
P-5);
pP-5);
p-5);
i)
i-5);
i-5);
i-5);
i2);
i2-5);
i2-5);
i2-5);

int32_t i, int32_t 1i2)

r);
rs
r);
rs

adc4_ctrl &= ~(MAIN_A | MAIN_B | MAIN_C | MAIN_D);
update_adc4_ctrl();

else if (channel == 2)

{

adc5_ctrl &= ~(MAIN_A | MAIN_B | MAIN_C | MAIN_D);
update_adc5_ctrl();

}

void laser_lock: :unlock_plls()

{

if(channel == 1)

{

adc4_ctrl

update_adc4_ctrl();

else if (channel == 2)

{

|= MAIN_A | MAIN_B | MAIN_C | MAIN_

D;

adc5_ctrl |= MAIN_A | MAIN_B | MAIN_C | MAIN_D;
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135 update_adc5_ctrl();

136 }

137 }

138

139 void laser_lock::lock_pid(uint32_t pir, int32_t pzt_p, int32_t pzt_i, int32_t
temp_p, int32_t temp_i)

140 {

141 if(channel == 1)

142 {

143 write_reg(l, sRegw_dac_dsp_LOCK_CH1_PIR_OFF, pir);

144 write_reg(l, sRegw_dac_dsp_LOCK_CH1_PZT_GAIN_P, pzt_p);
145 write_reg(l, sRegw_dac_dsp_LOCK_CH1_PZT_GAIN_I, pzt_1i);
146 write_reg(l, sRegw_dac_dsp_LOCK_CH1_TEMP_GAIN_P, temp_p);
147 write_reg(l, sRegw_dac_dsp_LOCK_CH1_TEMP_GAIN_I, temp_i);
148 dacl_ctrl &= ~LOCK_1;

149

150 else if(channel == 2)

151 {

152 write_reg(l, sRegw_dac_dsp_LOCK_CH2_PIR_OFF, pir);

153 write_reg(l, sRegw_dac_dsp_LOCK_CH2_PZT_GAIN_P, pzt_p);
154 write_reg(l, sRegw_dac_dsp_LOCK_CH2_PZT_GAIN_I, pzt_1i);
155 write_reg(l, sRegw_dac_dsp_LOCK_CH2_TEMP_GAIN_P, temp_p);
156 write_reg(l, sRegw_dac_dsp_LOCK_CH2_TEMP_GAIN_I, temp_i);
157 dacl_ctrl &= ~LOCK_2;

158 }

159 update_dacl_ctrl();

160 }

161

162 void laser_lock: :unlock_pid()

163 {

164 if(channel == 1)

165 dacl_ctrl |= LOCK_1;

166 else if(channel == 2)

167 dacl_ctrl |= LOCK_2;

168 update_dacl_ctrl();

169 }

170

171 void laser_lock::write_sign(int sign)

172 {

173 if(channel == 1)

174 {

175 write_reg(l, sRegw_dac_dsp_LOCK_CH1_PZT_SIGN, sign > 0 2 1 : 0);
176 write_reg(l, sRegw_dac_dsp_LOCK_CH1_TEMP_SIGN, sign > 0 2 0 : 1);
177

178 else if(channel == 2)

179 {

180 write_reg(l, sRegw_dac_dsp_LOCK_CH2_PZT_SIGN, sign > 0 ? 1 : 0);
181 write_reg(l, sRegw_dac_dsp_LOCK_CH2_TEMP_SIGN, sign > 0 2 0 : 1);
182 }

183 }

184

185 laser_lock::laser_lock(int channel)

186 : channel(channel), state(init)

187 {

188 }

189

190 void laser_lock::reset()

191 {

192 state = init;

193 }

194

195 void laser_lock::state_machine(std::shared_ptr<str_data> sdata, uint64_t cpu_cnt)
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if(!sdata) return;

float fft_freq;
float fft_amp;
float pll_i;
double pll_freq;

if(channel == 1)
{

fft_freq = (sdata->s_float.fft_dsp_01_freq +
sdata->s_float.fft_dsp_02_freq +
sdata->s_float.fft_dsp_03_freq +
sdata->s_float.fft_dsp_04_freq)/4.0;

fft_amp = (sdata->s_float.fft_dsp_01_amp +
sdata->s_float.fft_dsp_02_amp +
sdata->s_float.fft_dsp_03_amp +
sdata->s_float.fft_dsp_04_amp)/4.0;

pll_i = minimum(minimum(sdata->s_float.
sdata->s_float.

minimum(sdata->s_float.

sdata->s_float.

adc4_dsp_main_a_i,
adc4_dsp_main_b_1),
adc4_dsp_main_c_i,
adc4_dsp_main_d_i));

pll_freq = (sdata->s_double.adc4_dsp_main_a_pir +
sdata->s_double.adc4_dsp_main_b_pir +
sdata->s_double.adc4_dsp_main_c_pir +
sdata->s_double.adc4_dsp_main_d_pir)/4.0;

else if(channel == 2)

fft_freq = (sdata->s_float.fft_dsp_05_freq +
sdata->s_float.fft_dsp_06_freq +
sdata->s_float.fft_dsp_07_freq +
sdata->s_float.fft_dsp_08_freq)/3.0;

fft_amp = (sdata->s_float.fft_dsp_05_amp +
sdata->s_float.fft_dsp_06_amp +
sdata->s_float.fft_dsp_07_amp +
sdata->s_float.fft_dsp_08_amp)/3.0;

pll_i = minimum(minimum(sdata->s_float.
sdata->s_float.

minimum(sdata->s_float.

sdata->s_float.

adc5_dsp_main_a_i,
adc5_dsp_main_b_1),
adc5_dsp_main_c_i,
adc5_dsp_main_d_1i));

pll_freq = (sdata->s_double.adc5_dsp_main_a_pir +
sdata->s_double.adc5_dsp_main_b_pir +
sdata->s_double.adc5_dsp_main_c_pir +
sdata->s_double.adc5_dsp_main_d_pir)/4.0;

}
else
return;

cpu_cnt /= (6x1043);
fft_freq = 80e6;
pll_freq x= 80e6;

#ifdef DEBUG

printk ("[1lk %d] FFT frequency: %d kHz, FFT amplitude: %d, PLL fregency: 9%d

, PLL I: %d\n",

kHz
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257 channel, static_cast<int32_t>(fft_freq/1000), static_cast<int32_t>(
fft_amp41000),

258 static_cast<int32_t>(pll_freq/1000), static_cast<int32_t>(pll_ix1000));

259 #endif

260

261 switch(state)

262 {

263 case 1init:

264 #ifdef DEBUG

265 printk("[1lk %d] Initialization.\n", channel);

266 #endif

267

268 // reset ADC/DAC

269 unlock_plls();

270 unlock_pid();

271

272 // initital piezo/temp values

273 cur_pzt = 0;

274 write_pzt(cur_pzt);

275 cur_temp = temp_min;

276 write_temp(cur_temp);

277 maximum_temp = 0;

278 maximum_amp = 0.0;

279 sign = 1;

280

281 old_cpu_cnt = cpu_cnt;

282 state = test;

283

284 break;

285 case test:

286 #ifdef DEBUG

287 printk("[1lk %d] Test.\n", channel);

288 #endif

289

290 // test outputs

291 if(cpu_cnt - old_cpu_cnt == 1)

292 cur_pzt = -pzt_step;

293 else if(cpu_cnt - old_cpu_cnt == 2)

294 cur_pzt = 0;

295 else if(cpu_cnt - old_cpu_cnt == 3)

296 cur_pzt = pzt_step;

297 else if(cpu_cnt - old_cpu_cnt == 4)

298 cur_pzt = 0;

299 else

300 {

301 old_cpu_cnt = cpu_cnt;

302 wait_cnt = 32;

303 state = scan_temp;

304 }

305

306 write_pzt(cur_pzt);

307 break;

308 case scan_temp:

309 if(cpu_cnt - old_cpu_cnt < wait_cnt)

310 break;

311

312 #ifdef DEBUG

313 printk("[1lk %d] Scanning Temperature.\n", channel);

314 #endif

315

316 // find maximum

317 if(fft_amp > maximum_amp)
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#ifdef

#endif

Ca

#ifdef

#endif

ca

#ifdef

#endif

{
maximum_amp = fft_amp;
maximum_temp = cur_temp;
DEBUG

printk("[1lk %d] New Maximum.\n", channel);

}

if(cur_temp < temp_max)
{
cur_temp += temp_step;
write_temp(cur_temp);
}
else
state = set_temp;

// wait for temperature to change
old_cpu_cnt = cpu_cnt;
wait_cnt = 1;

break;

se set_temp:

if(cpu_cnt - old_cpu_cnt < wait_cnt)
break;

DEBUG

printk("[1lk %d] Setting Temperature.\n", channel);

// reset pzt
cur_pzt = 0;
write_pzt(cur_pzt);

// go to maximum
cur_temp = maximum_temp;
write_temp(cur_temp);

// wait for temperature to settle
old_cpu_cnt = cpu_cnt;

wait_cnt = 32;

state = adjust_pzt;

break;

se adjust_pzt:

if(cpu_cnt - old_cpu_cnt < wait_cnt)
break;

DEBUG

printk("[1lk %d] Adjust PZT.\n", channel);

// calculate current sign
if(cur_pzt > last_pzt)

sign = fft_freq >= last_freq ? 1 : -1;
else if(cur_pzt < last_pzt)

sign = fft_freq >= last_freq ? -1 : 1;

// save last value
last_freq = fft_freq;
last_pzt = cur_pzt;

// ajust pzt

121



A. C++ Sourcke CoDE

380 if(target_freq - signyfft_freq > pzt_diff)
381 cur_pzt += pzt_step;

382 else if(target_freq - signyfft_freq < -pzt_diff)
383 cur_pzt -= pzt_step;

384 else

385 state = lockpll;

386

387 // we're at the wrong temperature

388 if(cur_pzt <= pzt_min || cur_pzt >= pzt_max)
389 {

390 #ifdef DEBUG

391 printk("[1lk %d] Wrong Temperature.\n", channel);
392 #endif

393 state = 1init;

394 break;

395 3

396

397 write_pzt(cur_pzt);

398

399 // wait for piezo to change

400 old_cpu_cnt = cpu_cnt;

401 wait_cnt = 1;

402

403 break;

404 case lockpll:

405 if(cpu_cnt - old_cpu_cnt < wait_cnt)

406 break;

407

408 #ifdef DEBUG

409 printk("[1lk %d] Lock PLL.\n", channel);
410 #endif

411

412 if(fft_amp > amp_threshold)

413 {

414 // set initial frequency

415 uint32_t pirl = static_cast<uint32_t>(fft_freq/80e64pow(2, 32));
416

417 // calculate gain

418 float add_gain = log2(1./fft_amp);

419

420 #ifdef DEBUG

421 printk("[1lk %d] Add Gain: %d.\n", channel, add_gain);
422  #endif

423

424 // set gains

425 cur_p_gain = p_base_gain + add_gain;
426 cur_i_gain = i_base_gain + add_gain;
427

428 // start PLLs

429 lock_plls(pirl, cur_p_gain, cur_i_gain, 0);
430

431 // save for later

432 last_p_gain = cur_p_gain;

433 last_i_gain = cur_i_gain;

434

435 // wait for PLLs to stabilize

436 old_cpu_cnt = cpu_cnt;

437 wait_cnt = 16;

438 state = lock_laser;

439 }

440 else

441 state = 1init;
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break;

case lock_laser:
if(cpu_cnt - old_cpu_cnt < wait_cnt)

break;

#ifdef DEBUG

#endif

printk("[1lk %d] Lock Laser.\n", channel);

// try again if PLLs unlocked

if(std::abs(fft_freq - pll_freq) > check_freq_diff)

{

#ifdef DEBUG

#endif

printk("[1lk %d] PLL unlocked.\n", channel);

unlock_pid();
unlock_plls();
state
break;

}

= set_temp;

// set signs and enable locks

write_sign(sign);

lock_pid(static_cast<uint32_t>(std::fabs(target_freq)/80e64std: :pow(2.0,
32)),

pzt_p, pzt_i, temp_p, temp_1i);

// wait for lock loop to stabilize
old_cpu_cnt = cpu_cnt;

state =

r

eset_pzt;

wait_cnt = 4;

break;

case reset_pzt:
if(cpu_cnt - old_cpu_cnt < wait_cnt)

#ifdef

#endif

#ifdef

#endif

break;

DEBUG

printk("[1lk %d] Reset PZT offset.\n", channel);

// try again if PLLs unlocked

if(std::abs(fft_freq - pll_freq) > check_freq_diff)

{
DEBUG

printk("[1lk %d] PLL unlocked.\n", channel);

unlock_pid();
unlock_plls();
state
break;

= set_temp;

// slowly remove pzt offset
if(cur_pzt > 8)
cur_pzt -= 1024,1024;
else if(cur_pzt < -8)
cur_pzt += 1024,1024;

else
state

reset_temp;
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503 write_pzt(cur_pzt);

504

505 // wait for lock to follow

506 old_cpu_cnt = cpu_cnt;

507 wait_cnt = 1;

508

509 break;

510 case reset_temp:

511 if(cpu_cnt - old_cpu_cnt < wait_cnt)
512 break;

513

514 #ifdef DEBUG

515 printk("[1lk %d] Reset Temperature offset.\n", channel);
516 #endif

517

518 // try again if PLLs unlocked

519 if(std::abs(fft_freq - pll_freq) > check_freq_diff)
520 {

521 #ifdef DEBUG

522 printk("[1lk %d] PLL unlocked.\n", channel);
523 #endif

524 unlock_pid();

525 unlock_plls();

526 state = set_temp;

527 break;

528 }

529

530 // slowly remove temp offset

531 if(cur_temp > 8)

532 cur_temp -= 102441024,

533 else if(cur_temp < -8)

534 cur_temp += 1024,1024;

535 else

536 state = check;

537 write_temp(cur_temp);

538

539 // wait for lock to follow

540 old_cpu_cnt = cpu_cnt;

541 wait_cnt = 1;

542

543 break;

544 case check:

545 if(cpu_cnt - old_cpu_cnt < wait_cnt)
546 break;

547

548 #ifdef DEBUG

549 printk("[1lk %d] Check.\n", channel);
550 #endif

551

552 // try again if PLLs unlocked

553 if(std::abs(fft_freq - pll_freq) > check_freq_diff)
554 {

555 #ifdef DEBUG

556 printk("[1lk %d] PLL unlocked.\n", channel);
557 #endif

558

559 unlock_pid();

560 unlock_plls();

561 state = set_temp;

562 break;

563 }

564
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// Wait a bit
old_cpu_cnt = cpu_cnt;
wait_cnt = 1;

break;
default:
// This shouldn't happen
state = init;
break;

