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SUMMARY

The issue of motion planning for closed-loop mechanisms,
such as parallel manipulators or robots, is still an open
question. This paper proposes a novel approach for motion
planning of spatial parallel robots. The framework for
the geometric modeling is based on the visibility graph
methodology. It is opted for a multiple-heuristics approach,
where different influences are integrated in a multiplicative
way within the heuristic cost function. Since the issue of
singularities is a fundamental one for parallel robots, it
is emphasized on the avoidance of such configurations.
To include singularity-free planning within the heuristic
approach, two heuristic functions are proposed, the inverse
local dexterity as well as a novel defined “next-singularity”
function, in such a way, well conditioned motions can be
provided by a single planning procedure. The success of the
method is illustrated by some examples.

KEYWORDS: Parallel manipulators; Motion planning;
Heuristics; Mechanism singulary.

1. Introduction

Speaking about motion planning of manipulators or robots is
speaking about merging two major disciplines of robotics:
motion planning on one hand and mechanism science
and control on the other hand. The synergy of the
methodologies of both sectors has been very successful for
serial manipulators and mobile robotics.1–3 However, path
and motion planning for complex closed-loop and parallel
mechanisms still remain open questions. To motivate this
issue, research efforts in the two categories are briefly
reported in the following.

The puristic “path planner” has been looking for general
and mathematical optimal solutions for arbitrarily structured
mechanisms. For instance, approved methodologies in the
range of serial-link mechanisms like probabilistic roadmaps
(PRM)1,2 have also been modified and developed for closed-
loop mechanisms with more or less complexity.4–7 However,
most of such approaches aim at the planning for planar
linkages,4 with a few number of closed chains or for
cooperating robot arms.6 Due to the multiple kinematic
constraints, the resulting computational effort for finding
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optimal solutions is huge. Trinkle and Milgram mentioned
explicitly about this issue “Planar Test Problems with
up to 8 links and two loops were computed in several
hours”.8 Consequently they made a return from the PRM
paradigm to more mechanism science with consideration
of singular configurations in the path planning strategy.
Consciously, they considered an obstacle-free workspace
and only revolute-jointed mechanisms. They presented very
interesting results, which are unfortunately still far from
being applicable for parallel manipulators in the practice. The
treated mechanisms were mostly planar linkage systems, but
a very important contribution of Trinkle and Milgram was the
explicit consideration of mechanism’s singularities, which is
a fundamental issue for parallel manipulators.

The issue of planning remains very rarely treated by
“mechanism experts.” Mostly, algorithms were proposed
for trajectory verification within a hard constrained
workspace.9–11 The paper of Dasgupta and Mruthyunjaya12 is
one of the earliest works that addressed attention to the issue
of singularity-free planning for parallel mechanisms. The
approach is however restricted to path planning (in contrast to
motion planning which includes additionally the presence of
obstacles). A further disadvantage is the exclusive geometric
character of the approach, which is believed to increase the
planning complexity. Recently, an interesting approach was
proposed for practical and real parallel manipulators.13 It
shares with our approach of combining and merging multiple
methodologies to deliver good and reliable solutions. We
think, however, that the proposed cascade of two planning
steps is not necessary. Consequently, this paper proposes
another general approach that helps planning complete
motions, avoiding singularities and obstacles. It is more
localized in the second research category and primarily tries
to provide planning solutions for parallel mechanisms in a
practical way. Our approach is meant to shed some new
light on this issue and to excite discussion between “motion
planners” and “manipulator operators.”

Our approach is characterized by the systematic consider-
ation of all constraints. Besides the configuration-dependent
workspace bounds, kinematic coupling, singularities, and
obstacles are considered. The latter is especially important
for automation and planning in manufacturing cells. Even
if some parallel robots have small workspaces, a systematic
tool for motion planning is yet required. For that purpose
a geometric model of the environment is necessary. The
configuration space is chosen to be the six-dimensional
pose manifold and not the actuation space, which is for
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680 Novel approach for motion planning of spatial parallel manipulators

Fig. 1. The case study PaLiDA in a demonstration of planned pick-
and-place scenario.

closed-loop mechanisms a variety.4 This model will be
illustrated in Section 2 with a scheme of the classic roadmap
method used here for parallel manipulators.

