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Abstract:
The design of modulated filter banks with a low system delay and with perfect reconstruction will be
shown. The filter lengths K can be chosen arbitrarily. The well known orthogonal filter banks have a
system delay of K - 1 samples. The proposed filter banks can reduce this delay to N - 1 samples, where
N is the number of bands. The design method uses a decomposition or factorization of the polyphase
matrix into cascades of simple matrices. Several factorizations with different properties will be shown.
A factorization will be introduced which is more general and needs fewer multiplications than previous
approaches (K/2 + N). The resulting filter banks can have analysis and synthesis frequency responses that
can be made different from each other, leading to biorthogonal filter banks. An optimization algorithm
for the frequency response of the resulting filter banks will be given. Examples show the feasibility of
designing even big filter banks with many bands with low system delay and high stopband attenuation.

Übersicht:
Ein Verfahren zur Konstruktion von modulierten Filterbänken mit kurzer Verzögerungszeit und mit exak-
ter Rekonstruktion wird vorgestellt. Die Filterlänge K kann beliebig gewählt werden. Im Fall der bekann-
ten orthogonalen Filterbänke beträgt die Systemverzögerung K- l Abtastwerte. Die hier vorgeschlagenen
Filterbänke können diese Verzögerungszeit auf N - \ Abtastwerte reduzieren, wobei N die Anzahl der
Teilbänder ist. Das Verfahren zur Konstruktion der Filter basiert auf einer Zerlegung oder Faktorisierung
der sogenannten Polyphasen-Matrix in Kaskaden einfacherer Matrizen. Mehrere Faktorisierungen mit unter-
schiedlichen Eigenschaften werden hergeleitet. Es wird eine Faktorisierung gezeigt, welche weniger Mul-
tiplikationen als frühere Ansätze benötigt (K/2 +N). Die resultierenden Filterbänke können Analyse- und
Synthese-Frequenzgänge haben, die voneinander verschieden sind, sogenannten biorthogonale Filterbän-
ke. Ein Optimierungs-Algorithmus für die Frequenzgänge der resultierenden Filterbänke wird vorgestellt.
Beispiele zeigen, daß es möglich ist, l selbst große Filterbänke mit vielen Teilbandfiltern mit niedriger

Systemverzögerung und hoher Sperrbereichs-Dämpfung zu konstruieren.

Für die Dokumentation:
Filterbänke / Multirate / Digitale Signal Verarbeitung / Vorecho-Unterdrückung / Subbandcodierung / Echt-

zeit-Systeme

1. Introduction

Filter banks are used in a variety of applications, like in
audio, speech, or video coding, in acoustic echo cancella-
tion, Frequency Division Multiplex and more. They consist
of a bank of analysis filters with subsequent downsampling,
whose output is used e.g. for coding or manipulating the sig-
nal, and a bank of upsamplers followed by synthesis filters,
which can reconstruct the signal from the analysis outputs
(Fig. 1) to various degrees of precision.

It is usually desired that the filters are narrow bandpass
filters with little overlap in the frequency domain. For coding
applications it is important to have a critical downsampling,
i.e. the overall data rate is not increased by the analysis fil-
ter bank. E.g. if the same downsampling rate is used for all
bands, it should be N, if W bands are used.

Perfect reconstruction filter banks are such that the syn-
thesis filter bank reconstructs the input to the analysis filter
bank from its output exact or perfectly, despite the analysis
filtering and downsampling. It can be achieved with up to a
critical downsampling rate, but in general not at higher
downsampling rates. Perfect reconstruction could be obtai-
ned by choosing ideal band filters for the analysis and syn-

thesis filter bank. They would be sampled at their Nyquist
rate and since they would cover the entire frequency range,
perfect reconstruction would result. Ideal band filters are not
realizable, but perfect reconstruction can be achieved with
realizable filters by designing them suitably, such that the
synthesis cancels any aliasing or amplitude distortions which
the analysis introduces, so that ( ) = x(n - nd), where nd is
the system delay in samples.

Modulated filter banks have filters with frequency res-
ponses which are frequency shifted versions of baseband pro-
totypes, one for the analysis and one for the synthesis fil-
ters. They result from multiplying or modulating the base-
band impulse response with a modulating function, e.g. a
cosine function, which leads to cosine modulated filter banks.