}

#ifdef DEBUG

printk("[1lk %d] cur_temp: %d, cur_pzt: %d, sign: %d\n",

channel, cur_temp, cur_pzt, sign);
#endif

}

A.4 Differential Wavefront Sensing

A.4.1 C++ Simulation

#include <iostream>
#include <hdlsim.hpp>

using namespace hdl;

template<unsigned int int_mbits, unsigned int int_fbits,
typename B, unsigned int mbits, unsigned int fbits, unsigned int

freq_bits>
void gpd_pll(wire<B> clk,

wire<B> reset,

wire<B> enable,
wire<fixed_t<true, mbits, fbits>>
wire<fixed_t<true, mbits, fbits>>
wire<fixed_t<true, mbits, fbits>>
wire<fixed_t<true, mbits, fbits>>

inputa,
inputb,
inputc,
inputd,

wire<fixed_t<false, 0, freq_bits>> freq_start, // f/fs
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> pgain_sum,
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> digain_sum,
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> pgain_dx,
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> dgain_dx,
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> pgain_dy,
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> digain_dy,
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> pgain_ell,
wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> dgain_ell,
wire<fixed_t<false, 0, freq_bits>> freq_out, // f/fs
wire<fixed_t<true, 24mbits, 2,fbits>> 1a,

wire<fixed_t<true, 24mbits, 24fbits>> qa,

wire<fixed_t<true, 24mbits, 2,fbits>> 1ib,

wire<fixed_t<true, 24mbits, 24fbits>> gb,

wire<fixed_t<true, 24mbits, 24fbits>> 1c,

wire<fixed_t<true, 24mbits, 24fbits>> qc,

wire<fixed_t<true, 24mbits, 2,fbits>> 1id,

wire<fixed_t<true, 24mbits, 24fbits>> qd,

wire<fixed_t<true, 24mbits, 2,fbits>> errora,

wire<fixed_t<true, 24mbits, 2,fbits>> errorb,
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36 wire<fixed_t<true, 24mbits, 24fbits>> errorc,
37 wire<fixed_t<true, 24mbits, 24fbits>> errord,
38 wire<fixed_t<false, 0, freq_bits>> phase_sum,
39 wire<fixed_t<false, 0, freq_bits>> phase_dx,
40 wire<fixed_t<false, 0, freq_bits>> phase_dy,
41 wire<fixed_t<false, 0, freq_bits>> phase_ell,
42 wire<fixed_t<false, 0, freq_bits>> phasea,

43 wire<fixed_t<false, 0, freq_bits>> phaseb,

44 wire<fixed_t<false, 0, freq_bits>> phasec,

45 wire<fixed_t<false, 0, freq_bits>> phased)

46 {

47 wire<fixed_t<true, mbits, fbits>>

48 sinea, cosinea,

49 sineb, cosineb,

50 sinec, cosinec,

51 sined, cosined;

52

53 // IQ demodulation

54 mul(inputa, sinea, ia);

55 mul(inputa, cosinea, ga);

56 mul(inputb, sineb, 1ib);
57 mul(inputb, cosineb, gb);
58 mul(inputc, sinec, 1ic);
59 mul(inputc, cosinec, qc);
60 mul(inputd, sined, 1id);
61 mul(inputd, cosined, qd);

62

63 // divide error signals by 4 before adding to prevent overflow

64 wire<fixed_t<true, 24mbits, 2,fbits>> errora2, errorb2, errorc2, errord2;
65 barrel_shift_fixed(errora, -2, errora2);

66 barrel_shift_fixed(errorb, -2, errorb2);

67 barrel_shift_fixed(errorc, -2, errorc2);

68 barrel_shift_fixed(errord, -2, errord2);

69

70 // combine error signals

71 wire<fixed_t<true, 24mbits, 24fbits>> error_sum, error_dx, error_dy, error_ell,
72 tmpl, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;

73 add(errora2, errorb2, tmpl);
74 add(errorc2, errord2, tmp2);

75 add (tmpl, tmp2, error_sum);
76 sub(errora2, errorb2, tmp3);
77 sub(errorc2, errord2, tmp4);
78 add (tmp3, tmp4, error_dx);

79 sub(errora2, errorc2, tmp5);

80 sub(errorb2, errord2, tmp6);

81 add (tmp5, tmp6, error_dy);

82 sub(errora2, errorb2, tmp7);

83 sub(errord2, errorc2, tmp8);

84 add (tmp7, tmp8, error_ell);

85

86 // PID filter

87 wire<fixed_t<true, int_mbits, int_fbits>> pidout_sum, pidout_dx, pidout_dy,
pidout_ell;

88 wire<fixed_t<true, log2ceil(int_mbits+int_fbits)+1l, 0>> dgain(0.);

89 pidctl<true, true, false, int_mbits, int_fbits>

90 (clk, reset, enable, error_sum, pgain_sum, igain_sum, dgain, pidout_sum);
91 pidctl<true, true, false, int_mbits, int_fbits>

92 (clk, reset, enable, error_dx, pgain_dx, igain_dx, dgain, pidout_dx);

93 pidctl<true, true, false, int_mbits, int_fbits>

94 (clk, reset, enable, error_dy, pgain_dy, igain_dy, dgain, pidout_dy);

95 pidctl<true, true, false, int_mbits, int_fbits>

96 (clk, reset, enable, error_ell, pgain_ell, igain_ell, dgain, pidout_ell);
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// resize pid results

wire<fixed_t<true, 0, freq_bits>> pidout_sum2, pidout_dx2, pidout_dy2,

pidout_ell2;

resize(pidout_sum, pidout_sum2);
resize(pidout_dx, pidout_dx2);
resize(pidout_dy, pidout_dy2);
resize(pidout_ell, pidout_ell2);

// add start frequency

add (pidout_sum2, freq_start, freq_out);

// integrate frequency to phase

integrator (clk, reset, enable, freq_out, phase_sum);

wire<fixed_t<true, 0, freq_bits>> phase_dx2, phase_dy2, phase_ell2;
pidout_dx2, phase_dx2);

pidout_dy2, phase_dy2);

pidout_ell2, phase_ell2);

reg(clk, reset, enable,
reg(clk, reset, enable,
reg(clk, reset, enable,
assign(phase_dx2, phase

—dx);

assign(phase_dy2, phase_dy);
assign(phase_ell2, phase_ell);

// combine phases

wire<fixed_t<false, 0, freq_bits>> tmpll, tmpl2, tmpl3, tmpl4, tmpl5, tmpl6,

tmpl7, tmpl8;

add (phase_sum, phase_dx, tmpll);
add (phase_dy, phase_ell, tmpl2);
add (tmpll, tmpl2, phasea);
sub (phase_sum, phase_dx, tmpl3);
sub(phase_dy, phase_ell, tmpl4);
add (tmpl3, tmpl4, phaseb);
sub(phase_sum, phase_dy, tmpl5);
sub(phase_dx, phase_ell, tmpl6);
add (tmpl5, tmpl6, phasec);
sub(phase_sum, phase_dx, tmpl7);
sub(phase_ell, phase_dy, tmpl8);
add (tmpl7, tmpl8, phased);

// LUTs

sincos(phasea, sinea,
sincos(phaseb, sineb,
sincos(phasec, sinec,
sincos(phased, sined,

}

cosinea);
cosineb) ;
cosinec);
cosined) ;

template <unsigned int bits = 14,

unsigned int freq_bits =

16,

unsigned int int_bits = 3xbits>

class test

{

private:
// declare signals
wire<std_logic> clk;

wire<std_logic> clk2;
wire<std_logic> reset;
wire<fixed_t<true, 0, bits>> sine, sine2;
wire<fixed_t<true, 0, bits>> factor;

wire<fixed_t<false,
wire<fixed_t<false,
wire<fixed_t<false,
wire<fixed_t<false,

0,

0,
0,
0,

freq_bits>>
freq_bits>>
freq_bits>>
freq_bits>>

freq;
phase;
freq_start;
freq_out;
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157 wire<fixed_t<true, 0, 24bits>> ia, qa, ib, gb, ic, qc, id, qd;

158 wire<fixed_t<false, 0, freq_bits>> phase_sum, phase_dx, phase_dy, phase_ell,
phasea, phaseb, phasec, phased;

159

160 // implement testbench

161 part testbench;

162 void tb_func(uint64_t time)

163 {

164 switch(time % 2)

165 {

166 case 0:

167 clk = 0;

168 break;

169 case 1:

170 clk = 1;

171 // slowly vary frequency and differential phase

172 freq = 0.114sin(2.l,std::acos(-1.1)xstatic_cast<long double>(time)
/100000.1)+0.21;

173 phase = 0.114sin(2.lxstd::acos(-1.1)4static_cast<long double>(time)
/1000000.1)+0.21;

174 if((time+l) % 200 == 0)

175 {

176 std::cout << time << " " << freq << " " << freq_out << " "

177 << phase << " " << phase_dx << " " << phase_dy << " " <<

phase_ell << " "

178 << std::endl;

179 3}

180 break;

181 }

182

183 if(time < 10

184 reset = 0;

185 else

186 reset = 1;

187 }

188

189 public:

190 test()

191 {

192 // set dinitial values

193 freg_start = 0.2;

194 factor = 1.;

195

196 // connect components

197 nco(clk,

198 reset,

199 wire<std_logic> (1),

200 freq,

201 wire<fixed_t<false, 0, freq_bits>>(0.),

202 sine,

203 wire<fixed_t<true, 0, bits>>(),

204 wire<fixed_t<false, 0, freq_bits>>());

205

206 nco (clk,

207 reset,

208 wire<std_logic> (1),

209 freq,

210 phase,

211 sine2,

212 wire<fixed_t<true, 0, bits>>(),

213 wire<fixed_t<false, 0, freq_bits>>());

214
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15

in

{

}

gpd_pll<0, int_bits>(clk,
reset,
wire<std_logic>(1),
sine2, sine,
sine2, sine,
freq_start,
wire<fixed_t<true, log2ceil(int_bits)+1l, 0> >(-10),
wire<fixed_t<true, log2ceil(int_bits)+1, 0> >(-12),
wire<fixed_t<true, log2ceil(int_bits)+1, 0> >(-12),
wire<fixed_t<true, log2ceil(int_bits)+1l, 0> >(-14),
wire<fixed_t<true, log2ceil(int_bits)+1, 0> >(-12),
wire<fixed_t<true, log2ceil(int_bits)+1l, 0> >(-14),
wire<fixed_t<true, log2ceil(int_bits)+1, 0> >(-12),
wire<fixed_t<true, log2ceil(int_bits)+1l, 0> >(-14),
freq_out,
ia, qa, ib, gb, ic, qc, id, qd,
ga, gb, qc, qd,
phase_sum,
phase_dx,
phase_dy,
phase_ell,
phasea,
phaseb,
phasec,
phased) ;

// create testbench part
testbench = part({ }, { clk, reset, freq, phase }, [this] (uint64_t time) {
this->tb_func(time); });
}

void run(unsigned int duration)
{
simulator sim(testbench);
sim.run(duration);

}
t main()
test<> t;

t.run(1000000) ;
return 0;

A.5 Ranging and Data Transfer

A.5.1 Ranging Spectra Generator

X% 3 X X % % X

Copyright (c) 2014, Nils Christopher Brause
All rights reserved.

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee 1is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
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THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The views and conclusions contained in the software and documentation are

policies, either expressed or implied, of the Max Planck Institute for
Gravitational Physics (Albert Einstein Institute).

X% O X % 3 X X X % X X

X%
~

#include <array>
#include <cmath>
#include <complex>
#include <fstream>
#include <functional>
#include <iostream>
#include <limits>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
#include <fftw3.h>

long double pi = std::acos(-1.1);
enum fft_type { PS, LS, PSD, LSD };

// real fft
template <typename T, unsigned long int N>
void rfft(std::array<T, N> &input, std::array<T, N> &output, fft_type type,
long double fs, std::function<T(T)> window)
{
// convert to long double
T ldn = N;

// Window sums

T s1 = 0;
T s2 = 0;
for(unsigned int ¢ = 0; ¢ < N; c++)
{
T ldc = c;

sl += window(ldc/1ldn);
s2 += std::pow(window(ldc/ldn), 2);
}

// initialize fftw

static fftw_complex xin = NULL;

static fftw_complex jout = NULL;

static fftw_plan p;

in = (fftw_complexy) fftw_malloc(sizeof(fftw_complex) 4 N);
out = (fftw_complexyx) fftw_malloc(sizeof(fftw_complex) x N);

p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);

// multiply data with window
for(unsigned int c¢c = 0; c < N; c++)
{
T ldc = c;
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in[c][0] = dnput.at(c)iwindow(ldc/ldn);
in[c][1] = 0.0;
}

// actual fft
fftw_execute(p);

// Create PS(D)/LS(D)
for(unsigned int ¢ = 0; c < N/2; c++)
{
std::complex<T> tmp(out[c][0], out[c][1]);
switch(type)
{
case PS:
output.at(c) = 2.1lxstd::norm(tmp)/std::pow(sl, 2.1);
break;
case LS:
output.at(c)
break;
case PSD:
output.at(c) = 2.1lxstd::norm(tmp)/(fsxs2);
break;
case LSD:
output.at(c)
break;

}

std::sqrt(2.lgstd: :norm(tmp) / (fsxs2));

}

std::isqrt(2.lystd: :norm(tmp) /std: :pow(sl, 2.1));

IITTTETTEELI LT L L L r L E i i rrri i1 i 7777771771777

std::array<std::string, 1024> prn_lut = {
"110110", "111101", "101110", "101110", "010101", "100010", "101011",
"@11110", "©11001", "©11110", "001601", "000011", "111110", "010101",
"910010", "100010", "111111", "100161", "111111", "110001", "010100",
"110000", "000110", "00O11l0", "001l000", "101011", "001011", "111010",
"peO110", "110011", "OOOGGOO", "100000", "G61G11", "116111", "111011",
"011600", "011101", "111101", "000060", "016111", "111060", "101111",
"000100", "001100", "EO1160", "EO00111", "010000", "111010", "000000",
"100100", "010011", "©61111", "111160", "101101", "000001", "111001",
"101101", "©11101", "©O0010", "110001", "101010", "000000", "011110",
"100100", "111111", "110000", "110101", "001000", "000000", "101111",
"000010", "011111", "001110", "111600", "001011", "110001", "100110",
"11ie1e", "111000", "6106111", "101100", "111001", "110001", "E0001l1l",
"i@1000", "G61111", "G11111", "111i101", "101011", "1060011", "O@1l1l101",
"000000", "0OO0l00", "00l01l0", "110111", "Ol0010", "GO66111", "111011",
"0e1161", "010110", "©O0160", "111601", "111111", "016001", "101110",
"000110", "010100", "EEO111", "010160", "1110160", "111000", "110010",
"001011", "001160", "011101", "001000", "001111", "001110", "101001",
"111001", "110100", "0l01l01", "OOGGO1", "GO11111", "O@l0110", "101010",
"110110", "100110", , s , ,
"100111", "110011", , s , ,
"000000", "101110", , s , ,
"010001", "101101", , s , ,
"100101", "001101", , s , ,
"911010", "101101", , s , ,
"010110", "010011", , s , ,
"101010", "110010", , s , ,
"001000", "110011", , s , ,
"001101", "111010", , s , ,
"001001", "111000", . 5 , 5
"100001", "110101", , s , ,