A significant enhancement of performance and robustness
of the proposed algorithm is achieved by using multiple
heuristics for motion planning and path search. A set of
heuristic functions is used for the optimal A�-algorithm.
Here, not only the shortest distance to the goal is taken
into account but also local dexterity for a well-conditioned
motion, as well as the proximity of singularities, are
considered. In such manner, a two-step planning, like
proposed in ref. [13] become unnecessary. The quantification
of the heuristics to account for geometric and kinematic
constraints are proposed in Section 3. Singularity avoidance
is described in Section 4. The last section presents
examples that illustrate the success and effectiveness of
the novel proposed approach, which was implemented for
the hexapod robot PaLiDA,14 shown in Fig. 1. The related
improvements of planning and computational efficiency are
illustrated.

2. Geometric Modeling and Basic Roadmap Method

The basic idea of the planning approach is the geometrical
roadmap that is based on the visibility graph (V-Graph)
method,1 which has been extensively studied, especially for

2-D planning problems of wheeled mobile robots. Thus, it
is necessary to develop an abstract model for the workcell
of the robot. In the following, the case is considered,
where the robot’s fixed base is mounted above the traveling
platform. This is not a limitation to our approach but serves
a uniform illustration over the paper. Furthermore, obstacles,
objects, and the manipulator itself are modeled as polyhedra
(see Figs. 2, 3). For the sake of simplicity and clarity of
the illustrations, obstacles are often depicted as prismatic
objects.

A preliminary step in the preprocessing is the computation
of the six-dimensional obstacle-free workspace Wf .
Classically the kth obstacle Bk is expanded with an area
of forbidden motion, where a collision occurs with the
manipulator.1 For polyhedral objects, computational efficient
algorithms have been developed and are state of the art.15

Nevertheless, it is important to notice the special aspect
proposed in this paper, and that is the consideration of the
parallel robot also as a polyhedron and not as a linkage system
like in refs. [4, 5]. It is believed that this idea is legitimated by
the practical aspect in operating parallel manipulators, where
the linkage part should not interfere with the operating space.
An important handicap for using joint-space variables is the
necessity of solving the direct kinematic problem, which is
generally not given in a closed form and yields multiple
solutions.

The configuration space of the manipulator is defined
by a six-dimensional vector x which includes two three-
dimensional vectors: the position r of the end-effector with
respect to an inertial frame and its orientation � , i.e.,
xT = [rT� T]T. The latter contains the orientation angles,
e.g., as defined by the Roll-Pitch-Yaw convention.16 The
actuator positions are represented by the vector of actuated
joints qa that can be calculated by the means of the inverse
kinematics qa = qa(x).14

The construction of the forbidden motion area is done for
any obstacle Bk by expanding it with respect to lth sampled
orientation vectors of the end-effector � l and varying its
position around the obstacle. Therefore, expanded obstacles
are obtained which are defined with respect to the sampled
orientation. This is shown exemplarily in a two-dimensional
view in Fig. 2. For each sampled orientation � l the expanded
version B̄l

k of an obstacle Bk is obtained. B̄l
k presents the real

nonaccessible workspace if the manipulator avoids safely
the kth obstacle by keeping a constant orientation � l . The
complete inaccessible workspace at any orientation is then
given by

B̄k =
⋂

l

B̄l
k. (1)

For an obstacle, the workspace that can be attained only at
particular orientations is defined as the partially inaccessible
workspace

B̂k =
⋃

l

B̄l
k −

⋂
l

B̄l
k. (2)
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Novel approach for motion planning of spatial parallel manipulators 681

Fig. 2. 2-D view of the expanding procedure of obstacles by taking
account the manipulator configuration.

Analogically the completely inaccessible obstacle space
results to

B̄ =
⋃
k

B̄k. (3)

The path planning problem is described as finding the path
that connects a given starting pose xT

S = [rT
S� T

S]T with the
goal configuration xT

G = [rT
G� T

G]T and that remains included
in the partially available space Wf = W − B̄.

The next step is then to construct a visibility graph-based
roadmap that presents feasible connections between the start
and goal configurations. This is achieved by first defining
what we call a S-G line (start to goal line), which connects
the start position rS with the goal position rG. Let us consider
a nontrivial case, i.e., the S-G line passes through the obstacle
space B̄. Thus, an obstacle-free path is required. Let PSG be
the set of planes that contain the S-G line and Pm

SG be the mth
plane defined by the rotation of an angle αm. In combination
with the constant S-G line only αm is necessary for the
exact definition of a corresponding S-G plane Pm

SG of the
set.