I"

-1-n) -
Figure 1: An W-channel filter bank with critical down-

sampling
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Modulated filter banks are popular because they usually
have a computationally efficient way for their implementa-
tion and they are simple to design, because only the two pro-
totypes need to be designed and evaluated.

An important property of filter banks is their overall
system delay (nd), which is the lag between the input of the
analysis filter bank and the output of the synthesis filter bank
if they are connected directly. Until recently the filter banks
investigated and used had a standard system delay, which is
the length of the band filters of the filter bank (or the length
of the prototype), minus one sample. This means that filter
banks with a lower system delay needed to have short fil-
ters, resulting in a poor frequency response, or vice versa,
filter banks with good frequency responses, close to some
desired ideal, needed to be long, resulting in a high system
delay. Low delay filter banks don't have this connection be-
tween filter length and system delay, they can have a low
system delay and also long filters, resulting in good frequency
responses. Application examples are real time speech and
audio coding systems. In audio coding systems they can also
be used for the reduction of so called pre-echoes, audible
distortions, caused by the system delay of the used filter bank.

Low delay filter banks were first investigated by Nayebi
[15, 16, 17], who showed the possibility of designing low
delay filter banks. He treated the general case but had no per-
fect reconstruction. Later work of the author showed that it
is also possible to design perfect reconstruction low delay
filter banks [23-26]. This paper will show how to design
modulated filter banks (especially with a cosine modulation
function) with perfect reconstruction, with variable system
delays (ranging from the minimum to the maximum possi-
ble delay for a given filter length), and with a structure for
a computational efficient implementation.

2. Polyphase Formulation
Fig. 1 shows a filter bank with N bands and critical down-

sampling. The analysis filtering and downsampling opera-
tion can be written as

LN-l
(D

n=0

for all integer m, where yt(m) is the output of the it'th sub-
band channel at the m'th interval. 2LN is the length of the
filters. The impulse responses don't need to be actually of
this size, they can be zero padded. Observe that ht(n) is the
time reversed analysis filter impulse response. /it can be seen
as a "filter vector", because the filtering or convolution ope-
ration now resembles a vector multiplication. This has the
advantage that it better fits the matrix formulation which will
be introduced later. The filter bank may be viewed as pro-
cessing the input in blocks. For every block of N samples,
where m may be viewed as the block index for x(mN + n),
N output samples in the variable k are produced: )>t(m); k =
0,1, ...,N — \. A more convenient way for the representa-
tion of this system is the polyphase formulation [6].

The input is grouped into consecutive blocks of length N
which is written as a vector x(m)

x(m) = [x(mN),...,x(mN + N-1)].

Now a z-transform can be performed on the vector

The output of the analysis filter bank is also written as a
vector

y(m) =

and z-transformed

This has the advantage that the analysis filtering and
downsampling operation can be expressed very convenient-
ly, if we define the polyphase matrix as

2L-1
,-1-m)

m=0

n, k = Ο, ..., Ν - I , where [.]„,* denotes the element at the
n'th row and k'th column, or k is the frequency index and n
the time index. The analysis filtering and downsampling ope-
ration now is

The synthesis upsampling and filtering operation can be
expressed in the same way. The synthesis polyphase matrix
s

2L-\

m=0

so that the output of the synthesis filter bank can be written
as

The analysis and synthesis filter bank can now be seen as
just a multiplication with square matrices with polynomial
elements, as illustrated in Fig. 2. Perfect reconstruction
requires the product of Pa(z) and Ps(z) to be just a delay, which
means the synthesis polyphase matrix for a given analysis
polyphase matrix is

where d is the delay of the signal in blocks of length N to
make the synthesis filters causal, i. e. such that Ps(z) has no
positive powers of z. The system delay now consists of this
delay of d blocks to make the polyphase matrix causal, and
of the so called blocking delay (N — 1 samples), which
results from the grouping of the input samples into blocks
of length N. The system delay therefore isnd = d-N + N-l.

