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ABSTRACT

Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to
measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of
the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision
of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a
novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create
a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10, 000 atoms
by 2.05+.34

−.37 dB. The SQL poses a significant limitation for today’s microwave fountain clocks, which serve as the
main time reference. We evaluate the major technical limitations and challenges for devising a next generation
of fountain clocks based on atomic squeezed vacuum.

Keywords: Atomic clock, squeezed vacuum, precision below the SQL

1. INTRODUCTION

Precision measurements allow to probe the boundaries of our understanding of physics. Prominent recent ex-
amples include the discovery of gravitational waves with optical interferometers1 and the improving bounds on
the drift of fundamental constants with atomic interferometers.2,3 The current generation of atomic and optical
interferometers is however fundamentally limited by vacuum noise, the so-called standard quantum limit (SQL).
Squeezing the vacuum entering one port of an optical gravitational wave detector was proposed in the 80s4 to
surpass the SQL when measuring the length difference between two optical paths. Can squeezed vacuum be use-
ful to improve the measurement of time? Up to now, the concept of vacuum squeezing has not been transferred
to atomic clocks or atom interferometry in general.

In following, we design and implement an atom interferometer in clock configuration which exploits atomic
squeezed vacuum. The principle of sub-shot-noise interferometry is introduced before the experimental realization
of the sub-shot-noise frequency standard is discussed. The clock is operated by combining N = 104 atoms in one
input state with a quadrature-squeezed vacuum with an average of 0.75 atoms in the second input state. The
squeezed vacuum is generated by spin-changing collisions in a Bose-Einstein condensate of neutral 87Rb atoms
– in direct analogy to optical parametric down-conversion.5–7 In contrast to existing methods8–17 to increase
the sensitivity of atomic clocks beyond the SQL in large ensembles, our concept disentangles the challenge of
increasing the number of atoms (in the main input state) from the creation of squeezing (in the vacuum state).
In particular, the vacuum state remains weakly populated during its preparation, making it immune to losses.
These central advantages are also exploited in squeezed-vacuum optical interferometers for the detection of
gravitational waves, as demonstrated in GEO60018 and LIGO,19 where coherent states of > 10 W are combined
with a low-power squeezed vacuum state to achieve sub-SQL measurement uncertainty.
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Figure 1. Ramsey measurements with different phases ∆φ. a/b/c The measurement starts with the atomic
ensemble prepared in the ground state corresponding to the north pole of the Bloch sphere. I: A π/2 pulse rotates the
state around the Jx axis to the equator. II: The phase evolution of ∆φ = ∆ωt during the time t depends on the detuning
∆ω and is depicted by a rotation around the Jz axis. III: A final π/2 pulse, again corresponding to a rotation around Jx
transfers the phase shift to a population imbalance of the ground and exited state. a A phase evolution of 2π leads to a
complete transfer to the exited state, corresponding to the south pole of the sphere. b After a phase evolution of 1.5π the
state rests on the Jx axis corresponding to a perfect 50 : 50 superposition after the rotation. c If the rotation is applied
after a phase evolution of 1.25π the resulting state shows a population imbalance of the ground and exited states. For
perfect π/2 rotations, the resulting state will always be in the Jy-plane.

2. ATOMIC INTERFEROMETERS BELOW THE STANDARD QUANTUM LIMIT

Since the second was redefined with respect to the microwave transition between two hyperfine levels of the
ground state of 133Cs in 1960, the stability and accuracy of atomic clocks has improved tremendously. Nowadays,
microwave clocks operate with stabilities in the 10−16 regime.20 The stability can be improved further by
employing transitions with higher frequencies such as optical transitions. By eliminating noise sources in the
environment and monitoring all sources that cannot be completely suppressed, such as blackbody radiation, it
was recently possible to achieve a stability of 6.4 · 10−18 in an optical 133Cs lattice clock.21

However, the stability of all interferometers, including atomic clocks, with classical input states is fundamen-
tally limited due to the shot-noise limit. In 1999, the first fundamentally limited microwave clock with a stability
of 4 · 10−14 was realized22 and today the best microwave clocks are limited by the shot-noise limit. In the future,
this limit will also be a restriction for optical clocks. However, it can be overcome with interferometers that
employ squeezed states or more complicated entangled states instead of classical input states.