The construction procedure begins by considering a first
sample l = 1 of the manipulator orientation � 1 that yields a
corresponding inaccessible polyhedral space B̄1. Afterwards
the set of S-G plane is considered by varying the sample
orientation αm and computing the intersection of each
resulting plane Pm

SG with the vertices of B̄1. The result
is sets N1

m of discrete three-dimensional positions in the
workspace, which contain possible connections from the
start to the goal, for the case when the manipulator keeps
a constant orientation � 1. An exemplarily starting situation

Fig. 3. Basic idea for constructing geometric roadmap by the
presence of obstacles. Example given for the starting situation with
l = 1 and m = 1.

is illustrated in Fig. 3. More generally and for a sampled
orientation � l a set of corresponding feasible connections is
obtained by the same procedure

Nl =
⋃
m

(
Pm

SG ∩ V(B̄l)
)︸ ︷︷ ︸

Nl
m

⊂ R
3, (4)

where V(·) denotes the vertices of a polyhedron.
The corresponding graph nodes in the six-dimensional
configuration space is obtained by extending the found
connections by the related sampled manipulator orientation

N l = {(Nl, � l)} ⊂ R
6. (5)

Now repeating the described procedure for different � l ∈
[� min � max] yields the complete graph

N =
⋃

l

N l . (6)

The procedure of building the V-Graph is given by
Algorithm 1 and depicted in Fig. 4. For the sake of clarity, a
prismatic obstacle is considered for two sampled end-effector
orientations, and only most relevant connections are shown.
The final connected spatial visibility graph can be imagined
as depicted in Fig. 5.

Discussion: Since the manipulator is modeled by different
convex hulls, depending on the regarded orientation, an
important set of N do lay in the partially accessible
workspace B̂ (see Eq. (2) for definition). Such positions
are accessible only at a particular orientation of the end-
effector. This issue is treated by defining the graph to be
the set of poses rather than positions (5). This will of
course increase the necessary computational effort, since the
planning is required in a six-dimensional space. However,
such concept will provide a powerful planning approach,
because the partially accessible volume is used for planning.
If the manipulator is roughly modeled by one single hull
for all relevant orientations, the planning can occur in the
three-dimensional workspace. Such an approach is however
very conservative, since the partially accessible workspace
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682 Novel approach for motion planning of spatial parallel manipulators

Fig. 4. Constructing geometric visibility graph-based roadmap for the case of one obstacle.

Fig. 5. Spatial visibility graph for the case of one obstacle.

is wasted. The planner may fail to find a path, even
when one exists. The discussed issue is highly relevant
and important for parallel manipulators. The completely
accessible workspace at all orientations is a very small part
of the maximal workspace and is not sufficient for suitable
planning.

Even for simple environment structures and low number of
obstacles the obtained graphs are highly dense and complex.
The complexity depends on the sampling density of both
manipulator orientation � l and the orientation αm of the S-G
planesPm

SG. Exemplarily for a single obstacle, the complexity
of the respective roadmap depends in O(n) on the sampling
density of αm and in O(n2) on that of � l . Here, it is
recommended to determine appropriate densities to achieve
a tradeoff between accuracy and computational effort. In
our work and for the studied system we sampled αm in
intervals of 10◦ between −90◦ and +80◦. The manipulator’s
orientation was sampled by 5◦ steps for the complete range
of possible orientations. With appropriate search techniques,
it is possible to achieve time-efficient planning (see the
following sections).

Algorithm 1. Algorithm for building up a spatial visibility
graph

Initialization:

- Let N = ∅.
- Build Start-Goal Line: L = (rS(xS) rG(xG)).
Computation:

for � l ∈ {� ∈ [� min � max]} ⊂ R
3 do

consider B̄l = ⋃
k B̄l

k and its vertices V l

for αm ∈ {α ∈ [αmin αmax]} ⊂ R do

Build Pm
SG = plane{Lαm}

Compute the intersection Nl
m = Pm

SG ∩ V l ⊂ R
3

end for

N = N ∪ (
Nl

m, � l

) ⊂ R
6

end for

connect(N , xS, xG)

3. Multiple Heuristics Approach

For the proposed geometric model and roadmap approach,
heuristic search techniques are highly appropriate. Especially
powerful modified A�-algorithms improve the planning in
terms of the final solution’s quality and the computational
cost. The improvement of the classic A�-algorithm depends
on the defined and chosen heuristic functions, which has been
studied for motion planning of serial manipulators.3,17,18 In
our work we found out that multiple heuristics improve
the planning of parallel manipulators. If only the classic
distance-to-goal heuristic function is considered, the graph
search occurs rather in the breadth and demands more
computational time. This is due to the compactness of
the available workspace, such that significant change of
the distance-to-goal values are minor. Furthermore, the
most important advantage of using multiple heuristics is
the simple and efficient consideration of singularities, well
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Novel approach for motion planning of spatial parallel manipulators 683

conditioning and even more mechanism properties within
the path planning. Complex arithmetic problems like those
discussed in refs. [8, 12, 19] are not necessary any more, since
neither the computation of constraints nor the calculation of
direct kinematics has to be achieved. Of course, this property
is also due to the definition of planning task in the operational
workspace.