"0l1110"
"000111"
"110011"
"111010"
"011011"
"'100100"
"100010"
"101001"
"0l1110"
"'100010"
"011100"
"010000"

"100011"
"010100"
"111111"
"110110"
'""000000"
"100110"
"101011"
"011110"
"010010"
"111001"
"100011"
"101000"

"910001", "011001"
"9e11160", "001000"
"110001", "010100"
"110010", "©01001"
"100111", "000100"
"101010", "111111"
"9100160", "100010"
"911000", "100011"
"1010160", "011001"
"111011", "100010"
"9e1111", "©11100"
"911000", "010011"

"011001"
"100010"
"001001"
"011000"
"000101"
"101111"
"101101"
"111011"
"111111"
"111010"
"100011"
"000110"

"001011",
"111110",
"001000",
"010000",
"110101",
"001101",
"000110",
"000001",
"101000",
"000001",
"110001",
"000000",
"000001",
"000111",
"001010",
"911101",
"111110",
"001100",
"001011",
"111100",
"000100",
"110011",
"911100",
"010011",
"010000",
"911110",
"100100",
"001110",
"001101",
"101101",
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140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
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165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

A. C++ Sourcke CoDE

"110001"
"010011"
"100110"
"110111"
"011011"
"100101"
"010101"
"110100"
"000011"
"001110"
"001011"
"l11111e"
"'101000"
"100110"
"000010"
"110000"
"100001"
"010011"
"011011"
"000010"
"101000"
"011000"
"111001"
"100010"
"010101"
"0l1110"
"011010"
"000110"
"101110"
"110100"
"'100001"
"010100"
"110001"
"100111"
"110110"
"000100"
"110010"
"110100"
"101111"
"110000"
"110000"
"000010"
"111100"
"000110"
"111110"
"101100"
"101110"
"000111"
"101101"
"e11111"
"e11111"
"111000"
"0l1110"
"111010"
"011011"
"010101"
"001100"
"l111110"
"011011"
"111100"
"101111"
"000011"

)
)
)
)
3
)
)
)
)
)
)
3
)
)
)
)
)
)
3
)
3
)
)
)
)
)
)
3
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
3
)
)
)
)
)
)
3
)
)
)
)
)
)
)
)
)
)
)

"010000"
"001101"
"010001"
"110000"
"111010"
"100011"
"011100"
"110001"
"110100"
"111100"
"100010"
"111001"
"001001"
"111001"
"010000"
"000111"
"111011"
"011100"
"100111"
"101011"
"110111"
"000110"
'"'000000"
"011111"
"110101"
"101001"
"111001"
"001110"
"'100010"
"001001"
"0l1110"
"001111"
"0l1110"
"000110"
"'100000"
"101000"
"001000"
"000101"
"110110"
"110000"
"100101"
"110001"
"111010"
"111111"
"100011"
"'100010"
"000011"
"010100"
"'100000"
"111110"
"001111"
"111111"
"111000"
"111011"
"110110"
"000000"
"010100"
"001001"
"100001"
"101110"
"010110"
"101010"

)
)
3
)
3
)
)
)
)
3
)
3
)
)
3
)
3
)
3
)
>
)
)
3
)
3
)
3
)
)
3
)
3
)
3
)
b
3
)
3
)
3
)
>
3
)
)
)
3
)
3
3
)
)
)
3
)
3
)
)
)
)

"101011"
"111110"
"010101"
"010001"
"000100"
"100000"
"111011"
"000111"
"011000"
"101111"
"110010"
"101000"
"010001"
"010011"
"010001"
"100101"
"110110"
"111110"
"000000"
"111011"
"011101"
"011000"
"110101"
"100101"
"010000"
"011110"
"911101"
"011011"
"011101"
"011111"
"011010"
"'000011"
"000111"
"110010"
"001010"
"000100"
"'100001"
"101011"
''100001"
"110010"
"111001"
"001100"
"110011"
"111001"
"011011"
"011001"
"101010"
"o11111"
"001010"
"011110"
"110110"
"0l10110"
"001111"
"111101"
"010100"
"111001"
"110101"
"001110"
"111011"
"011000"
"100101"
"010101"

3
)
3
)
3
3
)
3
)
3
)
3
)
b
3
)
3
)
3
3
3
3
)
3
)
3
)
3
3
)
3
)
3
)
3
3
b
3
)
3
)
3
)
3
3
)
3
)
3
)
3
3
b
3
)
3
)
3
3
)
3
)

"000100"
"111001"
"010001"
"'110000"
"110000"
"111101"
"l11110"
"001100"
"001100"
"100011"
"011001"
"000001"
"001000"
"000010"
"'100000"
"101101"
"o0l110"
"'100000"
"000001"
"111001"
"100101"
"101111"
"100110"
"100101"
"111001"
"000011"
"000010"
"000010"
"010001"
"000101"
"000010"
"011001"
"l111010"
"111000"
"110010"
"e1l1101"
"001111"
"000110"
"l11110"
"001111"
"@11101"
"001110"
"000000"
"001011"
"110100"
"111101"
"010101"
"010101"
"ol1l11e"
"100001"
"111011"
"111100"
"001011"
"000111"
"011000"
"l111110"
"100001"
"000100"
"111011"
"001100"
"010101"
"110001"

)
b
)
b
)
b
)
)
b
)
b
)
b
)
)
b
)
b
)
b
)
)
B
)
b
)
b
b
b
)
b
b
)
b
b
b
)
)
b
)
b
)
b
b
b
B
)
b
b
b
b
b
)
)
b
)
b
)
b
)
)
b

"111100"
"011011"
"101110"
"000001"
"'100000"
"001011"
"110100"
"010001"
"000000"
"110011"
"110100"
"110001"
"001011"
"011100"
"000110"
"010001"
"100111"
"000101"
"000011"
"101101"
"010101"
"000000"
"101111"
"111010"
"110101"
"011011"
"001001"
"011111"
"010001"
"000111"
"000011"
"110100"
"111001"
"111001"
"011100"
"100101"
"100100"
"110101"
"101110"
"111000"
"100111"
"000101"
"0l1110"
"111111"
"100001"
"101011"
"000110"
"001010"
"100101"
"010000"
"001011"
"101111"
"010000"
"100101"
"011100"
"111101"
"110010"
"100010"
"100111"
"011111"
"110110"
"110111"

)
)
)
)
3
)
)
)
)
)
)
3
)
)
)
)
)
)
)
)
3
)
)
)
)
)
)
3
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
3
)
)
)
)
)
)
)
)
)
)
)

"100100"
"100110"
"111000"
"100100"
"'100001"
"101101"
"011010"
"001011"
'"'100001"
"010111"
"101010"
"111ie1"
"111011"
"011101"
"110001"
"001001"
"101001"
"011100"
"010100"
"110110"
"110000"
"010001"
"111000"
"100111"
"000101"
"101110"
"001010"
"000000"
"101011"
"110111"
"010111"
"'100100"
"000110"
"001011"
"011011"
"001010"
"000001"
"110111"
"100011"
"010110"
"1e1111"
"110011"
"110001"
"000000"
"110101"
"001001"
"000010"
"'100001"
"100011"
"001111"
"111001"
"110111"
"010011"
"011100"
"100101"
"100010"
"000100"
"011111"
"000011"
"101110"
"010001"
"'100000"

3
)
3
)
3
3
)
3
)
3
)
3
)
)
)
)
3
)
3
)
>
3
)
3
)
3
)
3
3
)
)
)
3
)
3
)
b
3
)
3
)
3
)
>
3
)
3
)
3
)
3
)
)
3
)
3
)
3
)
b
3
)

"el1110"
"101010"
"111111"
"010110"
'100010"
"001110"
"101111"
"011000"
"111100"
"101010"
"110101"
"101100"
"111110"
"101001"
"110011"
"010110"
"101110"
"001111"
"110000"
"101001"
"111000"
"101100"
"001100"
"0l1011"
"010100"
"111110"
"000111"
'100100"
"el1110"
"011101"
"101101"
"011100"
"001100"
"011011"
"011000"
"111111"
"111e011"
"010010"
"101111"
"0l10101"
"101110"
"'100100"
"101010"
'100010"
"010110"
'"'100000"
"eo1111"
"011001"
"100000"
"000000"
"110011"
"101101"
"110011"
"100111"
"l111101"
"100111"
"010100"
"000110"
"'110000"
"001011"
"'100010"
"111ie1"

3
)
3
)
3
3
)
3
)
3
)
3
3
b
3
)
3
)
3
3
3
3
)
3
)
3
)
3
3
b
3
)
3
)
3
3
b
3
)
3
)
3
)
3
3
)
3
)
3
)
3
3
b
3
)
3
)
3
)
b
3
)

"110101"
"011001"
"0l1100"
"100001"
"110100"
"111100"
"110101"
"0l11011"
"000001"
"101001"
"011000"
"100010"
"011000"
"100011"
"011000"
"011011"
"101111"
"110011"
"110011"
"001100"
"0l1010"
"111111"
"100111"
"101100"
"110010"
"010100"
"001101"
"111101"
"001011"
"101010"
"010011"
"110101"
"110000"
"010111"
"ol1110"
"110101"
"001100"
"110011"
"101011"
"111000"
"001000"
"ol1101"
"110110"
"011100"
"101010"
"110100"
"010110"
"101011"
"001111"
"110010"
"0l1101"
"110100"
"000110"
"111100"
"ol1110"
"110100"
"'100001"
"000110"
"el1110"
"110101"
"010001"
"100011"

)
b
)
b
)
)
)
)
b
)
b
)
)
)
)
b
)
b
b
b
)
)
)
)
b
b
b
b
b
)
)
b
)
b
5
b
)
)
b
)
b
b
b
)
b
)
)
b
)
b
b
)
)
)
b
)
b
)
b
)
)
b

132



195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

A.5 RANGING AND DATA TRANSFER

"l10110", "1l01010", "0GG6111", "Oll6601", "00601l1l1l", "110010", "1160111", "100110"

b 3 ) b 3 )
"910100", "POAA10", "111011", "100010", "000111", "0O101", "011110", "001110",
"100011", "110111", "101110", "111111", "101100", "©00010", "©10001", "111111",
"10011", "©11001", "100161", "011110", "111011", "e01110", "e1101", "011111",
"110101", "©00100", "000110", "100000", "001000", "101100", "000100", "000100",
"191110", "©OO011", "101111", "101101", "110111", "@O0011", "©10001", "111101",
"101000", "©11010", "001100", "101001", "001010", "010010", "101100", "101111",
"EO110", "OOO101", "101010", "000110", "100010", "OO0011", "©11101", "001110",
"g11111", "@11100", "110011", "000111", "001100", "101011", "111001", "000160",
"111010", "101010", "101101", "000101", "101011", "@11110", "101000", "001101",
"11010", "111010", "000000", "001011", "110000", "010100", "001110", "000100",
"E1101", "©11100", "0O0111", "100000", "001111", "©11010", "101000", "000111",
"101100", "000016", "111010", "101000", "100011", "100101", "011111", "010100",
"EEEO1", "101001", "111111", "110010", "111110", "©01100", "100110", "010001",
"191110", "100010", "101010", "101111", "011100", "©01000", "©01101", "000010",
"910100", "910011", "000101", "100100", "001100", "e11110", "©00010", "101001",
"910110", "©11110", "000110", "010100", "100101", "©10110", "110110", "010000",
"101100", "100001", "110011", "111011", "101100", "101011", "©11100", "111101",
"EO101", "010000", "001011", "100110", "110000", "101011", "110011", "000010",
"110011", "@00011", "©11110", "011000", "001101", "101101", "010011", "001100",
"910101", "001110", "000001", "100011", "010000", "©10000", "©11111", "111010",
"100100", "010010", "000001", "100100", "100000", "010001", "101101", "010100",
"110010", "110011", "100011", "100110", "111011", "©11000", "©01110", "110101",
"101100", "©11011", "000111", "111100", "111000", "e11111", "101010", "111001",
"101100", "001011", "100010", "010100", "111000", "10111", "101110", "011100",
"910010", "©10011", "111100", "011110", "000011", "e11111", "110101", "111001",
"110001", "100111", "0EE011", "011100", "100011", "100000", "000010", "000101",
"910010", "911010", "110101", "0011160", "011101", "101000", "©00000", "110110",
"111001", "©11101", "000011", "111110", "100001", "111001", "100001", "100100",
"100100", "©01001", "000001", "100111", "110001", "000100", "©01100", "001011",
"910001", "e00101", "110011", "010000", "001011", "O00101", "010000", "010000",
"111001", "@11100", "111111", "110111", "000010", "©11010", "©01000", "011110",
"100001", "111000", "010111", "010100", "000110", "101101", "111011", "100011",
"111111", "@01101", "100000", "101011", "001000", "100100", "110111", "010001",
"911000", "000010", "001000", "110000", "100000", "111101", "101001", "001111",
"191100", "111000", "011111", "010011", "101001", "©00011", "©10001", "111011"

}s

// standard hanning window
long double hanning(long double x)
{

return 0.54(1.0-cos(2.04pixx));
}

// Flat-Top window from GEO600
long double hft248d(long double x)
{
long double z = 2.14pixx;
return 1.1 - 1.98584416410214cos(z) + 1.79117643850614cos(2.142)
- 1.28207528400514cos(3.14z) + 0.66777753026614cos(4.142)
- 0.24016079657614cos(5.14z) + 0.05665638176414cos(6.142)
- 0.00813497447914c0os(7.14z) + 0.00062454465014cos(8.142)
- 0.00001980899814c0s(9.1xz) + 0.00000013297414c0s(10.142);
}

int main(int argc, char jargv[])
{
const int size = 1024;
const int mul = 1024;
const long double fs = 80e6;
const long double freq = 10e6;
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256 const int code = 0;

257 const long double rate = 2.5e6;

258

259 std::array<long double, sizexmul> signal;

260 std::vector<std::array<long double, sizexmul>> spectra;
261

262 for(auto &depth : {0.0214pi, 0.041xpi, 0.08L4pi, 0.1614pi})
263 {

264 // create a signal

265 long double time = 0;

266 for(int ¢ = 0; ¢ < sizeygmul; c++, time += 1.1/fs)

267 {

268 int prn = prn_lut.at(static_cast<unsigned int>(timexrate)%1024).at(code
) == 'e' 2 0 : 1;

269 long double phase = 24pixfreqxtime + prngdepthyipi; // no data

270 signal.at(c) = sin(phase);

271 1

272

273 // do the fft

274 std::array<long double, sizexmul> spectrum;

275 rfft<long double, sizexmul>(signal, spectrum, PS, fs, hft248d);

276 spectra.push_back(spectrum);

277 }

278

279 // output

280 for(int ¢ = 0; ¢ < size/2-1; c++)

281 {

282 std::cout << static_cast<long double>(c)/sizexfs << " ";

283 for (auto &spectrum : spectra)

284 {

285 // reduce points

286 long double max = 0;

287 for(int d = 0; d < mul-1; d++)

288 max = spectrum.at(cgmul+d) > max ? spectrum.at(cxmul+d) : max;

289 std::cout << 10.1l,std::logl@(max) << " ";

290 }

291 std::cout << std::endl;

292 }

293

294 return 0;

295 }
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Appendix B

VHDL Source Code

B.1 Beatnote Acquisition

B.1.1 Fast Fourier Transform

-- Copyright (c) 2013, Nils Christopher Brause
-— All rights reserved.