3. Modulated Filter Banks
Modulated filter banks have certain symmetries in their

impulse responses that can be used for the design and effi-
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Figure 2: A polyphase representation of an W-channel filter
bank with critical downsampling

cient implementation of the filter bank. The important point
here is that their polyphase matrices can be written as a pro-
duct of a sparse "filter matrix" with polynomial elements
(F*(z), i's(z))» and a transform matrix (T) with real or com-
plex elements. Both can be implemented efficiently. This
means the polyphase matrices can be written as

"'
with

-2m (3)
m=0

For the case of /ίο = 0 the following form is obtained,

ο -/5v(z)

d ο

The form of Fa(z) and Fs(z) is obtained by computing the
expression F,(z) = Pa(z) · rl and Fs(z) = Τ · Ρ^ζ). Assume
e. g. a modulated filter bank like

hk (n) = h(n) · cosi — (* + 0.5)(n + 0.5 + «0 )]

ft (n) = A'(n) · -| · co0(t + 0.5)(« + 0.5 + «„))

with /^(z) as defined in equation (2). This is a Filter Matrix
with a bi-diagonal structure. The synthesis filter matrix is,

«ω

The factor 21 Ν is just a normalization. h(n) and h'(n) are
the analysis and synthesis baseband prototype filters res-
pectively. They are usually lowpass filters. Now take a
Discrete Cosine Transformation Τ type 4, which is defined
as

[T]ttk = cosf-^(fc + 0.5Xn + 0.5)\ 0 < n,k < N.

This type of transform is suitable in this case, because it
fits the modulation function. For «o = -NI2 now observe that

« rN+N/2-l\

PW_!(z)z~' -^2ΛΓ-ΐ(ζ) °

This is a filter matrix with a diamond structure, where

L-l

(2)m=0

The synthesis filter matrix Fs(z) has the same structure as

More filter matrices can be computed, e. g. for other no
or for other modulation functions, like for DCT's of diffe-
rent types. The design method which will be described is
capable of designing filter banks with more different n0 than
shown in the preceding two examples and also for different
modulation functions. But to illustrate the method the shown
cosine modulation type will be used in the following (DCT 4).

These filter matrices could now already be used for the
design of filter banks. To perfectly reconstruct a signal from
a given analysis filter bank the synthesis filter matrix needs
to be the inverse of the analysis filter matrix, multiplied with
a delay z4to make it causal. But this approach may lead to
IIR synthesis filters, which may not be stable. There would
also be no direct control over the system delay, which is deter-
mined by the additional delay z4. The goal is now to obtain
FIR analysis and also FIR synthesis filters with the perfect
reconstruction property, to have control over the overall
system delay, and to obtain a structure for an efficient imple-
mentation. This is done by constructing the filter matrices
as a product of several simpler matrices. The simple matri-
ces have an inverse, which is FIR, have different system
delays associated with them, and are sparse with only a few
elements unequal to 1 or 0, which leads to an efficient
implementation.

The design process then consists of choosing the matri-
ces for the desired properties (system delay, filter length) and
then to optimize the resulting product or structure for the
desired frequency response. These simple matrices are
described in the following.

• Coefficient Matrices — The first one has a diamond struc-
ture,
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F:= -1

0 dN-\ d2N-\

Observe that its inverse is causal, so that no multiplica-
tion with a delay is necessary.

Its inverse is easy to compute and has the same structure.

The second one has a bi-diagonal structure,

1

:0 ,-' z®z eN+N -l

Co

with

cN/2-l
1

with real or complex coefficients. Because these matrices are
used in a product or cascade, the columns or rows of all used
matrices can be normalized, except for one, which is the F
or C0 matrix (which will be shown). This is why the elements
on the anti-diagonal can be 1. Its inverse also has the same
structure. Observe that the inverse has no longer l 's on the
anti-diagonal, so that the number of multiplications neces-
sary to implement the inverse is higher.

• Standard Delay Matrix - It increases the filter length and
the system delay.

.-i

D(z):=
υ ι

1

Its inverse needs a multiplication by z~' to make it causal.

"1

/2JV-1

-0 _ ~eN-\-jei ~ „o J> 'eN+je2N-l-j
-i,

j "0 *·and eN+j=~o
e2N-l-j

, j = O...N-]

For E;(z), ι > 0, the elements on the anti-diagonal are 1
(again a normalization). The second type of zero-delay matri-
ces has the same basic structure, but the roles of the matrix
and its inverse are switched.

„i _-i

8N/2-IZ 1
1 0

Its inverse is

1 -gf//2-lZ
-1

-«AT1

1
'1

0

-1

A product of these matrices has to have the shape of one
of the filter matrices, i. e. it must have a bi-diagonal or dia-
mond shape and the distribution of the even and odd powers
of z must be as in the filter matrices. This ensures mat the
resulting polyphase matrix leads to a modulated filter bank.
The following products or cascades have this property.