The search strategy is based on minimizing the evaluation
function f (n) = g(n) + h(n). Here, g(n) is the cost from the
starting node xS to the actual node N (n). The function h is
the heuristic function and is the estimated cost up to the final
goal xG and characterizes the search strategy. It may include
multiple heuristic costs (also called influences) denoted by
ck . Many authors proposed the linear combination of these
subheuristic functions17,18

h(n) =
∑

k

wk ck(n). (7)

Such linear combination can be counterproductive, since the
scale of the subheuristics can interfere or neutralize each
other.3 The tuning of the weights wk can help to overcome this
drawback, but it demands considerable a priori knowledge
or high amount of trial-and-error steps, especially in the case
of a big number of multiple subheuristics (in general >3). To
avoid the scaling problem, it is proposed to combine ck by
multiplication:

h(n) = W
∏
k

ck(n), (8)

where W is a constant. Notice that by using a multiplication
approach, the individual scaling weights wk become
meaningless. It is proposed to use a single weight W only
for numerical reasons to avoid, e.g., extensively small or
extensively high heuristic function. The condition is set that
ck(n) can be equal to zero only at the goal configuration

∀k, ∃ ck(n) = 0 ⇐⇒ n = arg(N (n) = xG). (9)

For the case of spatial parallel manipulators two classes of
subheuristics are proposed: primary and secondary ones.

3.1. Primary heuristics
The primary heuristics design the influences or functions that
are necessary for planning a geometrical and singularity-free
discrete sequence of nodes from the start pose to the goal
pose. These heuristics are necessary to find optimal solutions
in the sense of A�- or modified A�-search techniques.
Following influences are proposed as primary:

• Distance to the goal position rG is the most classic
heuristics type and can be simply computed by

c1(n) = dr (n) = ‖r(n) − rG‖2. (10)

The distance is chosen rather than pose difference, because
it helps decreasing the computational cost. Furthermore,
pose difference depends on the used orientation formalism
and has no physical meaning.

• Changes in actuator position is defined as

c2(n) = �q(n) = ‖qa(n) − qa(xG)‖2. (11)

In analogy to the distance to the goal, this influence can
be used as a single heuristic function for complete path
planning. In such cases however, accurate solutions of the
direct kinematics must be provided.

• Inverse dexterity is the inverse of the mechanism’s local
dexterity index defined by

c3(n) = κ−1(n) = cond( J−1(x(n))), (12)

where the inverse Jacobian of the mechanism is defined
as J−1 = d q̇a

d ẋ . Minimizing this heuristic influence is
equivalent to choosing the path with better conditioning
and better kinematic precision.12, 16 Since singular
configurations correspond to infinite κ−1(n),16 using the
proposed heuristic search will avoid such configurations
automatically. In contrast to other approaches proposed in
refs. [8, 12, 13] there is absolutely no need of complex
geometric calculations, just the numerical evaluation
of κ−1 is sufficient for planning singularity-free pose
sequences. This idea is one of the major contributions
of this work. The condition number should be regarded as
a relative indicator between different configurations. Its
use for planning purpose is justified since such procedure
occurs with respect to a constant reference frame and for
a specified manipulator, with well-defined geometry.

3.2. Secondary heuristics
The secondary heuristics are not supposed to be less
important. They are called secondary because they contribute
mostly to the increasing of the computational performance
and to the fine-tuning of the final motion that occurs between
the discrete poses. They can integrate properties of the
manipulator and preferences of the operator.

• Distance to a reference S-G plane allows to choose a
favored planning direction or a reference S-G plane P ref

SG:

c4(n) = d⊥(n) = d
(
x(n),P ref

SG

)
. (13)

Motions far from the favored plane are penalized. The
choice of such plane depends on the manipulator’s
working configuration. It is recommended to choose the
one that provides wide intersection with the workspace.
In this work the vertical plane is favored (see example in
Fig. 4 at the bottom right).