-- Permission to use, copy, modify, and/or distribute this software for any
-- purpose with or without fee is hereby granted, provided that the above
-- copyright notice and this permission notice appear in all copies.

-- THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-— WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

-— MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
-— ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-— WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

-— ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
-— OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

-— The views and conclusions contained in the software and documentation are
-- those of the authors and should not be dinterpreted as representing official
-- policies, either expressed or implied, of the Max Planck Institute for

--— Gravitational Physics (Albert Einstein Institute).

library -qeee;

use jeee.std_logic_1164.all;
use deee.numeric_std.all;
use jeee.math_real.all;

use work.utils.all;

entity sfft dis

generic (
bits : natural := 16;
radix ¢ natural := 2; --! only supported value atm.
logbins : natural := 8;
single : boolean := false;
stage : natural := 0);
port (
clk : in  std_logic;
reset : in  std_logic;
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B. VHDL Source CobpE

input_real : in  std_logic_vector(bits-1 downto 0);

input_imag : in std_logic_vector(bits-1 downto 0);

input_valid : in std_logic;

output_real : out std_logic_vector(bits-1 downto 0);

output_imag : out std_logic_vector(bits-1 downto 0);

output_valid : out std_logic;

output_bin : out std_logic_vector(log2ceil(radixxxlogbins)-1 downto 0));

end entity sfft;

architecture behav of sfft 1is

constant bins : natural := radix4xlogbins;

constant log2bins : natural := log2ceil(bins); -- needed for vector widths
constant butterflys : natural := sel(single, bins/radix, logbinsxbins/radix);
constant bfs_bits : natural := log2ceil(butterflys);

constant phase_bits : natural := log2ceil(radix4xlogbins);

type bin_array 1is array (natural range<>)

of std_logic_vector(log2bins-1 downto 0);
type phase_array 1is array (natural range<>)

of std_logic_vector(phase_bits-1 downto 0);
type bits_array s array (natural range<>)

of std_logic_vector(bits-1 downto 0);

type flycfg_t is record

X : bin_array(0 to radix-1);

phase : phase_array(0 to radix-1);
sin : bits_array(0 to radix-1);
cos : bits_array(0 to radix-1);

end record flycfg_t;
type flycfgs_t is array (0 to 244xbfs_bits-1) of flycfg_t;

function make_flycfgs return flycfgs_t is
variable result : flycfgs_t;

variable n : natural := 0;
variable cmax : natural := 0;
begin
n := 0;
if single = false then
cmax := logbins-1;
else
cmax := stage;
end 1if;

for ¢ in stage to cmax loop
for d in 0 to radixxx(logbins-c-1)-1 loop
for e in 0 to radixixc-1 loop
for f in 0 to radix-1 loop
result(n).x(f)
:= std_logic_vector (to_unsigned(radixsx(ctl)xd+et+fyiradixixc,
logbins));
result(n).phase(f)
:= std_logic_vector(to_unsigned(fixex2xxphase_bits/radixxx(c+l),
phase_bits));

result(n).cos(f) := dicos(fxe, radixix(c+l), bits);
result(n).sin(f) := std_logic_vector(-signed(
isin(fxe, radixgx(c+l), bits)));
end loop; -- f
n:=n+1;
end loop; -- e
end loop; --d
end loop; -- c
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return result;
end make_flycfgs;

constant flycfgs

constant last_bf :

signal
signal
signal
signal
signal

signal

bf_counter

bf_counter_reset
bf_counter_reset_tmp
bf_counter_enable

flycfgs_t := make_flycfgs;

std_logic_vector(bfs_bits-1 downto 0)
:= std_logic_vector(to_unsigned(butterflys-1, bfs_bits));

std_logic_vector(bfs_bits-1 downto 0);

std_Tlogic;
std_Tlogic;
std_Tlogic;

bf_counter_enable_tmp : std_logic;

cur_bf

flycfg_t;

constant state_bits
subtype state_t is std_logic_vector(state_bits-1 downto 0);

signal
signal

state
next_state

constant -idle
constant inp
constant waitl
constant ramread
constant busyl
constant busy2
constant ramwrite
constant wait2
constant outp
constant wait3

signal

signal
signal
signal
signal
signal

natural := 4;

state_t;
state_t;

state_t := x"0";
state_t := x"1";
state_t := x"2";
state_t := x"3";
state_t := x"4";
state_t := x"5";

state_t := x"6";
state_t := x"7";
state_t := x"8";

state_t := x"9";

busy : std_logic;

bin_counter

bin_counter_
bin_counter_
bin_counter_
bin_counter_

constant bin_max

std_logic_vector(logbins-1 downto 0);

reset ¢ std_logic;

reset_tmp std_Tlogic;
enable : std_logic;

enable_tmp : std_logic;

std_logic_vector(logbins-1 downto 0)

:= (others => '1');

signal wel std_logic;

signal we2 std_Tlogic;

signal sell std_logic_vector (log2bins-1 downto 0);
signal sel2 std_logic_vector(log2bins-1 downto 0);
signal real_inl std_logic_vector(bits-1 downto 0);
signal real_in2 std_logic_vector(bits-1 downto 0);
signal imag_inl std_logic_vector(bits-1 downto 0);
signal imag_in2 std_logic_vector(bits-1 downto 0);
signal real_outl std_logic_vector(bits-1 downto 0);
signal real_out2 std_logic_vector(bits-1 downto 0);
signal imag_outl std_logic_vector(bits-1 downto 0);
signal imag_out2 std_logic_vector(bits-1 downto 0);
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161

162 signal inputl_real : std_logic_vector(bits-1 downto 0);
163 signal inputl_imag : std_logic_vector(bits-1 downto 0);
164 signal input2_real : std_logic_vector(bits-1 downto 0);
165 signal input2_imag : std_logic_vector(bits-1 downto 0);
166 signal outputl_real : std_logic_vector(bits-1 downto 0);
167 signal outputl_imag : std_logic_vector(bits-1 downto 0);

168 signal output2_real : std_logic_vector(bits-1 downto 0);

169 signal output2_imag : std_logic_vector(bits-1 downto 0);

170

171 @
172

173 signal output_real_tmp : std_logic_vector(bits-1 downto 0);

174 signal output_imag_tmp : std_logic_vector(bits-1 downto 0);

175 signal output_valid_tmp : std_logic;
176 signal output_valid_tmp2 : std_logic;

177 signal bin_num_tmp : std_logic_vector(log2bins-1 downto 0);
178 signal bin_num_tmp2 : std_logic_vector(log2bins-1 downto 0);
179

180 begin -- architecture behav

181

182 @ e
183 -- State Machine

184 @ e
185

186 state_reg: entity work.reg

187 generic map (

188 bits => state_bits)

189 port map (

190 clk => clk,

191 reset => reset,

192 enable => '1',

193 data_in => next_state,

194 data_out => state);

195

196 -- status signals

197 output_valid_tmp <= '1l' when state = outp else

198 '0';

199

200 bin_num_tmp <= bin_counter;

201

202 -- memory control

203 wel <= '1l' when (state = inp and input_valid = '1') or state = ramwrite else
204 9';

205

206 we2 <= '1l' when state = ramwrite else

207 9';

208

209 sell <= bitreverse(bin_counter) when state = inp

210 and (single = false or stage = 0) else

211 bin_counter when state = inp and single = true and stage > 0 else
212 cur_bf.x(0) when state = ramread or busy = '1'

213 or state = ramwrite else

214 (others => '0');

215

216 sel2 <= bin_counter when state = outp else

217 cur_bf.x(1) when state = ramread or busy = '1'

218 or state = ramwrite else

219 (others => '0');

220

221 -- data flow to ram

222 real_inl <= input_real when state = inp else
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outputl_real when state = ramwrite else
(others => '0');

real_in2 <= output2_real when state = ramwrite else
(others => '0');

imag_inl <= dinput_imag when state = inp else
outputl_imag when state = ramwrite else
(others => '0');

imag_in2 <= output2_imag when state = ramwrite else
(others => '0');

-- data flow from ram
inputl_real <= real_outl;
inputl_imag <= imag_outl;

input2_real <= real_out2;
input2_imag <= imag_out2;

output_real_tmp <= real_out2 when output_valid_tmp2 = '1' else
(others => '0');

output_imag_tmp <= imag_out2 when output_valid_tmp2 = '1' else
(others => '0');

-- counter control

bin_counter_reset <= '1l' when state = inp or state = outp else

IOI;
bin_counter_enable <= '1' when (state = 1inp and dinput_valid = '1')
or state = outp else
IOI;
bf_counter_reset <= '1l' when state = ramread or busy = '1'
or state = ramwrite else
IOI;

bf_counter_enable <= '1' when state = ramwrite else
IOI;

-- state stransitions
next_state <= idle when reset = '0' else
-- input data
inp when (state = +idle and reset = 'l') or state = wait3 else
-— wait
waitl when state = dinp and bin_counter = bin_max else
-- do fft
ramread when state = waitl or (state = ramwrite
and bf_counter /= last_bf) else
busyl when state = ramread else
busy2 when state = busyl else
ramwrite when state = busy2 else
-— wait
wait2 when state = ramwrite and bf_counter = last_bf else
-- output data
outp when state = wait2 else
-— wait
wait3 when state = outp and bin_counter = bin_max else
state;

-- busy flag
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285 busy <= '1' when state = busyl or state = busy2 else '0';
286

287 -- bin counter

288 counter_1: entity work.counter

289 generic map (

290 bits => log2bins,

291 direction => '1"')

292 port map (

293 clk => clk,

294 reset => bin_counter_reset,
295 enable => bin_counter_enable,
296 output => bin_counter);

297

298 I e e e
299 -- Buttefly control

300 I
301

302 --— butterfly counter

303 counter_2: entity work.counter

304 generic map (

305 bits => bfs_bits,

306 direction => '1'")

307 port map (

308 clk => clk,

309 reset => bf_counter_reset,
310 enable => bf_counter_enable,
311 output => bf_counter);

312

313 -- make synthesizable RAM

314 lutram: process (clk, reset) is
315 begin

316 if rising_edge(clk) then

317 cur_bf <= flycfgs(to_integer (unsigned(bf_counter)));
318 end 1if;

319 end process lutram;

320

321 -- the magic happens here

322 butterfly_1: entity work.butterfly
323 generic map (

324 bits => bits,

325 use_registers => '1"')

326 port map (

327 clk => clk,

328 reset => reset,

329 cos_in => cur_bf.cos(1),
330 msin_in => cur_bf.sin(1),
331 inputl_real => 1inputl_real,
332 inputl_imag => inputl_imag,
333 input2_real => input2_real,
334 input2_imag => input2_imag,
335 outputl_real => outputl_real,
336 outputl_imag => outputl_imag,
337 output2_real => output2_real,
338 output2_imag => output2_imag);
339

340 @ —-—\—\—---———
341 -— Memory

342 | - ———
343

344 -- real part

345 ram_1: entity work.ram

346 generic map (

140



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

B.1 BEATNOTE ACQUISITION

bits => bit
bytes => bin
port map (
clkl =
clk2 =
wel =>
we2 =>
addrl =
addr2 =>

datal_in =>
datal_out =>
data2_in =>
data2_out =>

bits => bit
bytes => bin
port map (
clkl =
clk2 =
wel =>
we2 =>
addri =
addr2 =

datal_in =>
datal_out =>
data2_in =>
data2_out =>

port map (
clk =
reset =>
enable =>

data_in =>
data_out =>

port map (
clk =
reset =>
enable =>

data_in =>
data_out =>

S,

s)

clk,

clk,

wel,

we2,

sell,

sel2,
real_inl,
real_outl,
real_in2,
real_out2);

-- dimaginary part
ram_2: entity work.ram
generic map (

S,

s)

clk,

clk,

wel,

we2,

sell,

sel2,
imag_inl,
imag_outl,
imag_in2,
imag_out2);

regl_valid: entity work.regl

clk,
reset,
lll’

output_valid_tmp,
output_valid_tmp2);

reg2_valid: entity work.regl

clk,
reset,
lll’

output_valid_tmp2,
output_valid);

regl_bin_num: entity work.reg
generic map (

bits => logbins)

port map (
clk =
reset =>
enable =

data_in =>
data_out =>

clk,

reset,

lll’
bin_num_tmp,

bin_num_tmp2);

reg2_bin_num: entity work.reg
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409 generic map (

410 bits => logbins)

411 port map (

412 clk => clk,

413 reset => reset,

414 enable => '1',

415 data_in => bin_num_tmp2,
416 data_out => output_bin);
417

418 reg_out_real: entity work.reg
419 generic map (

420 bits => bits)

421 port map (

422 clk => clk,

423 reset => reset,

424 enable => '1',

425 data_in => output_real_tmp,
426 data_out => output_real);
427

428 reg_out_imag: entity work.reg
429 generic map (

430 bits => bits)

431 port map (

432 clk => clk,

433 reset => reset,

434 enable => '1',

435 data_in => output_imag_tmp,
436 data_out => output_imag);
437

438 end architecture behav;

B.1.2 Butterfly

1 -- Copyright (c) 2013, Nils Christopher Brause

2 -- All rights reserved.

3 —

4 -- Permission to use, copy, modify, and/or distribute this software for any
5 -- purpose with or without fee is hereby granted, provided that the above

6 -- copyright notice and this permission notice appear in all copies.

7 -

8 -- THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 -- WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

10 -- MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 -- ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

12 -- WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

13 -- ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 -- OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

15 -

16 -- The views and conclusions contained in the software and documentation are
17 -- those of the authors and should not be dinterpreted as representing official
18 -- policies, either expressed or implied, of the Max Planck Institute for

19 -- Gravitational Physics (Albert Einstein Institute).