2.1 Atomic clocks

In order to operate a frequency standard different constituents need to be realized. A frequency reference is
needed as well as an oscillator to probe this reference and a detector to analyze the signal. Depending on this
signal a control loop gives a feed back to the probing oscillator. Such a frequency standard can be as a definition
for time, if the frequency is suitably divided. In 1967 the second was redefined from the astronomical standard,
referenced to the mean length of a solar day, to the atomic standard, referenced to a microwave transition between
hyperfine-levels of 133Cs at 0 K.

The primary 133Cs standard is considered a passive frequency standard since it acts as the reference which
is probed by an external oscillator. Active frequency standards on the other hand are those where the standard
itself acts as the oscillator, for example an active hydrogen maser. While cesium is defined as the primary
frequency standard many other atomic species can be used to act as a secondary frequency standard, that don’t
necessarily have to have a larger uncertainty.

The most commonly used probing method was first introduced by Ramsey in 1949.23 An ensemble of two-level
atoms with ground state |0〉 and exited state |1〉 is prepared in the ground state. A π/2 pulse is used to create a
superposition of the two states. This can be achieved by either driving a single or a two-photon transition. This
is depicted on the Bloch sphere in Fig. 1 and corresponds to a rotation around the Jx axis. An evolution time
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Figure 2. Ramsey measurements for different detunings ∆ω and evolution times t. a Population probability
of the exited state |1〉 as a function of the detuning ∆ω. The gray dashed line represents a Rabi transition, while the
blue line is calculated for an evolution time t of 1/Ω. b Population probability of the exited state |1〉 as a function of the
evolution time t. The detuning is fixed to 0.5 Ω.

t follows, during which a phase shift is imprinted onto the ensemble. The phase shift depends on the detuning
of the π/2 pulse ∆ω from the resonance of the transition and the evolution time as ∆φ = ∆ωt. In the Bloch
sphere picture, this corresponds to a rotation around Jz such that a phase shift ∆φ > 2π is depicted by multiple
rotations around Jz. A second π/2 pulse is applied, which maps the phase shift ∆φ onto a population imbalance
between the ground and exited state. This is again depicted by a rotation around Jx on the Bloch sphere. If
the rotation is perfect i.e. it reaches the south pole of the sphere, this corresponds to a complete transfer of the
population to |1〉 for ∆φ = n 2π, where n is an integer (Fig. 1a). If ∆φ = (1 + 2n)π, the atoms are completely
transferred back to the ground state |0〉 of the system. If ∆φ = (1/2 + n)π, the state rests on the Jx axis and
is therefore in a perfect 50 : 50 superposition after the rotation (Fig. 1b). Any phase in between leads to an
imperfect transfer resulting in a population imbalance which corresponds to a state vector pointing in between
the equator and the poles (Fig. 1c). For perfect π/2-pulses, the complete three-part sequence can be expressed
as a single rotation around Jy.

This measurement technique has the advantage that the fringe spacing, and therefore the slope of the pop-
ulation probability as a function of the detuning ∆ω, can be adjusted by the evolution time t. This is shown
in Fig. 2a, where a Rabi measurement, without any evolution time (dashed gray) is compared to a Ramsey
measurement with an evolution time of t = 1/Ω, where Ω is the undetuned Rabi frequency of the transition.
Fig. 2b shows the population probability of the exited state in dependence on the evolution time t. For small
evolution times, the population probability oscillates with a sinusoidal function. For longer evolution times, the
system will start to decohere leading to a damping and a loss of contrast.