• Orientation change: The roadmap provides nodes with
different orientations of the end-effector. Connecting
two nodes with different orientations is critical while
surpassing obstacles, since collisions of the end-effector
with obstacles may occur. In such case, a collision check
has to be performed while (or after) the planning. To avoid
such scenario orientation change

c5(n) = �� =
3∑

i=1

|�i(n) − �i(xG)| (14)
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684 Novel approach for motion planning of spatial parallel manipulators

can be penalized. The planning algorithm is enforced to
choose solutions, where the slope of the end-effector is
kept constant while surpassing obstacles.

• Distance to the next singular location is defined by
the location of the next singularity situated in a speci-
fic direction. It penalizes graph connections with
possible singularities in between (see Section 4.2
for the mathematic definition). This influence helps
avoiding traveling toward near singular configurations
or workspace boundaries. It simplifies and improves the
avoidance of concave regions, holes, or singularity bulks.
Trajectory verifications like those proposed in refs. [9, 20]
become unnecessary.

The following section focuses on the singularity avoidance
and on the related proposed heuristics.

4. Singularity Avoidance in Path Planning

The issue of singularities is decisive for parallel
manipulators, since they provoke the degeneration of
controllability and may damage the mechanism. For that
reason, this section is dedicated to the singularity avoidance
in motion planning. To the best knowledge of the authors,
only two works have dealt previously with this problem for
parallel manipulators.12,19 Even if the proposed methods are
different, both have a two-step strategy in common. The
first step consists in providing a nominal path, which should
be as much as possible free from singularities. The second
step is to check and avoid the rest of the singularities if
the first avoidance step failed some how. In ref. [12] a
divide-and-conquer strategy was proposed, which requires
an undefined, extensive, and important amount of trial-and-
error operations. In refs. [13, 19], singularities are avoided in
the second step by using Grassmann geometry.16

The drawbacks of two-step strategies are eliminated
by using the proposed multiple-heuristics approach. Two
functions c3 and c6 are used. The condition of the inverse
Jacobian is used to avoid choosing nodes or poses that
are near or in singularities, where c3(n) � 0. Since our
geometric model is not based on cell decomposition but
on the computational efficient visibility graphs, the space
between two successive nodes remain unchecked, if only
c3-heuristics are considered. For that reason, c6-heuristics
are used to avoid traveling toward a near singularity. For
study of singularities, the great research works of Merlet,
Gosselin, Bonev21 and others can be referred to. For planning
purpose the location of all singularities can be determined by
numerical validation over the workspace.16 In the following,
it is not differentiated between singularities of Type I, II, and
III as defined in.22 All have to be avoided using and according
to the same heuristic approach.

4.1. c3-Heuristics: Inverse dexterity
Bad conditioned regions of the workspace are characterized
by a high condition number of the inverse Jacobian. They
correspond to small local dexterity index. In the sense of the
A�-algorithm, where a cost function has to be minimized, the
inverse of the dexterity index is introduced as a heuristic cost
or influence. Its minimization while planning will lead to the

Fig. 6. Isolines of the inverse dexterity within 0-orientation
workspace (top: xz-plane, bottom: yz-plane).

increasing of the dexterity and therefore to the bettering of
the conditioning along the planned path. Figure 6 gives an
illustrative example of how the inverse dexterity is distributed
in the workspace of parallel manipulators. It is a case study of
our hexapod prototype PaLiDA.14,23 In singularities, such as
the border of the workspace κ−1 = (cond( J−1))−1 becomes
infinite. It means, if we take the realistic case of having
the starting and goal poses within the workspace, using
the inverse dexterity as a heuristic influence will never
provide path nodes that are outside the workspace or even
close to its border or any singularities, since this would
mean the increasing of the cost function h. Furthermore,
the algorithm will find always a feasible path, as long as
there is a real and obstacle-free connection between the start
and goal within the workspace and as long as the resolution
of the roadmap is high enough. This property of resolution
complete has been proven to be the case of general PRM
methods.1,2 A successful planning is achieved independently
from the geometric form and complexity of the workspace
that could have concave surfaces (like the examples given in
refs. [12, 20]) or include singularities. Of course, the success
of planning is not only due to the c3-heuristics but also to its
combination with the classic distance-to-goal c1-heuristics.