20

21 library ieee;

22 use jeee.std_logic_1l1l64.all;
23 use ijeee.numeric_std.all;

24 use jeee.math_real.all;

26 entity butterfly is
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generic (

bits ¢ natural;

k : natural := 0;

N ¢ natural := 1;

use_kn : bit = '0';

signed_arith ¢ bit = '1'; --! use signed arithmetic

use_registers bit := '1'; --! use additional regs on slow FPGAs

use_kogge_stone : bit := '0'); --! use an optimized Kogge Stone adder
port (

clk : in  std_logic;

reset : in  std_logic;

cos_1in : in  std_logic_vector(bits-1 downto 0);

msin_in : in  std_logic_vector(bits-1 downto 0);

inputl_real : in std_logic_vector(bits-1 downto 0);

inputl_imag : in std_logic_vector(bits-1 downto 0);

input2_real : in std_logic_vector(bits-1 downto 0);

input2_imag : in std_logic_vector(bits-1 downto 0);

outputl_real : out std_logic_vector(bits-1 downto 0);
outputl_dimag : out std_logic_vector(bits-1 downto 0);
output2_real : out std_logic_vector(bits-1 downto 0);

output2_dimag : out
end entity butterfly;

std_logic_vector(bits-1

architecture behav of butterfly -s

-— sin(2xpixk/N)

function disin(k :
variable tmp

begin
tmp

:= sin(real(k)/real(N)«MATH_PI4real(2))xreal(24x(bits-1)-1);
return std_logic_vector (to_signed(integer(tmp), bits));

end dsing

-— cos(2xpixk/N)

function dicos(k :
variable tmp

begin
tmp

:= cos(real(k)/real(N)xMATH_PIsreal(2))xreal(24x(bits-1)-1);
return std_logic_vector(to_signed(integer(tmp), bits));

end 1cos;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

begin

cos2

msin2
inputl_real2
inputl_imag2
inputl_real3
inputl_imag3
inputl_real4
inputl_imag4
input2_real2
input2_imag2
input2_real3
input2_imag3
input2_real4
input2_imag4

integer; N
real;

integer; N
real;

std_logic_vector(bits-1
std_logic_vector(bits-1
std_logic_vector(bits-1
std_logic_vector(bits-1
std_logic_vector(bits-1
std_logic_vector(bits-1
std_logic_vector (bits-1
std_logic_vector(bits-1
std_logic_vector (bits-1
std_logic_vector(bits-1
std_logic_vector (bits-1
std_logic_vector(bits-1
std_logic_vector(bits-1
std_logic_vector(bits-1

-- architecture behav

downto

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

—— wk = exp(-24pixixk) = cos(2xpixk) - Txsin(2xpixk)

— =
—— yo
— yil

x1 % wk
X0 + t
X0 - t

0));

integer) return std_logic_vector is

integer) return std_logic_vector is

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
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89 -- calculate wk = exp(-24pixixk) = cos(24pixk) - dxsin(24pixk)
90 cos2 <= dicos(k, N) when use_kn = '1' else cos_in;
91 msin2 <= std_logic_vector(-signed(isin(k, N))) when use_kn = '1' else msin_in;
92

93 -— calculate t = x1 4 wk

94 cmplx_mul_1: entity work.cmplx_mul
95 generic map (

96 bitsl => bits,

97 bits2 => bits,

98 out_bits => bits,

99 signed_arith => signed_arith,
100 use_registers => 'e0',

101 use_kogge_stone => use_kogge_stone)
102 port map (

103 clk => clk,

104 reset => reset,

105 inputl_real => input2_real,
106 inputl_imag => input2_imag,
107 input2_real => cos2,

108 input2_imag => msin2,

109 output_real => input2_real2,
110 output_imag => input2_imag2);
111

112 inputl_real2 <= dnputl_real;

113 inputl_imag2 <= inputl_imag;

114

115 use_registers_yes: if use_registers = '1l' generate
116 reg_inputl_real: entity work.reg
117 generic map (

118 bits => bits)

119 port map (

120 clk => clk,

121 reset => reset,

122 enable => '1',

123 data_in => dnputl_real2,
124 data_out => dinputl_real3);
125

126 reg_tinputl_imag: entity work.reg
127 generic map (

128 bits => bits)

129 port map (

130 clk => clk,

131 reset => reset,

132 enable => '1',

133 data_in => dinputl_imag2,
134 data_out => inputl_imag3);
135

136 reg_input2_real: entity work.reg
137 generic map (

138 bits => bits)

139 port map (

140 clk => clk,

141 reset => reset,

142 enable => '1',

143 data_in => dinput2_real2,
144 data_out => dinput2_reall);
145

146 reg_input2_imag: entity work.reg
147 generic map (

148 bits => bits)

149 port map (

150 clk => clk,
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reset => reset,

enable => '1',

data_in => dinput2_imag2,

data_out => input2_imag3);
end generate use_registers_yes;

use_registers_no: if use_registers = '0' generate

inputl_real3d <= 1dinputl_real2;
inputl_imag3 <= inputl_imag2;
input2_real3d <= 1inputl_real2;
input2_imag3 <= inputl_imag2;
end generate use_registers_no;

-- attenuation to prevent overflow

inputl_reald4 <= dinputl_real3(bits-1)
inputl_imag4 <= inputl_imag3(bits-1)
input2_reald4 <= dinput2_real3(bits-1)
input2_imag4 <= input2_imag3(bits-1)

R0 R0 @0 Ro

-— calculate y0 = x0 + t
cmplx_add_1: entity work.cmplx_add
generic map (

bits => bits,

use_registers => 'o',

use_kogge_stone => use_kogge_stone)
port map (

clk => clk,

reset => reset,

inputl_real => dinputl_real4,
inputl_imag => inputl_imag4,
input2_real => 1dinput2_real4,
input2_imag => input2_imag4,
output_real => outputl_real,
output_imag => outputl_imag,
overflow => open);

-— calculate y1l = x0 - t
cmplx_sub_1: entity work.cmplx_sub
generic map (

bits => bits,

use_registers => 'o',

use_kogge_stone => use_kogge_stone)
port map (

clk => clk,

reset => reset,

inputl_real => 1dinputl_real4,
inputl_imag => dinputl_imag4,
input2_real => 1dinput2_real4,
input2_imag => input2_imag4,
output_real => output2_real,
output_imag => output2_imag,
underflow => open);

end architecture behav;

inputl_real3(bits-1 downto
inputl_imag3(bits-1 downto
input2_real3(bits-1 downto
input2_imag3(bits-1 downto

1);
1);
1);
1);

B.1.3 Peak Finder

-- Copyright (c) 2012, Nils Christopher Brause
-— All rights reserved.
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-- Permission to use, copy, modify, and/or distribute this software for any

-- purpose with or without fee is hereby granted, provided that the above

-- copyright notice and this permission

-- THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

notice appear in all copies.

-— WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

-—- MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
-— ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-- WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
-— ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
-— OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

-- The views and conclusions contained 1in
-- those of the authors and should not be

-- policies, either expressed or implied, of the Max Planck Institute for
-- Gravitational Physics (Albert Einstein Institute).

library qeee;
use jeee.std_logic_1l1l64.all;
use jeee.numeric_std.all;

--! Maximum detector
--! The maximum detector receives a set

--! the number of the highest value and
entity maximum s

the software and documentation are
interpreted as representing official

of number-value pairs and gives out the

the value qitself.

generic (
value_bits : natural;
num_bits : natural);

port (
clk : in  std_logic; --! clock input
reset : in  std_logic; --1 asynchronous reset (active low)
input_value : in std_logic_vector(value_bits-1 downto 0); --! value
input_num : in  std_logic_vector (num_bits-1 downto 0); --! number

input_valid : in std_logic;
input_first : in std_logic;
input_last : in std_logic;

--! value and number are valid

--! first value-number pair (resets max)
--! last value-number pair (outputs max)

exclude®d : in  std_logic_vector (num_bits-1 downto 0); --! excluded num@
excludel : in  std_logic_vector(num_bits-1 downto 0); --! excluded numl
exclude2 : in  std_logic_vector (num_bits-1 downto 0); --! excluded num2
exclude3 : in  std_logic_vector (num_bits-1 downto 0); --! excluded num3
exclude4 : in  std_logic_vector(num_bits-1 downto 0); --! excluded num4
exclude5 : in  std_logic_vector (num_bits-1 downto 0); --! excluded num5
exclude6 : in  std_logic_vector(num_bits-1 downto 0); --! excluded numé
exclude7 : in  std_logic_vector (num_bits-1 downto 0); --! excluded num7
maximum : out std_logic_vector(num_bits-1 downto 0); --! max. number

max_value : out std_logic_vector(value_bits-1 downto 0); --! max. value

new_maximum : out std_logic);
end entity maximum;

architecture behav of maximum is

—-! maximum computation finished

signal max_val_in : std_logic_vector(value_bits-1 downto 0);
signal max_val_out : std_logic_vector(value_bits-1 downto 0);
signal max_num_in : std_logic_vector(num_bits-1 downto 0);
signal max_num_out : std_logic_vector(num_bits-1 downto 0);
signal last . std_logic;

signal done : std_logic;

signal found_new_max : std_logic;

begin -- architecture behav
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found_new_max <= '1l' when (unsigned(input_value) > unsigned(max_val_out)

and dinput_num /= exclude®
and dinput_num /= exclude2
and dinput_num /= exclude4
and dinput_num /= exclude6

else '

or input_first = '1') and input_valid = '1'
and input_num /= excludel
and dinput_num /= exclude3
and input_num /= exclude5
and input_num /= exclude7

0';

max_val_in <= dinput_value when found_new_max =
max_val_out;

max_num_in <= dinput_num when found_new_max

max_num_out;

reg_val: entity work.reg

generic map (
bits => value_bits)

port map (
clk => clk,
reset => reset,
enable => '1',

data_in => max_val_in,
data_out => max_val_out);

reg_num: entity work.reg

generic map (
bits => num_bits)

port map (
clk => clk,
reset => reset,
enable => '1',

data_in => max_num_in,
data_out => max_num_out);

last <= dinput_last and

input_valid;

'1' else

= '1' else

-- 'done' asserts just after the last number-value pair.

regl_last: entity work.
port map (
clk => clk,
reset => reset,
enable => '1',

data_in => last,
data_out => done);

regl

regl_new_max: entity work.regl

port map (
clk => clk,
reset => reset,
enable => '1',

data_in => done,

data_out => new_maximum) ;

reg_val2: entity work.reg

generic map (
bits => value_bits)

port map (
clk => clk,
reset => reset,
enable => done,

data_in => max_val_out,
data_out => max_value);
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reg_num2: entity work.reg
generic map (
bits => num_bits)

port map (
clk => clk,
reset => reset,
enable => done,

data_in => max_num_out,
data_out => maximum);

end architecture behav;

B.2 Automatic Gain Control

B.2.1 Implementation

-- Copyright (c) 2016, Nils Christopher Brause
-- All rights reserved.

-- Permission to use, copy, modify, and/or distribute this software for any
-- purpose with or without fee is hereby granted, provided that the above
-- copyright notice and this permission notice appear in all copies.

-- THE SOFTWARE IS PROVIDED "AS IS'" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-— WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

-— MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
-— ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-- WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

—— ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
-— OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

-- The views and conclusions contained in the software and documentation are
-- those of the authors and should not be interpreted as representing official
-— policies, either expressed or implied, of the Max Planck Institute for

-- Gravitational Physics (Albert Einstein Institute).

library deee;

use jeee.std_logic_1164.all;
use jeee.numeric_std.all;
use work.log2.all;

--! Automatic Gain controller

entity agc is

generic (
bits : natural;
gainbits : natural);
port (
clk : in  std_logic;
reset : in  std_logic;
amplitude : in std_logic_vector(bits-1 downto 0);
pgain_in : in std_logic_vector(gainbits-1 downto 0);
igain_in : in std_logic_vector(gainbits-1 downto 0);

pgain_out : out std_logic_vector(gainbits-1 downto 0);
igain_out : out std_logic_vector(gainbits-1 downto 0));
end entity agc;
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architecture behav of agc is

-- state machine
constant statebits
subtype state_t is std_logic_vector(statebits-1 downto 0);

constant rst

constant idle
constant waitl
constant wait2
constant wait3
constant wait4 :
constant scan
constant run

signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

function clz (input

natural :=

33

state_t := "000";
state_t := "001";
state_t := "010";
state_t := "011";
state_t := "100";
state_t := "101";
state_t := "110";
state_t := "111";
state state_t := ddle;
next_state state_t := didle;

amplitude2
amount_tmp
full_enable
full
amount
shift
shift2
shift3

std_logic_vector(bits-1 downto 0);
std_logic_vector (log2ceil(bits) downto 0);

std_logic;

std_logic_vector(log2ceil(bits) downto 0);
std_logic_vector(log2ceil(bits) downto 0);
std_logic_vector(log2ceil(bits) downto 0);
std_logic_vector(gainbits-1 downto 0);
std_logic_vector(gainbits-1 downto 0);

std_logic_vector(bits-1 downto 0))
return std_logic_vector is

if dnput(bits-1-c) = '1' then

return std_logic_vector (to_unsigned(c, gainbits));

return std_logic_vector (to_unsigned(bits, gainbits));

begin
for ¢ in 0 to bits-1 loop
end if;
end loop; -- c
end clz;
begin -- architecture behav

amplitude_reg: entity work.reg
generic map (
bits => bits)

port map (
clk => clk,
reset => reset,
enable => '1',

data_in => amplitude,

data_out =>

amplitude2);

-- count leading zeros
amount_tmp <= clz(amplitude2);

state_reg: entity work.reg
generic map (
bits => statebits)

port map (
clk => clk,
reset => reset,
enable => '1',

data_in => next_state,

data_out =>

state);
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103 next_state <= rst when reset = '0' else

104 idle when state = rst and reset = '1l' else

105 waitl when state = didle and unsigned(amplitude2) /= to_unsigned
(0, bits) else

106 wait2 when state = waitl else

107 wait3 when state = wait2 else

108 wait4 when state = wait3 else

109 scan when state = wait4 else

110 run when state = scan else

111 state;

112

113 full_enable <= '1' when state = scan else '0';

114

115 full_reg: entity work.reg

116 generic map (

117 bits => log2ceil(bits)+1)

118 port map (

119 clk => clk,

120 reset => reset,

121 enable => full_enable,

122 data_in => amount_tmp,

123 data_out => full);

124

125 sub_1: entity work.sub

126 generic map (

127 bits => log2ceil(bits)+1,

128 use_registers => 'o',

129 use_kogge_stone => '0')

130 port map (

131 clk => clk,

132 reset => reset,

133 inputl => amount_tmp,

134 input2 => full,

135 output => amount,

136 borrow_in => '0Q',

137 borrow_out => open,

138 underflow => open);

139

140 shift <= amount when state = run else

141 (others => '0');

142

143 shift2(log2ceil(bits)-1 downto 0) <= shift(log2ceil(bits)-1 downto 0);

144 shift2(gainbits-1 downto log2ceil(bits)) <= (others => shift(log2ceil(bits)));
145

146 pgain_add: entity work.add

147 generic map (

148 bits => log2ceil(bits)+1,
149 use_registers => '1',

150 use_kogge_stone => '0')

151 port map (

152 clk => clk,

153 reset => reset,

154 inputl => pgain_in,

155 input2 => shift2,

156 output => pgain_out,

157 carry_in => '0',

158 carry_out => open,

159 overflow => open);