1 Zero-Delay Matrices - They increase the filter length but
not the system delay. The first type is

F.D(Z)- (4)
.ί=ι

' o 4
'·.

0 °
0 „0 -1eN+N eN Z

f ·

0 0 - 1
/2JV-1 eN-\Z .

ana

(„-1
F.(z)= TTim

•F-'

w~l
s(z}

(rn-I

Π
•=0

for the analysis filters, where η £ 0, m > 0 are now constants,

•D-1«·*-'

r2(z).z-2-C-0 (5)
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for the synthesis filters. The roles of the analysis and syn-
thesis filter matrices can also be switched, since they are
inverse to each other. The parameters m and n can be cho-
sen freely and determine the filter length and the overall
system delay. The resulting length of the impulse response
is K = m2N +2N+ nN, and the delay is nd= m2N +2N-1
samples. The number of multiplications necessary for the
implementation of the analysis filter matrix is the number
of coefficients of the simple matrices which are unequal to
1 or 0, and is mN +2N + nN/2 orK/2+N, and for the syn-
thesis filter bank it is m2N +2N + nN/2 = K/2 + N + mN.
Fig. 3 illustrates this structure.

This formulation represents a very broad class of filter
banks, and many well known classes of filter banks are a
subset of it. Orthogonal or paraunitary filter banks with stan-
dard system delay result if F and Ct are restricted to be ortho-
gonal (i. e. rows or columns are orthogonal) and no zero-
delay matrices are used (n = 0). This leads to the ELT of
Malvar [13, 14]. Note that the ELT does not normalize the
Ci matrices to ones on the anti-diagonal, so that it needs more
multiplications for the analysis part (as many as the synthesis
part). The TDAC filter bank of Princen and Bradley [ 1 ] results
if only the F and the D matrix are used (n = 0 and m = 0)
and F is restricted to be orthonormal (i. e. F"1 = FT). If n is
set to 0 and the C, matrices are not restricted to be ortho-
gonal, then so called biorthogonal filter banks with a stan-
dard system delay are obtained, and if« is not zero, low delay
filter banks are the result.

A filter bank with the lowest possible delay, the minimum
system delay, requires a different product. It results if the
filter matrices are of the form

n-l

(6)

-1

~ aN/2

-i
°N-\

The inverse needs a multiplication with z 2 to make it cau-
sal.

-I

ι

ζ'1 Ο

-1

The second type looks similar, but has the roles of the
matrix and its inverse switched. The matrix B0(z) also uses
coefficients on the anti-diagonal of the matrix, the other
matrices (B,(z) for i > 0) can again be normalized.

i=0

.-l

"N/2-1

n-l

(7)
ι=0

with η > 0. The resulting impulse responses have N/2 trai-
ling zeros, so that the length of the non-zero part is not an
integer multiple of N. The length of the non-zero part of the
impulse response of the analysis and synthesis filter bank
therefore is Κ = nN + 0.5N. The delay that is left is the
blocking delay ofN—l samples, which is the minimum pos-
sible delay. The number of multiplications necessary for the
implementation of the analysis or the synthesis filter matrix

-N/2 = KI2 + Ο.Ί5Ν.

These products lead to delays that are less or equal to the
standard delay and to delays of the size of even multiples of
N (except for the minimum delay case). A product or cas-
cade with the following matrices is even more general be-
cause it can also be used for delays of odd multiples of N
and for higher delays than the standard delay. It is also impor-
tant to note that it needs fewer multiplications for the imple-
mentation than the previous cascade. Observe that this also
means that this new cascade is also more efficient than pre-
vious approaches like the ELT filter banks. This formula-
tion uses Maximum-Delay-Matrices, which can be interpreted
as time reversed Zero-Delay-Matrices.

• Maximum-Delay Matrices — They increase the filter length,
but especially the system delay. The first type is

ο
"N+N/2-fc° -' J,'"ATtAra-l* *iNfl

α -ι

x=> C,-D* * ... =» C„-D2 *· F D

G, * ... => G, * T * Υ

Y=>

ζ-'·Χ

Figure 3: The first structure, the analysis filter bank above,
the synthesis filter bank below
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with
.

NP+J ο ,οeN+j°2N-\-j
, ; = O..JV/2-l,

Ti
"2N-\-j

The coefficients q'and b] can again be real or complex num-
bers. For i > 0 the elements on the anti-diagonal are 1 be-
cause of the normalization (b] = 1 for i > 0 and 7 > N).