2.2 Sub-shot-noise interferometry

The phase sensitivity of the interferometer can be defined as

∆φ =
∆P

∂〈P 〉/∂φ
, (1)

where P = N0/N is the transferred fraction with N0 being the number of atoms in the ground state and N
the total number of atoms. ∂〈P 〉/∂φ is the slope of the Ramsey measurement. For uncorrelated particles or
successive measurements, N0 follows a binomial distribution with standard deviation ∆N0 =

√
N0(1−N0/N).

This fundamental minimal error for N uncorrelated particles or measurements is called the shot noise limit. It
can be reduced by increasing the number of particles or the number of measurements. If the central fringe can
now be approximated by a sinusoidal function, the slope and standard deviation cancel, such that the phase
sensitivity only depends on the number of particles N and not on the phase or the detuning, with ∆φ = 1√

N
.
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In practice, the system will experience additional technical noise. Since the overall noise is divided by the
slope of the signal in Eq. (1), technical noise sources are best suppressed at the middle position of a Ramsey
fringe as indicated in red in Fig. 2a.

While the shot-noise limit restricts the measurement precision for uncorrelated states, it can be surpassed
by correlated states, for example with spin squeezed states. These measurements are then restricted by a
more fundamental limit, the Heisenberg limit. This limit is a direct consequence of the Heisenberg uncertainty
∆φ∆(N1 −N0) ≥ 1, where ∆φ = ∆(φ1 − φ0) is the variance of the relative phase between the two outputs. If
one now assumes the largest possible fluctuations in the particle number difference N , the Heisenberg limit

∆φ ≥ 1/N (2)

follows. The spin squeezing parameter ξ defines the improvement, a squeezed state can have in a Ramsey
measurement as ∆φ = ξ/

√
N < 1/

√
N.

The shot-noise limit has been surpassed in multiple experiments by populating both interferometer states
symmetrically with an entangled many body state.8,14,15,17 Interferometric sub-shot noise measurements of
physical properties include a magnetometer showing a sensitivity 2 dB below shot-noise is presented in Ref.24

The state preparation relies on collective spin squeezing via a QND measurement in laser cooled 87Rb. Another
magnetometer with a suppression of fluctuations of 3.8 dB is realized by employing a one-axis twisting Hamil-
tonian.25 Other magnetometers include Ref.9 Ref.26 demonstrates the mapping of a microwave field with a
sensitivity of 4 dB below the standard quantum limit. This enhancement is again enabled by using spin squeezed
input states that are prepared via the non-linear interactions of a one-axis twisting Hamiltonian. A measurement
of a frequency standard 1.1 dB below the shot noise limit has been shown in Ref.27 The state was prepared with
a quantum non-demolition measurement. In Ref.28 a frequency standard operating 0.57 dB below shot noise has
been realized in a system of two entangled trapped 9Be+ ions.

Enhancing the interferometer by initializing both input ports with an equally divided entangled ensemble
has the disadvantage, that the generation of the input state typically highly depends on the number of atoms
and the procedure might therefore not be easily scalable. This competes with the idea of increasing the number
of particles to enhance the interferometric sensitivity. The following section presents an alternative approach
which circumvents the problem of the varying state preparation for varying particle numbers. The interferometer
performance is enhanced by a squeezed vacuum state instead of acting on both input state.4 This technique is
commonly used in optics as for example at the GEO 600 gravitational wave observatory.29

3. RESULTS

Our atomic clock consists of a four-mode linear Ramsey interferometer when described in terms of the Zeeman
states |±1〉 = |F = 1,mF = ±1〉, |0〉 = |F = 1,mF = 0〉 and |e〉 = |F = 2,mF = 0〉 (see Fig. 3). It can be reduced

to a standard two-level Ramsey sequence in terms of the magnetically insensitive clock states |g〉 = |+1〉+|−1〉√
2