160

161 igain_add: entity work.add

162 generic map (

163 bits => log2ceil(bits)+1,
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164 use_registers => '1',
165 use_kogge_stone => '0')
166 port map (
167 clk => clk,
168 reset => reset,
169 inputl => dqgain_in,
170 input2 => shift2,
171 output => igain_out,
172 carry_in => '0',
173 carry_out => open,
174 overflow => open);
175
176 end architecture behav;
B.2.2 Testbench
1 Tlibrary -eee;
2 use jeee.std_logic_1164.all;
3 use jeee.numeric_std.all;
4 use jeee.math_real.all;
5 use std.textio.all;
6 use work.log2.all;
7
8 entity testbench is
9
10 end entity testbench;
11
12 architecture behav of testbench 1is
13
14 constant bits natural := 14;
15 constant nco_bits natural := bits;
16 constant lut_bits natural bits;
17 constant int_bits natural 3xbits;
18 constant freq_bits natural 16;
19
20 constant n : natural := 2;
21 constant r : natural := 10;
22
23 constant signed_arith bit := '1';
24 constant use_registers bit := '0';
25 constant use_kogge_stone bit := '0';
26
27 signal clk std_logic := '0';
28 signal clk2 std_logic;
29 signal reset std_logic;
30 signal t : natural := 0;
31
32 signal freq std_logic_vector(freq_bits-1 downto 0);
33 signal amp std_logic_vector(bits-1 downto 0);
34 signal sinl std_logic_vector(bits-1 downto 0);
35 signal sin2 std_logic_vector(24bits-1 downto 0);
36 signal sin3 std_logic_vector(bits-1 downto 0);
37
38 signal i : std_logic_vector(bits+nco_bits-1 downto 0);
39 signal i_slow std_logic_vector(bits+nco_bits-1 downto 0);
40 signal i_abs : std_logic_vector(bits+nco_bits-1 downto 0);
41 signal g : std_logic_vector(bits+nco_bits-1 downto 0);
42 signal pgain : std_logic_vector(log2ceil(int_bits)-1 downto 0);
43 signal igain std_logic_vector(log2ceil(int_bits)-1 downto 0);
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44 signal pgain2 : std_logic_vector(log2ceil(int_bits)-1 downto 0);
45 signal igain2 : std_logic_vector(log2ceil(int_bits)-1 downto 0);
46 signal start_freq : std_logic_vector(freq_bits-1 downto 0);

47 signal freq_out : std_logic_vector(freq_bits-1 downto 0);

48

49 file log : text open write_mode is "log";

50

51 begin -- architecture bhav

52

53 clk <= not clk after 6.25 ns;
54 t <=t + 1 after 12.5 ns;

55 reset <= '0' when t < 10 else '1l';

56

57 logger: process (clk, reset) is

58 variable 1 : line;

59 begin

60 if rising_edge(clk) then

61 write(l, t);

62 write(l, " ");

63 write(l, real(to_integer(unsigned(freq)))/real(2xxfreq_bits-1));
64 write(l, " ");

65 write(l, real(to_integer(unsigned(freq_out)))/real(2xxfreq_bits-1));
66 write(l, " ");

67 write(l, real(to_integer (unsigned(amp)))/real(24xbits-1));
68 write(l, " ");

69 write(l, real(to_integer(signed(i_slow)))/real(24«bits-1));
70 write(l, " ");

71 write(l, to_integer(unsigned(pgain2)));

72 writeline(log, 1);

73 end 1if;

74 end process logger;

75

76 -- modulation

77 freq <= std_logic_vector(to_unsigned(integer((sin(real(t)/real(100000)4real(2)«
MATH_PI) real(0.1)+real(0.2))xreal(24xfreq_bits-1)), freq_bits));

78 amp <= std_logic_vector(to_signed(integer((cos(real(t)/real(1000000)4real(2)x
MATH_PI)4real(0.49)+real(0.5))xreal(24x(bits-1)-1)), bits));

79

80 start_freq <= std_logic_vector(to_unsigned(integer(real(0.2)xreal(24xxfreq_bits
-1)), freq_bits));

81 pgain <= std_logic_vector(to_signed(-6, log2ceil(int_bits)));

82 igain <= std_logic_vector(to_signed(-8, log2ceil(int_bits)));

83

84 nco_1: entity work.nco

85 generic map (

86 freq_bits => freq_bits,

87 lut_bits => lut_bits,

88 bits => bits,

89 use_registers => use_registers,
90 use_kogge_stone => use_kogge_stone)
91 port map (

92 clk => clk,

93 reset => reset,

94 freq => freq,

95 pm => (others => '0'),

96 sin => sinl,

97 cos => open,

98 saw => open);

99

100 mul_1: entity work.mul

101 generic map (

102 bitsl => bits,
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bits2
signed_arith
use_registers

=> bits,
=> |1|,
=> 'O',

use_kogge_stone => '0')

port map (
clk => clk,

reset => reset,
inputl => sinl,

input2 => amp,

output => sin2);

sin3 <= sin2(24bits-2 downto bits-1);

pll2_1: entity work.pll2

generic map (

bits

int_bits
lut_bits
nco_bits
freq_bits
signed_arith
use_registers

use_kogge_stone =>

port map (
clk =5
reset =>
input =>
i =>
q =>
error =
pgain =>
igain =>
start_freq =>
freq_out =>
freq_in =>
phase =>

=> bits,

=> 1dnt_bits,

=> lut_bits,

=> nco_bits,

=> freq_bits,

=> signed_arith,
=> use_registers,

clk,
reset,
sin3,

i,

q,

q,
pgain2,
igain2,
start_freq,
freq_out,
freq_out,
open) ;

clkdiv_1: entity work.clkdiv

generic map (

div => 2**r,

duty_cycle => '1',

use_kogge_stone => '0')
port map (

clk => clk,

reset => reset,

enable => '1'

)

clk_out => clk2);

gcic_1l: entity work.gcic

generic map (
bits
out_bits
7
n
signed_arith

=> bits+nco_bits,
=> bits+nco_bits,
=> r,

=> n,

=> |0|’

use_kogge_stone => '0')

port map (
clk => clk,

clk2 => clk2,
reset => reset,

input => 1,

output => i_slow);

use_kogge_stone)
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absolute_1: entity work.absolute
generic map (

bits => bits+nco_bits,
use_registers => 'e0',
use_kogge_stone => '0')

port map (
clk => clk,

reset => reset,
input => i_s'low,
output => i_abs);

agc_1l: entity work.agc
generic map (

bits => bits+nco_bits,

gainbits => log2ceil(int_bits))
port map (

clk => clk2,

reset => reset,

amplitude => i_abs,
pgain_in => pgain,
pgain_out => pgain2,
igain_in => dgain,
igain_out => dgain2);

end architecture behav;

B.3 Differential Wavefront Sensing

B.3.1 Implementation

-- Copyright (c) 2016, Nils Christopher Brause
-- All rights reserved.

-- Permission to use, copy, modify, and/or distribute this software for any
-- purpose with or without fee is hereby granted, provided that the above
-- copyright notice and this permission notice appear in all copies.

-- THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-— WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

-— MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
-- ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-- WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

—— ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
-- OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

-- The views and conclusions contained in the software and documentation are
-- those of the authors and should not be interpreted as representing official
-- policies, either expressed or implied, of the Max Planck Institute for

-- Gravitational Physics (Albert Einstein Institute).

library deee;
use jeee.std_logic_1164.all;
use work.log2.all;

--! phase locked loop for QPDs
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entity gpd_pll is

frequency input/output

signal
signal
signal
signal
intensity

1
--1 quality
intensity
quality
intensity
quality
intensity
quality
error input
error input
error input
error input
0);
0);
0);
0);
0);
0);
0);
0); -—-!

start frequency
measured

generic (
bits natural; --! width of {dinput
int_bits natural; --! dnternal signal width
lut_bits natural; -—! width of LUT 1input
nco_bits natural; --! width of nco output
freq_bits natural; --! width of
signed_arith bit := '1'; --! assume input is signed
use_registers bit := '0'; --! use additional registers on slow
FPGAs
use_kogge_stone bit := '0'); --! use an optimized Kogge Stone adder
port (
clk in std_logic; --1 clock input
reset in std_logic; --! asynchronous reset (active low)
enable in std_logic; --! enable component
inputa in std_logic_vector(bits-1 downto 0); --! input
inputb in std_logic_vector(bits-1 downto 0); --! dinput
inputc in std_logic_vector(bits-1 downto 0); --! input
inputd in std_logic_vector(bits-1 downto 0); --! dinput
ia out std_logic_vector(bits+nco_bits-1 downto 0);
output
ga out std_logic_vector(bits+nco_bits-1 downto 0);
output
ib out std_logic_vector(bits+nco_bits-1 downto 0);
output
qb out std_logic_vector(bits+nco_bits-1 downto 0);
output
ic out std_logic_vector(bits+nco_bits-1 downto 0);
output
qc out std_logic_vector(bits+nco_bits-1 downto 0);
output
id out std_logic_vector(bits+nco_bits-1 downto 0);
output
qd out std_logic_vector(bits+nco_bits-1 downto 0);
output
errora in std_logic_vector(bits+nco_bits-1 downto 0);
(connect to q)
errorb in std_logic_vector(bits+nco_bits-1 downto 0);
(connect to q)
errorc in std_logic_vector(bits+nco_bits-1 downto 0);
(connect to q)
errord in std_logic_vector(bits+nco_bits-1 downto 0);
(connect to q)
pgain_sum in std_logic_vector(log2ceil(int_bits)-1 downto
proportional gain
igain_sum in std_logic_vector(log2ceil(int_bits)-1 downto
integral gain
pgain_dx in std_logic_vector(log2ceil(int_bits)-1 downto
proportional gain
igain_dx in std_logic_vector(log2ceil(int_bits)-1 downto
integral gain
pgain_dy in std_logic_vector(log2ceil(int_bits)-1 downto
proportional gain
igain_dy in std_logic_vector(log2ceil(int_bits)-1 downto
integral gain
pgain_ell in std_logic_vector(log2ceil(int_bits)-1 downto
proportional gain
igain_ell in std_logic_vector(log2ceil(int_bits)-1 downto
integral gain
start_freq in std_logic_vector(freq_bits-1 downto 0); --!
freq_out out std_logic_vector(freq_bits-1 downto 0); --!
frequency
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freq_in :in
(connect to
phase_sum : out
phase_dx : out
phase_dy : out

phase_ell : out
end entity qpd_pll;

std_logic_vector(freq_bits-1
freq_in)

std_logic_vector(freq_bits-1
std_logic_vector(freq_bits-1
std_logic_vector(freq_bits-1
std_logic_vector(freq_bits-1

architecture behav of gpd_pll is

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

downto

downto
downto
downto
downto

sinea : std_logic_vector(nco_bits-1 downto 0);
sineb : std_logic_vector(nco_bits-1 downto 0);
sinec : std_logic_vector(nco_bits-1 downto 0);
sined : std _logic_vector(nco_bits-1 downto 0);
cosinea : std_logic_vector(nco_bits-1 downto 0);
cosineb : std_logic_vector(nco_bits-1 downto 0);

cosinec : std_logic_vector(nco_bits-1 downto 0);
cosined : std_logic_vector(nco_bits-1 downto 0);

errora2 : std_logic_vector(bits+nco_bits-1 downto 0);
errorb2 : std_logic_vector(bits+nco_bits-1 downto 0);
errorc2 : std_logic_vector(bits+nco_bits-1 downto 0);
errord2 : std_logic_vector(bits+nco_bits-1 downto 0);

tmpl : std_1
tmp2 @ std_1
tmp3 : std_1
tmp4 : std_1
tmp5 @ std_1

tmp6 : std_1
tmp7 @ std_1
tmp8 : std_1
error_sum

error_ell

pidout_sum
pidout_dx
pidout_dy
pidout_ell
pidout_sum2
pidout_dx2
pidout_dy2
pidout_ell2

phase_sum_tm
phase_dx_tmp
phase_dy_tmp

ogic_vector(bits+nco_bits-1
ogic_vector (bits+nco_bits-1
ogic_vector (bits+nco_bits-1
ogic_vector(bits+tnco_bits-1
ogic_vector(bits+nco_bits-1
ogic_vector(bitstnco_bits-1
ogic_vector(bits+nco_bits-1
ogic_vector(bitstnco_bits-1

downto
downto
downto
downto
downto
downto
downto
downto

0);

0);
0);
0);
0));

3
)
3

)

0);
0);
0);
0);
0);
0);
0);
0);

std_logic_vector (bits+nco_bits-1 downto 0);
error_dx : std_logic_vector(bits+nco_bits-1 downto 0);
error_dy : std_logic_vector(bits+nco_bits-1 downto 0);
std_logic_vector(bits+nco_bits-1 downto 0);

std_logic_vector(int_bits-1 downto 0);
std_logic_vector(int_bits-1 downto 0);
std_logic_vector(int_bits-1 downto 0);

std_logic_vector (int_bits-1 downto 0);

std_logic_vector(freq_bits-1 downto 0);

std_logic_vector(freq_bits-1 downto 0);
std_logic_vector(freq_bits-1 downto 0);

std_logic_vector(freq_bits-1 downto 0);

p : std_logic_vector(freq_bits-1 downto 0);
std_logic_vector(freq_bits-1 downto 0);
std_logic_vector(freq_bits-1 downto 0);

phase_ ell _tmp : std_logic_vector(freq_bits-1 downto 0);
tmpll std_logic_vector(freq_bits-1 downto 0);
tmpl2 std_log1c_vector(freq_b1ts 1 downto 0);
tmpl3 std_logic_vector(freq_bits-1 downto 0);
tmpl4 std_logic_vector(freq_bits-1 downto 0);
tmpl5 std_logic_vector(freq_bits-1 downto 0);
tmpl6 std_logic_vector(freq_bits-1 downto 0);
tmpl7 std_logic_vector (freq_bits-1 downto 0);
tmpl8 : std_logic_vector(freq_bits-1 downto 0);
phasea : std_logic_vector(freq_bits-1 downto 0);

phaseb : std_logic_vector(freq_bits-1 downto 0);
phasec : std_logic_vector(freq_bits-1 downto 0);
phased : std_logic_vector(freq_bits-1 downto 0);

3

)

b

3

frequency tinput

phase output
phase output
phase output
phase output
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begin -- architecture behav