The following products or cascades result in modulated
filter banks with a system delay of the size of even multi-
ples of Ν

F.(Z) = F.D(Z)

if m is even (including 0), and

(8)

if m is odd (n > 0, m > 0). The synthesis filter matrices are

for even m, and

(11)

for odd m.

The resulting filter length is Κ = (m + n)N + 2N, the system
delay is m2N + 2N - 1, and the number of multiplications
necessary for the implementation of the analysis or the syn-
thesis filter matrix is 2N + (n + m) · NI2 or A/2 + N. Observe
that for the synthesis filter matrix this number is lower than
with the first product or cascade.

For a system delay of the size of odd multiples of N the
following product can be used

(12)

if m is even and

(13)

if m is odd (» > 0, m > 0). The resulting synthesis filter matri-
ces are

·=ο
for even m, and

(15)

for odd m. m is greater than 0 because for the minimum delay
case cascade (6) and (7) should be used instead. For n = 0
this cascade results in filter banks with a maximum delay,
which can also be seen as a time reversed minimum delay
filter bank. The resulting impulse responses in this last case
(delay of odd multiples οϊΝ) have Ν 12 leading zeros. If η > 0
they also have NI2 trailing zeros. The length of the nonzero
part of the impulse responses is Κ = mN + 0.5N if » = 0, and
Κ = (m + n)N if n > 0, the system delay is nj = m2N + N-\,
and the number of multiplications necessary for the imple-
mentation of the analysis or the synthesis filter matrix is
(m + ri)NI2 + NOT KI2 + 0.75N if n = 0 and KI2 + N if n >0.
The maximum possible delay of this cascade is nd = 2K — 1,
which is about twice as much as the standard delay.

The next step of the design procedure now is to determine
the unknown matrix coefficients, so that some desired fre-
quency response is approximated. This is done by numeric
optimization. Observe that the optimization does not need
to take care of the perfect reconstruction property, because
it is already guaranteed by the structure.

3.1 Optimization

The goal here is to minimize an error function, which is
a nonlinear function with a scalar (real) output and a multi-
dimensional input. Basically any optimization algorithm for
the optimization of such functions can be used, but there are
differences in convergence and speed. The algorithm descri-
bed in the following was found to be relatively reliable in
convergence and fast.

Define JT to be a vector of the s unknown filter matrix
entries, which are to be optimized, and H(x) be the weigh-
ted frequency responses of the baseband prototype filters or
a band filter, at ( frequency samples. Analysis and synthe-
sis frequency responses are both contained in this vector, e. g.
as a concatenation, so that it has a length of 21. Let d be the
vector of the weighted desired frequency responses at those
frequency samples. As the error function a quadratic distance
function is chosen. To optimize the magnitude of the fre-
quency response, the following error function is used,

2t

A'
1=1

2f

-Σ

1=1

The algorithm that is used to minimize this function is basi-
cally the so called method of conjugate directions, which was
specialized to this quadratic function, so that the convergence
and the speed of convergence could be increased. The idea
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Figure 4: Impulse responses of the baseband prototype for an
orthogonal filter bank with 128 bands and 255 samples delay.

is to use one-dimensional line minimization for finding the
s dimensional minimum, and choosing the directions of the
line minimizations carefully. Line minimization can be done
e. g. with Newtons method. To illustrate the idea, let Xg be
the starting point of the iteration, and v; the unit vector in
the direction of the line minimization. A step of Newtons
method applied to the first derivative of fix) is

x, = xn-Ax

AT =— ; rr— -V ;.

The derivatives can be computed as

3v? av,- dr,

0.8
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0.4

02

-0.2
100 200 300 400 500 600

Figure 5: Impulse responses of the baseband prototype for a
low delay filter bank, for analysis and synthesis, also with

128 bands and 255 samples delay, but with a filter length of
512 taps.
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Figure 6: Magnitude responses of the baseband low delay
prototype (the lower curve), identical for the analysis and
synthesis filter bank, compared with the orthogonal filter

bank.