4.2. c6-Heuristics: The next singularity function
The output of the planning algorithm should be a set of
singularity-free configurations. The manipulator will move
from one to the next. To guarantee that no singularities
exist between the planned nodes, c6-heuristic is introduced
in the multiple-heuristics search, to keep the all-in-one-step
approach of our planning algorithm. First some definitions
are introduced.
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Novel approach for motion planning of spatial parallel manipulators 685

Let S be the set of all singular configurations xσ and let
SL be the set of the corresponding locations.

SL = {
rσ (� ) = [xσ yσ zσ ]T, xσ = [

rT
σ � T

σ

]T ∈ S
}
. (15)

We consider now the vector connecting an arbitrary position
r in the workspace with a singularity location

aσ (� ) = rσ (� ) − r. (16)

The basic idea is to transform such vectors in spherical
coordinates

aσ (� ) −→ ξσ (� , r) = [ϕσ θσ ρσ ]T, (17)

where

ρσ =
√

(xσ − x)2 + (yσ − y)2 + (zσ − z)2

ϕσ = arctan

(
yσ − y

xσ − y

)

θσ = arctan

(√
(xσ − x)2 + (yσ − y)2

(zσ − z)2

) . (18)

such that for every position r the proximity of singularities in
the spherical directions ϕ and θ can be defined by the value
ρσ . Based on this we define the “next-singularity function”:

ρσ = fσ (r, � , ϕ, θ). (19)

In other words fσ gives the euclidian distance ρσ to the
next singularity location if the platform travels from the
position r with the orientation � in the spherical directions
ϕ and θ . The proposed approach is necessary because
spatial parallel mechanisms have mixed types of degrees
of freedom (translations and rotations). It is therefore not
possible to define a mathematical definition for the distance
to a singular configuration. Consequently, the distance is
defined with respect to the translational dof’s and for
given arbitrary orientation. A visualization of the proposed
spherical function is given in Fig. 7. The integration of
such formalism into the c6-heuristics is quite simple. It is
supposed to calculate the cost related to c6-influence between
an actual graph node N1(r1, � 1) and a next one N2(r2, � 2).
In the same manner as proposed for the singularity locations,
the connection between the two nodes r1

2 = r2 − r1 is
transformed in spherical coordinates

r1
2 −→ ξ 2 = [ϕ2 θ2 ρ2]T, (20)

to obtain the necessary spherical directions ϕ2 and θ2, and
the related distance ρ2 to travel from N1 to N2. The next
singularity function (19) is then validated for ϕ2 and θ2 to
calculate ρσ (ϕ2, θ2) = fσ (r1, � , ϕ2, θ2) � ρσ (N1 → N2). It
is obvious that traveling from one node to the other could
cross a singularity or workspace boundary, if ρσ (ϕ2, θ2) ≤
ρ2 � ρ(N1 → N2). In such case, the connection between the
two nodes has to be forbidden by attributing an infinite high

Fig. 7. An example of the spherical next-singularity function:
(7a) for x = [0.0, −0.3, −0.6, 0.0, 0.0, 0.0]; (7b) for x =
[0.0, −0.3, −0.6, π/6, 0.0, 0.0].

cost:

c6(N1 → N2) = ∞ if ρσ (N1 → N2) ≤ ρ(N1 → N2)

c6(N1 → N2) = 1 if ρσ (N1 → N2) > ρ(N1 → N2)
.

(21)

With such measure, it is impossible for the algorithm to
choose directions or connections that could lead to the worst
case of intersecting a singularity, singularity bulks or that
could partially leave the workspace. The sampling nature of
PRM plays here an important role, since it provides the search
algorithm with alternative connections. A simple example is
given in Fig. 8. To travel form rS to rG, four nodes are
possible as intermediates. Certainly, node N1 is the most
advantageous in terms of the classic c1-heuristics. Without
regarding c6-influence it is possible to plan the sequence
{rS → N1 → rG}, which would result in a path that crosses
the singularities at workspace boundaries. By introducing
c6 the cost of traveling to N1 or to N2 becomes infinite,
which yields the rejection of these nodes and planning
the sequence {xS → N3 → rG}. The possible connection
via N4 is rejected due to the c1-heuristics, since traveling
through N4 increases the corresponding cost and therefore
destination to the goal. Once again, the proposed method is
able to recognize feasible and reliable connections by simple
evaluation of heuristic functions. Two further remarks have to
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Fig. 8. Example of obstacle avoidance planning using inverse
dexterity for well-conditioned and singularity-free paths.

be considered for practical implementation. First, the infinite
cost in Eq. (21) can be programmed as a very high constant.
Second, Eqs. (15–19) do not have to be evaluated or known
a priori for all workspace configurations. It is sufficient to
evaluate the equations just for the graph nodes considered by
the searching algorithm.