and

|e〉 (see Fig. 3 and30). The atoms are prepared in a balanced superposition of |0〉 and |±1〉 by a radio-frequency
(rf) π/2 pulse, which couples the states |0〉 and |g〉 (pulse I in Fig. 3a). A subsequent microwave (mw) π pulse
transfers the atoms from |0〉 to |e〉 (II). In this superposition state, the atoms sense the evolution of time by
acquiring a phase shift θ = 2π τ δ, which depends on the detuning δ of the employed microwave oscillator and
the phase evolution time τ = τR + τmw, where τR is the Ramsey interrogation time and τmw is the microwave
pulse duration. A second mw π pulse transfers atoms back in |0〉 (III). Finally, a second rf pulse (IV) closes the

interferometer. The phase is estimated from the fraction f =
Ng

N ≈
Ng

Ng+N0
≈ N+1+N−1

N of atoms in the output

state |g〉, which can be obtained directly from an absorption image of all three Zeeman components. These
Zeeman components are spatially separated by a magnetic gradient during free fall. Subsequently, absorption
imaging is performed on the closed transition F = 2 → F ′ = 3 on the Rb D2 line with a resonant laser
beam derived from an external-cavity diode laser. Atoms in F = 1 are pumped to the cycling transition by an
independent repumping laser beam on the transition F = 1 → F ′ = 2. The detection noise of 16 atoms (7 dB
below the projection noise level) is dominated by the photoelectron shot noise on the CCD camera and does
not limit the experimental results. Figure 4 (a) presents the Ramsey fringes for the classical case, when the
hyperfine level |g〉 is initially empty. The average fraction f̄ is shown as a function of the microwave detuning
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Figure 3. The three-mode interferometer. (a) Hyperfine ground states of 87Rb. (I) A Bose-Einstein condensate in
the state |0〉 = |F = 1,mF = 0〉 is coupled to the states |1,±1〉 by a resonant radio-frequency pulse. The second-order
Zeeman shift is compensated by a detuned microwave dressing to the state |2,−2〉. (II) A microwave pulse with detuning
δ couples the states |0〉 = |1, 0〉 and |e〉 = |2, 0〉. The radio-frequency and microwave pulses form an effective π/2 pulse
between |1,±1〉 and |e〉. (III) After a Ramsey evolution time τR, a second detuned microwave pulse is applied. (IV) A
final radio-frequency pulse coupling |0〉 and |1,±1〉 closes the interferometer. (b) The interferometer corresponds to two
three-mode beam splitters and a phase shift in between. The total number of atoms N enters the central state |0〉. A
measurement of all three components N−1,0,1 after the interferometer allows for an estimation of the phase shift θ. (c) The
interferometer can be simplified by introducing the symmetric state |g〉 and the antisymmetric state |h〉. The three-mode
beam splitters only couple to the symmetric state, thus yielding an effective two-mode interferometer with an unchanged
antisymmetric state.

δ for two Ramsey times τR and is well reproduced by a single-atom model.30 The slightly reduced contrast for
larger τR stems mainly from the influence of a small radio-frequency detuning as well as magnetic field noise. In
addition, the model accounts for the fixed pulse length τmw for all detunings, leading to a small amount of atoms
remaining in the F = 2 manifold (< 2.5% for τR = 250µs and < 8% for τR = 1000µs for up to 2 kHz detuning).
In the limit of weak magnetic field gradients, these atoms experience the same spatial separation as the atoms
in F = 1 and thus cannot be discriminated by our absorption imaging. In the following, the pulse length is
adjusted such that no atoms remain in the F = 2 manifold. For small τR the data are in good agreement with
the noiseless prediction f̄ = sin2 πδτ .