where the overbar means complex conjugate. The s direc-
tions of the line minimizations, v(, are determined by the
eigenvectors of the Hessian matrix B off. Usually it is com-
putationally too expensive to compute the Hessian explicit-
ly. But here the Hessian can be approximated with the first
derivative of H, A = VHT, where αί<7· = 3///3χ,, as B ~
2Re{AAT}. The following algorithm illustrates the opti-
mization method.
x: Initialization with random numbers
Repeat

v = Set of Eigenvectors of Re{A.AT}
For ι = 1 to s
{

Ar: Newton Step in direction v,·
Repeat

If fix - Ar) >flx) then
reduce Ar

until flx- Ar )< flx)
} . .
until | Ar | 2 < eps;

This minimization process can be started with a random
starting point. To make sure that a good minimum was found
a second random starting point can be tried. For designing
big filter banks (i. e. many bands, long filters), it can be faster
to start with a smaller filter bank, with a fraction of the de-
sired numbers of bands. When the optimization for this
smaller filter bank is finished, the number of bands can be
increased by increasing the size of the filter matrices, e.g.
doubling the size and the number of bands by making pairs
of coefficients out of each single coefficient. This is then the
starting point for the optimization of the bigger filter bank.
This process of growing the filter bank can be repeated until
the desired size is reached.

3.2 Examples
Fig. 4 shows the impulse response of the baseband pro-

totype filter for an orthogonal filter bank. The length of the
filters is 256 taps, and the system delay is 255 samples. It
results from the first cascade (equations (4) and (5)) or from
the third cascade (equations (8) and (10)), with m = 0 and
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X10 Original
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With a System Delay of 767 Samples

x10 With a System Delay of 255 Samples

4 5
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Figure 7: A system delay of 767 samples leads to an audible pre-echo, a system delay of 255 samples has no audible distor-
tions. The pre-echo can be seen at around 3 ms.

n = 0, and with F orthogonal. This also is essentially a
TDAC filter bank. The impulse response was obtained by
using the described optimization algorithm.

Fig. 5 shows the impulse response of a low delay filter
bank. It has a filter length of 512 taps, and the same system
delay as the ortogonal example, 255 samples. It results from
the first cascade (equations (4) and (5)) or from the third cas-
cade (equations (8) and (10)), with m = 0 and n = 2. This
baseband impulse response is identical for the analysis and
the synthesis filter bank, except for the sign. The same error
function was used for the analysis and synthesis frequency
responses for the optimization.

Fig. 6 compares the frequency responses of the two filter
banks. It can be seen that the low delay filter bank (the lower
curve) has a stopband attenuation which is about 20 dB higher
than with the orthogonal filter bank, although it has the same
system delay.

Fig. 7 shows an application for low delay filter banks. They
can be used to reduce the system delay while keeping the
same magnitude responses. The first filter bank has filter
lengths of 768 taps and a standard system delay of 767 sam-
ples. It can cause audible distortions in audio coding systems,
so called pre-echoes, as shown in the middle picture. They
arise from increasing the quantization step size when the sig-
nal amplitude increases. The analysis and synthesis filters
can be seen as spreading the increased quantization error in
the time domain, even before the increase of the signal
amplitude, as can be seen in the picture at around 3 ms. Low

delay filter banks can influence this distribution of the quan-
tization error, so that its spread before the increase can be
made shorter than after the increase. It better matches the
psycho-acoustic properties of the ear, and the distortion
becomes inaudible [26]. This can be seen in the bottom pic-
ture, where a filter bank with filter lengths of 1024 taps but
a system delay of only 255 samples was used. Here the distor-
tions are much closer to the amplitude increase of the sig-
nal, and are now inaudible.

4. Conclusion
It was shown how to design modulated filter banks, with

emphasis on cosine modulated filter banks, with critical
downsampling, perfect reconstruction, a broad range of
system delays, and with a computationally efficient imple-
mentation. Several different cascades with different pro-
perties where shown. A new type of cascade or decomposi-
tion of the polyphase matrices was introduced, which is
more general and more efficient than previous cascades. The
system delays which can be realized by these cascades are
as low as N- I , which is determined by the downsampling
rate and is the theoretical lowest possible value, and as high
as 2K- 1, which results from a filter bank which can be seen
as a time reversed version of a minimum delay filter bank.
The examples show that the filter quality can be improved
significantly by using a low delay filter bank with the same
system delay but longer filters instead of a standard delay
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filter bank. In the shown case the stopband attenuation was
about 20 dB higher. This improved design can be used to
increase the coding gain. Alternatively the system delay can
be reduced while keeping the same quality of the filters by
using low delay filter banks. This can be used to reduce pre-
echos and for real time communication applications. The
examples also show that it is possible to design big filter banks
with these tools, which is also useful for audio coding appli-
cations.
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Neues aus Forschung, Industrie und Wirtschaft