5. Examples and Results

The planning approach was integrated in a software concept
running on a conventional PC with a Windows operating
system. The interaction with the user is achieved under
MATLAB via graphical user interfaces (GUIs). In a main
interface, the user can define or import geometric data of
the considered spatial manipulator. Furthermore, starting and
goal pose can be given along with the desired heuristic
functions to be evaluated. Additional GUIs are used for the
design of the workcell with desired features or obstacles
or for the visualization of the final planned motion.
In the near future, import tools should be available to
integrate CAD models into the software. The computational
geometry algorithms that concern the preprocessing and
the geometric model described in Section 2 are written in
C/C++ and connected to the main software. In the following,
the proposed planning approach is demonstrated with an
example. Here, the considered manipulator corresponds to
the real system PaLiDA,23 which is supposed to move
from pose xS = [−0.35 m, 0.2 m, −0.75 m, 7◦, 0◦, 0◦]
to pose xG = [0.3 m, −0.3 m, −0.66 m, 0◦, −5◦, 0◦]
avoiding two obstacles, as depicted in Fig. 9. The situation
is such that the two obstacles are separated with a narrow
corridor. The manipulator can pass by only if it moves
upwards or if it goes around the two obstacles to attain the
desired goal.

The planning algorithm was executed for the same scenario
with different modes, varying each time the number of the
considered heuristic functions. The six different types of
influence adjustments are summarized in Table I. We shall

Fig. 9. Planning example for the hexapod PaLiDA, initial position
and situation with two obstacles.

call the different planning trials as planning modes, which
are numerated from 1 to 6.

The results for the six planned paths are very interesting
and comply very well with the multiple-heuristics idea
behind our concept. The planning results are given in detail
in Table I and are shown in Fig. 10. These results are given
primarily in the form of node sets that contain the sequence of
the planned six-dimensional poses. This is the direct output of
the planner and is depicted in Figs. 10 and 11 as circles. The
executable motion can be obtained by interpolating a path
between the poses. Here many approaches can be used, such
as simple linear interpolation, B-splines, and cubic splines.
However, interpolation may provoke additional uncertainties
in the geometric model, such that the interpolated path
can violate forbidden regions of motions. This can be
though simply regarded during the preprocessing (e.g., while
expanding objects), if the interpolation method is known in
advance, which is actually always the case.

The planning mode1 is the closest mode to the classic A�

-single heuristic approach. It yields a very instinctive
solution, where the robot moves toward the goal pose while
lifting the platform to avoid hurting the obstacle with the tip
of the tool. While surpassing the obstacles, the robot inclines
its end-effector platform by � = [−10◦ ± 20◦ 0◦]. With
horizontal platform, the robot must move further upwards,
which will increase the heuristic cost. Critical is that the
end-effector changes its orientation while surpassing the
obstacle. This explains why it surpasses the obstacles at
different entry and exit levels of −0.411 m and −0.400 m,
respectively. To avoid such critical solutions the c5-heuristics
are considered, which lead to the solution given by mode2.
Here the robot maintains its end-effector orientation while
surpassing both obstacles, but it has to move further upwards
(z = −0.387 m) to achieve that. The computation time is
larger than in the case of mode1. The impact of the c4-
heuristics on the computational time is noticeable for the
cases when a few primary heuristics are used. For the scenario
studied here, running mode1 without considering the distance
to the reference plane increases the computational time
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Table I. Planning example: Adjustments of the planning modes with the corresponding results of planning, computation time, and
selected path nodes (or poses).

Modes c1 c2 c3 c4 c5 c6 Time (s) Nodes

mode1 1 – – 1 – 1 63.46
−0.050 −0.002 −0.411 −10◦ 20◦ 0◦

0.043 −0.074 −0.400 −10◦ −20◦ 0◦

mode2 1 – – 1 1 1 70.81
0.004 −0.083 −0.387 −20◦ −10◦ 0◦
0.038 −0.110 −0.387 −20◦ −10◦ 0◦