-- IQ demodulation

mul_dja: entity work.mul

generic map (

bitsl =>
bits2 =>
signed_arith =>
use_registers =>
use_kogge_stone =>
port map (

clk => clk,
reset => reset,
inputl => inputa,
input2 => sinea,

output => da);

mul_ib: entity work.mul

generic map (

bitsl =>4

bits2 =

signed_arith =>

use_registers =>

use_kogge_stone =>
port map (

clk => clk,

reset => reset,
inputl => dnputb,
input2 => sineb,
output => 1ib);

mul_dic: entity work.mul

generic map (

bitsl =

bits2 =

signed_arith =>

use_registers =>

use_kogge_stone =>
port map (

clk => clk,

reset => reset,
inputl => dnputc,
input2 => sinec,
output => 1c);

mul_id: entity work.mul

generic map (

bitsl =

bits2 =

signed_arith =>

use_registers =>

use_kogge_stone =>
port map (

clk => clk,

reset => reset,
inputl => dnputd,
input2 => sined,
output => 1id);

mul_ga: entity work.mul

generic map (

bits,

nco_bits,
signed_arith,
use_registers,
use_kogge_stone)

bits,

nco_bits,
signed_arith,
use_registers,
use_kogge_stone)

bits,

nco_bits,
signed_arith,
use_registers,
use_kogge_stone)

bits,

nco_bits,
signed_arith,
use_registers,
use_kogge_stone)
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190 bitsl => bits,

191 bits2 => nco_bits,

192 signed_arith => signed_arith,
193 use_registers => use_registers,
194 use_kogge_stone => use_kogge_stone)
195 port map (

196 clk => clk,

197 reset => reset,

198 inputl => dnputa,

199 input2 => cosinea,

200 output => ga);

201

202 mul_gb: entity work.mul

203 generic map (

204 bitsl => bits,

205 bits2 => nco_bits,

206 signed_arith => signed_arith,
207 use_registers => use_registers,
208 use_kogge_stone => use_kogge_stone)
209 port map (

210 clk => clk,

211 reset => reset,

212 inputl => dnputb,

213 input2 => cosineb,

214 output => gb);

215

216 mul_qc: entity work.mul

217 generic map (

218 bitsl => bits,

219 bits2 => nco_bits,

220 signed_arith => signed_arith,
221 use_registers => use_registers,
222 use_kogge_stone => use_kogge_stone)
223 port map (

224 clk => clk,

225 reset => reset,

226 inputl => inputc,

227 input2 => cosinec,

228 output => qc);

229

230 mul_qd: entity work.mul

231 generic map (

232 bitsl => bits,

233 bits2 => nco_bits,

234 signed_arith => signed_arith,
235 use_registers => use_registers,
236 use_kogge_stone => use_kogge_stone)
237 port map (

238 clk => clk,

239 reset => reset,

240 inputl => dinputd,

241 input2 => cosined,

242 output => qd);

243

244 -- divide error signals by 4 before adding to prevent overflow
245

246 barrel_shift_int_a: entity work.barrel_shift_int
247 generic map (

248 bits => bits+nco_bits,
249 value => 2,

250 signed_arith => signed_arith,

251 direction => '0'")
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252 port map (

253 input => errora,

254 output => errora2);

255

256 barrel_shift_int_b: entity work.barrel_shift_int
257 generic map (

258 bits => bits+nco_bits,
259 value => 2,

260 signed_arith => signed_arith,

261 direction => '0")

262 port map (

263 input => errorb,

264 output => errorb2);

265

266 barrel_shift_int_c: entity work.barrel_shift_int
267 generic map (

268 bits => bits+nco_bits,
269 value => 2,

270 signed_arith => signed_arith,

271 direction => '0"')

272 port map (

273 input => errorc,

274 output => errorc2);

275

276 barrel_shift_int_d: entity work.barrel_shift_int
277 generic map (

278 bits => bits+nco_bits,
279 value => 2,

280 signed_arith => signed_arith,

281 direction => '0")

282 port map (

283 input => errord,

284 output => errord2);

285

286 -- combine error signals

287

288 add_suml: entity work.add

289 generic map (

290 bits => bits+nco_bits,
291 use_registers => use_registers,
292 use_kogge_stone => use_kogge_stone)
293 port map (

294 clk => clk,

295 reset => reset,

296 inputl => errora2,

297 input2 => errorb2,

298 output => tmpl,

299 carry_in => '0',

300 carry_out => open,

301 overflow => open);

302

303 add_sum2: entity work.add

304 generic map (

305 bits => bits+nco_bits,
306 use_registers => use_registers,
307 use_kogge_stone => use_kogge_stone)
308 port map (

309 clk => clk,

310 reset => reset,

311 inputl => errorc2,

312 input2 => errord2,

313 output => tmp2,
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carry_in =>
carry_out =>
overflow =>

add_sum3: entity
generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =
input2 =>
output =>
carry_in =>
carry_out =>
overflow =>

Iol’
open,
open) ;

work.add

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmpl,
tmp2,
error_sum,
|0|,

open,
open) ;

sub_dx1: entity work.sub

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =>
input2 =
output =>
borrow_in =>

borrow_out =>
underflow =>

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
errora2,
errorb2,
tmp3,
IOI’
open,
open) ;

sub_dx2: entity work.sub

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =
input2 =>
output =>
borrow_in =>
borrow_out =>
underflow =>

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
errorc2,
errord2,
tmp4,
o' 5
open,
open) ;

add_dx3: entity work.add

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =>
reset =>
inputl =>
input2 =
output =>
carry_in =>

carry_out =>

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmp3,
tmp4,
error_dx,
IOI’
open,
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overflow =>

open) ;

sub_dyl: entity work.sub

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =5
reset =
inputl =
input2 =>
output =>

borrow_in =>
borrow_out =>
underflow =>

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
errora2,
errorc2,
tmp5,
IOI’
open,
open) ;

sub_dy2: entity work.sub

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =>
reset =>
inputl =>
input2 =>
output =>

borrow_in =>
borrow_out =>
underflow =>

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
errorb2,
errord2,
tmp6,
IOI’
open,
open) ;

add_dy3: entity work.add

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =>
reset =
inputl =
input2 =>
output =>

carry_in =>
carry_out =>
overflow =>

sub_elll: entity
generic map (
bits

use_registers

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmp5,
tmp6,
error_dy,
IOI’
open,
open) ;

work.sub

=> bitstnco_bits,
=> use_registers,

use_kogge_stone => use_kogge_stone)

port map (
clk =
reset =>
inputl =>
input2 =>
output =>

borrow_in =>
borrow_out =>
underflow =>

clk,
reset,
erroraz2,
errorb2,
tmp7,
IOI’
open,
open) ;
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sub_ell2: entity work.sub

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =
input2 =>
output =>
borrow_in =>

borrow_out =>
underflow =>

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
errord2,
errorc2,
tmp8,
lol’
open,
open);

add_ell3: entity work.add

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =5
reset =>
inputl =>
input2 =>
output =>
carry_in =>
carry_out =>
overflow =>
-- PID filter

=> bits+nco_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmp7,
tmp8,
error_ell,
Iol’

open,
open) ;

pidctrl_sum: entity work.pidctrl

generic map (
bits
int_bits
signed_arith
gains_first
use_prop
use_int
use_diff
use_registers

bits+nco_bits,
int_bits,

signed_arith,
= !

=> use_registers,

use_kogge_stone => use_kogge_stone)
port map (

clk => clk,

reset => reset,

enable => enable,

input => error_sum,

pgain => pgain_sum,

igain => dgain_sum,

dgain => (others => '0'),

output => pidout_sum);

pidctrl_dx: entity work.pidctrl

generic map (

bits
int_bits
signed_arith
gains_first
use_prop
use_int
use_diff

=> bits+nco_bits,
=> dnt_bits,

=> signed_arith,
=> '1'

=
=
=
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use_registers =>

use_kogge_stone =>
port map (

clk => clk,

reset => reset,
enable => enable,
input => error_dx,
pgain => pgain_dx,
igain => dgain_dx,

use_registers,
use_kogge_stone)

dgain => (others => '0'),
output => pidout_dx);

pidctrl_dy: entity work.pidctrl

generic map (

bits =
int_bits =>
signed_arith =>
gains_first =>
use_prop =5
use_int =
use_diff =>
use_registers =>
use_kogge_stone =>
port map (
clk => clk,

reset => reset,
enable => enable,
input => error_dy,
pgain => pgain_dy,
igain => dgain_dy,

bits+nco_bits,
int_bits,
signed_arith,
Ill
Ill
Ill
IOI
use_registers,
use_kogge_stone)

)
3
3
>

dgain => (others => '0'),
output => pidout_dy);

pidctrl_ell: entity work.pidctrl

generic map (

bits =
int_bits =>
signed_arith =
gains_first =
use_prop =5
use_int =>
use_diff =
use_registers =>
use_kogge_stone =>
port map (
clk => clk,

reset => reset,
enable => enable,

bits+nco_bits,
int_bits,
signed_arith,
Ill

use_registers,
use_kogge_stone)

input => error_ell,

pgain => pgain_ell,

igain => dgain_ell,

dgain => (others => '0'),
output => pidout_ell);

-- resize pid results

round_sum: entity work.
generic map (

inp_bits =
outp_bits =>
signed_arith =
use_registers =>

round

int_bits,
freq_bits,
signed_arith,
use_registers,
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562 use_kogge_stone => use_kogge_stone)
563 port map (

564 clk => clk,

565 reset => reset,

566 input => pidout_sum,

567 output => pidout_sum2);

568

569 round_dx: entity work.round

570 generic map (

571 inp_bits => 1dnt_bits,

572 outp_bits => freq_bits,

573 signed_arith => signed_arith,
574 use_registers => use_registers,
575 use_kogge_stone => use_kogge_stone)
576 port map (

577 clk => clk,

578 reset => reset,

579 input => pidout_dx,

580 output => pidout_dx2);

581

582 round_dy: entity work.round

583 generic map (

584 inp_bits => dnt_bits,

585 outp_bits => freq_bits,

586 signed_arith => signed_arith,
587 use_registers => use_registers,
588 use_kogge_stone => use_kogge_stone)
589 port map (

590 clk => clk,

591 reset => reset,

592 input => pidout_dy,

593 output => pidout_dy2);

594

595 round_ell: entity work.round

596 generic map (

597 inp_bits => 1dnt_bits,

598 outp_bits => freq_bits,

599 signed_arith => signed_arith,
600 use_registers => use_registers,
601 use_kogge_stone => use_kogge_stone)
602 port map (

603 clk => clk,

604 reset => reset,

605 input => pidout_ell,

606 output => pidout_ell2);

607

608 -- add start frequency

609

610 add_freq: entity work.add

611 generic map (

612 bits => freq_bits,

613 use_registers => use_registers,
614 use_kogge_stone => use_kogge_stone)
615 port map (

616 clk => clk,

617 reset => reset,

618 inputl => pidout_sum2,

619 input2 => start_freq,

620 output => freq_out,

621 carry_in => '0',

622 carry_out => open,

623 overflow => open);
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624

625 -- integrate frequency to phase
626

627 accumulator_sum: entity work.accumulator
628 generic map (

629 bits => freq_bits,
630 use_kogge_stone => use_kogge_stone)
631 port map (

632 clk => clk,

633 reset => reset,

634 enable => enable,

635 input => freq_in,

636 output => phase_sum_tmp);
637 phase_sum <= phase_sum_tmp;

638

639 reg_dx: entity work.reg

640 generic map (

641 bits => freq_bits)

642 port map (

643 clk => clk,

644 reset => reset,

645 enable => enable,

646 data_in => pidout_dx2,

647 data_out => phase_dx_tmp);
648 phase_dx <= phase_dx_tmp;

649

650 reg_dy: entity work.reg

651 generic map (

652 bits => freq_bits)

653 port map (

654 clk => clk,

655 reset => reset,

656 enable => enable,

657 data_in => pidout_dy2,

658 data_out => phase_dy_tmp);
659 phase_dy <= phase_dy_tmp;

660

661 reg_ell: entity work.reg

662 generic map (

663 bits => freq_bits)

664 port map (

665 clk => clk,

666 reset => reset,

667 enable => enable,

668 data_in => pidout_ell2,
669 data_out => phase_ell_tmp);
670 phase_ell <= phase_ell_tmp;

671

672 -- combine phases

673

674 add_al: entity work.add

675 generic map (

676 bits => freq_bits,
677 use_registers => use_registers,
678 use_kogge_stone => use_kogge_stone)
679 port map (

680 clk => clk,

681 reset => reset,

682 inputl => phase_sum_tmp,
683 input2 => phase_dx_tmp,
684 output => tmpll,

685 carry_in => '0',
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carry_out =>
overflow =>

open,
open) ;

add_a2: entity work.add

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =>
input2 =
output =>
carry_in =>
carry_out =>
overflow =>

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,

reset,
phase_dy_tmp,
phase_ell_tmp,
tmpl2,

|o|’

open,

open) ;

add_a3: entity work.add

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =2
reset =>
inputl =
input2 =>
output =>
carry_in =>
carry_out =>
overflow =>

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmpll,
tmpl2,
phasea,
|0|,
open,
open) ;

sub_bl: entity work.sub

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =>
reset =>
inputl =>
input2 =
output =>

borrow_in =>
borrow_out =>
underflow =>

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,

reset,
phase_sum_tmp,
phase_dx_tmp,
tmpl3,

lol’

open,

open) ;

sub_b2: entity work.sub

generic map (
bits
use_registers
use_kogge_sto

port map (
clk =2
reset =
inputl =
input2 =>
output =>
borrow_in =>
borrow_out =>
underflow =>

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,

reset,
phase_dy_tmp,
phase_ell_tmp,
tmpl4,

lol,

open,

open) ;
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add_b3: entity wo
generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =>
input2 =
output =>

carry_in =>
carry_out =>
overflow =>

sub_cl: entity wo
generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =
inputl =>
input2 =>
output =>

borrow_in =>
borrow_out =>
underflow =>

sub_c2: entity wo
generic map (
bits
use_registers
use_kogge_sto

port map (
clk =>
reset =>
inputl =>
input2 =
output =>

borrow_in =>
borrow_out =>
underflow =>

add_c3: entity wo
generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =
inputl =>
input2 =>
output =>

carry_in =>
carry_out =>
overflow =>

sub_dl: entity wo

rk.add

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmpl3,
tmpl4,
phaseb,
lol’
open,
open) ;

rk.sub

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,

reset,
phase_sum_tmp,
phase_dy_tmp,
tmpl5,

l@l’

open,

open) ;

rk.sub

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,

reset,
phase_dx_tmp,
phase_ell_tmp,
tmplé6,

|@|’

open,

open) ;

rk.add

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmpl5,
tmplé6,
phasec,
IQI’
open,
open) ;

rk.sub
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generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =>
input2 =
output =>
borrow_in =>

borrow_out =>
underflow =>

sub_d2: entity wo
generic map (
bits
use_registers
use_kogge_sto

port map (
clk =
reset =>
inputl =
input2 =>
output =>

borrow_in =>
borrow_out =>
underflow =>

add_d3: entity wo
generic map (
bits
use_registers
use_kogge_sto

port map (
clk =>
reset =>
inputl =
input2 =
output =>
carry_in =>
carry_out =>
overflow =>