Digital-optische Schalter aus Kunststoff- Schliisselkomponen-
ten in den Telekom-Netzen der Zukunft

Aus einer kürzlich in den USA erstellten Marktanalyse geht her-
vor, daß auf dem nordamerikanischen Markt mit einer Steigerung
des Marktvolumens für optische Schalter von $ 33 Mio. im Jahre
1994 auf $ 687 Mio. im Jahre 2004 gerechnet wird. Eine ähnliche
Entwicklung wird für den europäischen und den asiatischen Raum
abgeleitet. Um diesen enormen Bedarf in Zukunft decken zu kön-
nen, ist es erforderlich, daß derartige optische Bauelemente, genau
wie elektronische Chips, kostengünstig und in großen Stückzahlen
hergestellt werden.

Am Berliner Heinrich-Hertz-lnstitut haben Wissenschaftler jetzt
einen digitaloptischen Schalter aus Kunststoff bis zur technischen
Einsatzreife gebracht. Der 25 mm 3 mm kleine Polymerschalter
kann beispielsweise in digital-optischen Vermittlungsstellen zukünf-
tiger Glasfasernetze eingesetzt werden. Dort kann er in weniger als
einer tausendstel Sekunde die hochratigen Datenströme von einer
Glasfaser auf eine andere schalten. So schnelle Reaktionen sind zur
Umleitung des Datenverkehrs in optischen Nachrichtennetzen, bei
Leitungsstörungen oder dem Ausfall eines Glasfaserkabels erfor-
derlich. Der Schalter ist weltweit der erste seiner Art in Polymer-
technik.

Die Berliner Arbeitsgruppe, unter Leitung von Dipl.-lng. Nor-
bert Keil, verfügt über langjährige Erfahrung in der Entwicklung
optischer Bauelemente auf Polymerbasis und genießt weltweit ein
hohes Ansehen. Sie überraschte die Fachwelt bereits im letzten Jahr,
auf der CeBIT '95 in Hannover, mit dem weltweit ersten integriert-
optischen Raumkoppelfeld in Polymer-Technologie. Die Berliner
Neuentwicklung gestattet es nun erstmals, auf eine Temperatursta-
bilisierung des optischen Bauteils zu verzichten. Außerdem wurde
die Ansteuerung wesentlich vereinfacht.

Dem HHI liegen bereits Anfragen aus dem In- und Ausland
zwecks Vermarktung und Technologietransfer vor. Darüber hinaus
wird an eine eigene Kleinserienfertigung und an die Vermarktung
von ersten Prototypen gedacht. Der digital-optische Schalter aus
Kunststoff wurde zum Patent angemeldet.

Siemens-Bereich Private Kommunikationssysteme baut Europa-
vertrieb weiter aus

Der Bereich Private Kommunikationssysteme (PN) der Siemens
AG, Berlin und München, baut seinen Europavertrieb weiter aus.
In diesem Zusammenhang haben PN und die europäische Ein-
kaufskooperation telEurope Systems and Services EWIV, Luxem-
burg, Mitte September in München eine Absichtserklärung unter-
zeichnet. Inhalt der Erklärung ist eine künftige intensive Zusam-
menarbeit beim Vertrieb von Systemen und Produkten der
Kommunikationstechnik in Deutschland, Frankreich, Italien,
Luxemburg und der Schweiz. Ziel der Kooperation zwischen PN
und telEurope ist der nachhaltige Ausbau ihrer Positionen im
europäischen Markt.

Mitglieder von telEurope sind die nationalen Einkaufskonsortien
Phonet (Deutschland), EG-Tel (Schweiz), TelLux (Luxemburg),
Resatis (Frankreich) und Consorzio Telitalia (Italien). Diesen
Gesellschaften gehören qualifizierte InstaHationsunternehmen,
Systemhäuser und Fachunternehmen für Kommunikationstechnik an,
die in der Lage sind, Produkte und Systeme der Kommunikations-
technik zu vermarkten. Verschiedene Mitglieder von telEurope bie-
ten bereits heute Kommunikationstechnik von Siemens erfolgreich
in ihren jeweiligen nationalen Märkten an.
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