mode3 1 1 – 1 1 1 27.98

−0.086 0.345 −0.451 10◦ 0◦ 0◦
−0.010 0.266 −0.378 10◦ 0◦ 0◦

0.189 0.068 −0.378 10◦ 0◦ 0◦
0.253 −0.028 −0.449 10◦ 0◦ 0◦

mode4 1 1 1 1 1 1 21.41

−0.086 0.343 −0.452 0◦ 0◦ 0◦
−0.012 0.266 −0.380 0◦ 0◦ 0◦

0.189 0.065 −0.380 0◦ 0◦ 0◦
0.251 −0.026 −0.449 0◦ 0◦ 0◦

mode5 1 – 1 1 1 1 67.85
0.051 0.001 −0.396 0◦ 0◦ 0◦
0.048 −0.076 −0.392 0◦ 0◦ 0◦

mode6 – 1 1 1 1 1 66.90
−0.381 0.019 −0.595 0◦ 0◦ 0◦
−0.225 −0.439 −0.422 0◦ 0◦ 0◦

0.082 −0.474 −0.450 0◦ 0◦ 0◦

Fig. 10. Planning example for the hexapod PaLiDA, initial position
with two obstacles.

of about five seconds. Running mode4, mode5, or mode6
without c4-heuristics does not lead to a significant change
of the computational time. It shall be noticed that the effect
of c6-heuristics on the computational time is minor but is
crucial for avoiding singularities, as shown in the planning
example in Fig. 8.

By introducing the c2-heuristics, the computation time is
reduced significantly, as shown by mode3. The c2-influence
is proposed for penalizing the changes of actuator lengths.
Its consideration has led to a solution where the robot tends
to go around the obstacles, rather than surpassing them from

above. The computation time is improved but the found path
is longer and more complicated. The user or robot operator
may judge, which is the preferable solution, by comparing,
e.g., the results of the dynamic time-optimal planning, as we
proposed in a previous paper.23 By additionally including
c3-heuristics, a further improvement of computation time is
clearly noticed. mode4 yields apparently a similar solution
as the previous case. This mode however corrects the
orientation of the end-effector to zero, while the path
geometry remains almost equal. Sloping the platform of the
parallel manipulator reduces the dexterity and manipulability
of the mechanism.16 To cope with this inconvenience, c3-
heuristics helps correcting the orientation and provides
a better conditioned (and implicitly also singularity-free)
motion. This can be also observed with mode5. Here c2-
influence is not regarded to compare mode5 and mode2.
By considering the inverse dexterity as a cost factor, the
orientation of the platform is corrected to be 0◦, while
avoiding the two obstacles. As it can be noticed from mode6,
it is not the c2-heuristics alone that are responsible for
improving the computational efficiency but the combination
with other influences. In mode6 the primary heuristics c1

were not regarded. As a result, the end-effector moves around
the obstacles at approximately the same height, which results
in a longer path than those obtained by all other modes.
Additionally, the necessary computational time increases.
We can conclude that the single influences are responsible for
the geometry of the planned path, whereas the improvement
of the computational time is due to their combination in a
multiplicative way.

Generally, the planning solutions are very good and also
very sensible to the choice of heuristics. They may not be
absolutely optimal, but they are obtained in a computational
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Fig. 11. Sequence of motion along the planned path with mode4. The captures are shown from different perspectives.

efficient manner. The solutions are comprehensible and very
close to the practical reality. Figure 11 shows the solution of
mode4 as motion sequence given in different perspectives.

6. Conclusions and Final Remarks

In this paper a novel multiple-heuristics approach was
presented for planning singularity- and obstacle-free motions
for spatial parallel manipulators. The central idea was to give
a practical approach with a one-step solution that copes with
most of the challenging issues concerning planning for closed
kinematic structures. The methodology is based on a six-
dimensional roadmap geometric model of the environment.
Visibility graph techniques have been used for building up
the search graph. The heuristic search has been enhanced
by introducing multiple influences. The multiplication of the
associated costs yields improvement of computational time.
By introducing new ideas for such influences, like the inverse
dexterity of the mechanism or the next singularity function,
well-conditioned and singularity-free motions are provided.
The solution is obtained by a one-step planning such that
no additional verification is necessary. The approach has
been demonstrated by an exemplarily chosen scenario with
a parallel mechanism that corresponds to a real system.

The aim of this paper was also to provide the discussion
of planning closed-loop mechanisms with a new idea. The
presented solutions are optimal only in the heuristic sense and
are not absolutely optimal. The geometric modeling of the

manipulator itself was rather rough as a polyhedron and not
as a linkage system. Nevertheless, heuristic optimal motion
planning is achieved in a computationally efficient manner.
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