-— look up tables

sincos_a: entity
generic map (

phase_bits
bits
use_registers
lut_type

port map (
clk => c'lk
reset => res
phase => pha
sinout => sin
cosout => cos

sincos_b: entity
generic map (
phase_bits

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,

reset,
phase_sum_tmp,
phase_dx_tmp,
tmpl7,

lol’

open,

open) ;

rk.sub

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,

reset,
phase_ell_tmp,
phase_dy_tmp,
tmpl8,

|0l’

open,

open) ;

rk.add

=> freq_bits,
=> use_registers,
ne => use_kogge_stone)

clk,
reset,
tmpl7,
tmpl8,
phased,
|0|’
open,
open) ;

work.sincos

=>
=>
=>
=>

freq_bits,
nco_bits,
use_registers,
1)

3

et,
sea,
ea,
inea);

work.sincos

=> freq_bits,
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bits
use_regist
lut_type
port map (
clk =
reset =>
phase =>
sinout =>
cosout =>

sincos_c: enti
generic map
phase_bits
bits
use_regist
lut_type
port map (
clk =
reset =>
phase =>
sinout =>
cosout =>

sincos_d: enti
generic map
phase_bits
bits
use_regist
lut_type
port map (
clk =
reset =>
phase =>
sinout =>
cosout =>

end architecture

=> nco_bits,
ers => use_registers,
=> 1)

clk,
reset,
phaseb,
sineb,
cosineb);

ty work.sincos

(
=> freq_bits,
=> nco_bits,

ers => use_registers,
= 1)

clk,

reset,

phasec,

sinec,

cosinec);

ty work.sincos

(
=> freq_bits,
=> nco_bits,

ers => use_registers,
=> 1)

clk,
reset,
phased,
sined,
cosined) ;

behav;

B.3.2 Testbench

library deee;

use jeee.std_logic_1164.all;

use ‘ieee.numeric
use ieee.math_re
use std.textio.a
use work.log2.al

entity testbench
end entity testb
architecture beh
constant bits
constant nco_b
constant lut_b

constant int_b
constant freq_

_std.all;
al.all;
11

1

is

ench;

av of testbench is
natural := 14;

its : natural := bits;

its : natural := bits;

its : natural := 3xbits;
bits : natural := 16;
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20 constant signed_arith :obit = '1';

21 constant use_registers : bit = '0';

22 constant use_kogge_stone : bit := '0';

23

24 signal clk : std_logic := '0';

25 signal reset : std_logic;

26 signal t : natural := 0;

27

28 signal freq : std_logic_vector(freq_bits-1 downto 0);
29 signal pm : std_logic_vector(freq_bits-1 downto 0);

30 signal sinl : std_logic_vector(bits-1 downto 0);
31 signal sin2 : std_logic_vector(bits-1 downto 0);

32

33 signal inputa : std_logic_vector(bits-1 downto 0);

34 signal inputb : std_logic_vector(bits-1 downto 0);

35 signal inputc : std_logic_vector(bits-1 downto 0);

36 signal dinputd : std_logic_vector(bits-1 downto 0);

37 signal ia : std_logic_vector(bits+tnco_bits-1 downto 0);

38 signal ga : std_logic_vector (bits+nco_bits-1 downto 0);

39 signal ib : std_logic_vector(bits+tnco_bits-1 downto 0);

40 signal gb : std_logic_vector(bits+tnco_bits-1 downto 0);

41 signal ic : std_logic_vector(bitstnco_bits-1 downto 0);

42 signal gc : std_logic_vector(bits+nco_bits-1 downto 0);

43 signal id : std_logic_vector (bits+nco_bits-1 downto 0);

44 signal qd : std_logic_vector(bits+nco_bits-1 downto 0);

45 signal errora : std_logic_vector (bits+nco_bits-1 downto 0);

46 signal errorb : std_logic_vector(bits+tnco_bits-1 downto 0);

47 signal errorc : std_logic_vector (bits+nco_bits-1 downto 0);

48 signal errord : std_logic_vector(bitstnco_bits-1 downto 0);

49 signal pgain_sum : std_logic_vector(log2ceil(int_bits)-1 downto 0);
50 signal igain_sum : std_logic_vector(log2ceil(int_bits)-1 downto 0);
51 signal pgain_dx : std_logic_vector(log2ceil(int_bits)-1 downto 0);
52 signal digain_dx : std_logic_vector(log2ceil(int_bits)-1 downto 0);
53 signal pgain_dy : std_logic_vector(log2ceil(int_bits)-1 downto 0);
54 signal digain_dy : std_logic_vector(log2ceil(int_bits)-1 downto 0);

55 signal pgain_ell : std_logic_vector(log2ceil(int_bits)-1 downto 0);
56 signal igain_ell : std_logic_vector(log2ceil(int_bits)-1 downto 0);
57 signal start_freq : std_logic_vector(freq_bits-1 downto 0);

58 signal freq_out : std_logic_vector(freq_bits-1 downto 0);
59 signal freq_in : std_logic_vector(freq_bits-1 downto 0);
60 signal phase_sum : std_logic_vector(freq_bits-1 downto 0);
61 signal phase_dx : std_logic_vector(freq_bits-1 downto 0);
62 signal phase_dy : std_logic_vector(freq_bits-1 downto 0);

63 signal phase_ell : std_logic_vector(freq_bits-1 downto 0);
64

65 file log : text open write_mode is "log";

66

67 begin -- architecture bhav

69 clk <= not clk after 6.25 ns;
70 t <=t + 1 after 12.5 ns;

71 reset <= '0' when t < 10 else '1l';

72

73 logger: process (clk, reset) is

74 variable 1 : line;

75 begin

76 if clk'event and clk = '1' then

77 write(l, t);

78 write(l, " ");

79 write(l, real(to_integer(unsigned(freq)))/real(24«freq_bits-1));
80 write(l, " ");

81 write(l, real(to_integer(unsigned(freq_out)))/real(2xxfreq_bits-1));
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write(l,
write(l,
write(l,
write(l,
writelin

end if;
end process

n Il);
real(to_integer (unsigned(pm)))/real(24xfreq_bits-1))

n Il);
real(-to_integer(signed(phase_dx)))/real(24xfreq_bits-1));
e(log, 1);

logger;

)

freq <= std_logic_vector(to_unsigned(integer((sin(real(t)/real(100000)4real(2)x

MATH_PI)4real(0.1)+real(0.2))xreal(24xfreq_bits-1)), freq_bits));

pm <= std_logic_vector(to_unsigned(integer((sin(real(t)/real(1000000)xreal(2)«

MATH_PI)4real(0.1)+real(0.2))xreal(24xfreq_bits-1)), freq_bits));

start_freq <= std_logic_vector(to_unsigned(integer(real(0.2)xreal(24xxfreq_bits
-1)), freq_bits));

pgain_sum <=
igain_sum <=
pgain_dx <=
igain_dx <=
pgain_dy <=
igain_dy <=
pgain_ell <=
igain_ell <=

nco_1: entit

generic ma
freq_bit
lut_bits
bits
use_regi
use_kogg

port map (
clk =
reset =>
freq =>
pm =
sin =
cos =>
saw  =>

nco_2: entit

generic ma
freq_bit
lut_bits
bits
use_regi
use_kogg

port map (
clk =
reset =>
freq =>
pm =>
sin =
cos =>
saw =

inputa <= si
inputc <= si

qpd_pll_1: e
generic ma
bits

std_logic_vector(to_signed(-10, log2ceil(int_bits
std_logic_vector(to_signed(-12, log2ceil(int_bits
std_logic_vector (to_signed(-12, log2ceil(int_bits)
std_logic_vector(to_signed(-14, log2ceil(int_bits)
std_logic_vector (to_signed(-12, log2ceil(int_bits)
std_logic_vector(to_signed(-14, log2ceil(int_bits)
std_logic_vector (to_signed(-12, log2ceil(int_bits
std_logic_vector(to_signed(-14, log2ceil(int_bits

NN AN AN NS AN NG NG
~— N e

y work.nco

p (
s => freq_bits,
=> lut_bits,
=> bits,
sters => use_registers,
e_stone => use_kogge_stone)
clk,
reset,
freq,
(others => '0'),
sinl,
open,
open) ;

y work.nco

p (
s => freq_bits,
=> lut_bits,
=> bits,
sters => use_registers,
e_stone => use_kogge_stone)
clk,
reset,
freq,
pm,
sin2,
open,
open) ;

nl; inputb <= sin2;
nl; inputd <= sin2;

ntity work.gpd_pll

p (
=> bits,

)

3

3

)
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141 int_bits => 1dint_bits,
142 lut_bits => lut_bits,
143 nco_bits => nco_bits,
144 freq_bits => freq_bits,
145 signed_arith => signed_arith,
146 use_registers => use_registers,
147 use_kogge_stone => use_kogge_stone)
148 port map (

149 clk => clk,

150 reset => reset,

151 enable => '1',

152 inputa => {dnputa,

153 inputb => dnputb,

154 inputc => dnputc,

155 inputd => 1dnputd,

156 ia => 1a,

157 qa => qa,

158 ib => b,

159 qb => gb,

160 ic => 1c,

161 qc => qc,

162 id => 1id,

163 qd => qd,

164 errora => errora,

165 errorb => errorb,

166 errorc => errorc,

167 errord => errord,

168 pgain_sum => pgain_sum,

169 igain_sum => dgain_sum,

170 pgain_dx => pgain_dx,

171 igain_dx => dgain_dx,

172 pgain_dy => pgain_dy,

173 igain_dy => dgain_dy,

174 pgain_ell => pgain_ell,

175 igain_ell => dgain_ell,

176 start_freq => start_freq,
177 freq_out => freq_out,

178 freq_in => freq_in,

179 phase_sum => phase_sum,

180 phase_dx => phase_dx,

181 phase_dy => phase_dy,

182 phase_ell => phase_ell);
183

184 errora <= qga;

185 errorb <= gb;

186 errorc <= qc;

187 errord <= qd;

188 freq_in <= freq_out;

189

190 end architecture behav;

B.4 Ranging and data transfer

B.4.1 Actuator signal filter

1 -- Copyright (c) 2012, Nils Christopher Brause
2 —- All rights reserved.
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B.4 RANGING AND DATA TRANSFER

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The views and conclusions contained in the software and documentation are
those of the authors and should not be interpreted as representing official
policies, either expressed or implied, of the Max Planck Institute for
Gravitational Physics (Albert Einstein Institute).

library deee;

use jeee.std_logic_1164.all;
use jeee.numeric_std.all;

entity slowlyadd -s

generic (
bits : natural; --! width of {dinput
use_registers : bit = '0'; --! use additional registers on slow
FPGAs
use_kogge_stone : bit := '0'); --! use an optimized Kogge Stone adder
port (
clk : in  std_logic; --! dnput clock
reset : in  std_logic; --! asynchronous reset
inputl : in  std_logic_vector(bits-1 downto 0); --! first summand
input2 : in std_logic_vector(bits-1 downto 0); --! second summand (slow)
output : out std_logic_vector(bits-1 downto 0); --! output sum
carry_in : in std_logic; --! carry imput (unused)
carry_out : out std_logic; --! carry output
overflow : out std_logic); --! signed overflow

end entity slowlyadd;

architecture behav of slowlyadd is

constant one : std_logic_vector(bits-1 downto 0) := std_logic_vector(to_signed
(1, bits));

signal slow : std_logic_vector(bits-1 downto 0);

signal slow_next : std_logic_vector(bits-1 downto 0);

signal slow_plus : std_logic_vector(bits-1 downto 0);

signal slow_minus : std_logic_vector(bits-1 downto 0);

begin -- architecture behav

slow_add_one: entity work.add
generic map (

bits => bits,

use_registers => 'o',

use_kogge_stone => use_kogge_stone)
port map (

clk => clk,

reset => reset,

inputl => slow,

input2 => one,

output => slow_plus,

carry_in => '0',
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63 carry_out => open,

64 overflow => open);

65

66 slow_sub_one: entity work.sub
67 generic map (

68 bits => bits,
69 use_registers => '0',
70 use_kogge_stone => use_kogge_stone)
71 port map (

72 clk => clk,

73 reset => reset,

74 inputl => s'low,

75 input2 => one,

76 output => slow_minus,
7 borrow_in => '@',

78 borrow_out => open,

79 underflow => open);

80

81 slow_next <= slow_plus when signed(slow) < signed(input2) else
82 slow_minus when signed(slow) > signed(input2) else
83 slow;

84

85 slow_reg: entity work.reg

86 generic map (

87 bits => bits)

88 port map (

89 clk => clk,

90 reset => reset,

91 enable => '1',

92 data_in => slow_next,

93 data_out => slow);

94

95 slow_add: entity work.add

96 generic map (

97 bits => bits,
98 use_registers => '1',
99 use_kogge_stone => use_kogge_stone)
100 port map (

101 clk => clk,

102 reset => reset,

103 inputl => 1dnputl,

104 input2 => s'low,

105 output => output,

106 carry_in => '0',

107 carry_out => carry_out,
108 overflow => overflow);
109

110 end architecture behav;
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Acronyms

AC Alternating Current.

ADC Analogue to Digital Converter.
AGC Automatic Gain Control. [4] [o} [15} [55}

AM Amplitude Modulation.

AOM Acoustic-Optic Modulator.

BER Bit Error Rate. [99]

CIC Cascaded Integrator Comb.

CNR Carrier to Noise Density Ratio. I, [V]

DAC Digital to Analog Converter.
DC Direct Current. 17} [53]

DFT Discrete Fourier Transform.

DLL Delay Locked Loop. [io2] fio4] 105] 108}

DPLL Digital Phase Locked Loop.
58 2o o7 o8 I [V

DPS Differential Power Sensing.

DSP Digital Signal Processing.

DSS Digital Signal Simulator.

DWS Differential Wavefront Sensing.
EBB Elegant Bread Board.
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FEC Forward Error Correction.

FFT Fast Fourier Transform. [3} [4] 30 [31 [42] [44] l55H57) [64)
[ [V]

FPGA Field Programmable Gate Array.
FPU Floating Point Unit.

FSM Finite State Machine. 45

FT Fourier Transform.

IAD Integrate-And-Dump.

LIGO Laser Interferometer Gravitational Wave Observatory. i

LISA Laser Interferometer Space Antenna.
[T V]

LMS LISA Metrology System. [3} 57} [11} 12} 16} [21} [30} [33} [35} [42} [46} 56} [64} [o1} 2]
o105} fio7} 108} [T [V]

LRI Long Range Interferometry. i
LUT Look-Up Table. [g]
NCO Numerically Controlled Oscillator. 9]

NPRO Non-Planar Ring Oscillator.
PA Phase Accumulator. [} 10} [77]

PC Personal Computer. [3|[7]

PI Proportional-Integral. [g]
[o5l [o6l

PLL Phase Locked Loop.
PRN Pseudo Random Noise.

QPD Quadrant Photo Diode.
RAM Random Access Memory.

ROM Read Only Memory.
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SEPD Single Element Photo Diode.

TDI Time-Delay Interferometry. \Y

VHDL Very high speed integrated circuit Hardware Description Language.
57} [64} 75} [B4]

VRAM Video Memory.
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