The clock performance is evaluated for a vanishing time τR = 0 between the two detuned microwave pulses
(II and III) to minimize technical noise. For a microwave pulse length of 2 τmw = 90.4µs and a detuning of
δ = −5.5 kHz we reach the mid-fringe position θ = 2π τmw δ = π/2, where the slope ∂f̄/∂θ has its maximum value
1/2. Here, τmw is chosen such that all atoms return to the state |0〉. On mid-fringe position, the full interferometer
sequence can be described as a single, symmetric beam splitter between |0〉 and |g〉. Due to the large number of
atoms in the state |0〉, which act as a local oscillator with a defined phase ϕ in the quantum optics sense, the
interferometer sequence presents a standard homodyne measurement of the quadratures in state |g〉. Therefore,
the fluctuations of the interferometer output reflect the quadrature fluctuations: (∆f)2 = (∆X)2/(2N).30 Here,
X = 1√

2
(e−iϕg+eiϕg†) and P = 1

i
√

2
(e−iϕg−eiϕg†) are quadrature operators of the symmetric state |g〉, defined

in terms of the creation and annihilation operators g† and g, respectively, and ϕ is the local oscillator phase. With
an initially empty state |g〉, the quadrature fluctuation is (∆X)2 = 1

2 . This limits the ideal phase estimation
uncertainty to (∆θ)2 = (∆f)2/(∂f̄/∂θ)2 = 1/N . In our experiments, we record a value of (∆f)2 = 1.48/N ,
which is 1.69 dB above the vacuum limit due to technical noise mainly caused by magnetic field fluctuations.30

The sensitivity of our interferometer can surpass the SQL when quadrature fluctuations are squeezed below
the vacuum limit, (∆X)2 < 1/2. We create a squeezed vacuum state by initiating spin dynamics in the Bose-
Einstein condensate prior to the interferometer sequence. Spin dynamics can be precisely controlled by switching
the microwave dressing of the state |−1〉 to the resonance condition.7,31 In direct analogy to optical parametric
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down conversion, spin dynamics creates pairs of atoms according to the two-mode squeezing Hamiltonian H =
~Ω(a†+1a

†
−1 + a+1a−1),5,30,32 where a†±1 and a±1 are the creation and annihilation operators for atoms in |±1〉,

and Ω = 2π×3.9 s−1 is the spin dynamics rate. Using the operators g = (a+1+a−1)/
√

2 and h = (a+1−a−1)/
√

2,
this Hamiltonian simplifies to H = Hg − Hh, with Hg = ~Ω

2 (g†g† + gg) and the analogous definition for Hh.

Spin dynamics e−iHt/~ = e−ir(g
†g†+gg)/2⊗eir(h†h†+hh)/2, equivalent to a two-axis counter-twisting dynamics33,34

(see30), can thus be written in terms of the product of usual single-mode quadrature-squeezing operators,35 where
r = Ωt. We notice that Hg and Hh rewrite as two-axis counter-twisting Hamiltonians33,34 for opportune spin
operators, see.30 We apply spin dynamics for 32 ms, which creates a mean number sinh2 r = 0.75 of atoms
in each of the two states. This number is extremely small compared to the total of N ≈ 104 atoms, such
that the influence of the antisymmetric state to the interferometer signal is negligible and we can approximate
f = N+1+N−1

N =
Ng+Nh

N ≈ Ng

N . Even though the symmetric state |g〉 is only weakly populated, it has a
strong influence on the interferometric sensitivity. The squeezing allows for reduced quadrature fluctuations of
(∆X)2 = 1

2e
−2r < 1

2 for r > 0 at an optimal local oscillator phase ϕ = π
4 . Experimentally, the phase ϕ is

adjusted by applying a controlled energy shift with the microwave dressing field for a variable duration t prior
to the interferometer sequence.
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Figure 4. Output of the interferometer. (a) The microwave detuning δ is varied for different Ramsey times τR = 250µs
( ) and τR = 1000µs ( ). The phase shift, set by the microwave detuning (x-axis) and the evolution time τ = τR + τmw,
results in the Ramsey fringes in the transferred fraction. The solid lines ( , ) represent the results of our model. (b) The
phase adjustment time t before the interferometer sequence is varied and the corresponding variance of the transferred
fraction is recorded with respect to projection noise ( ). The data is well reproduced by a sinusoidal fit ( ) and reaches
clearly below projection noise ( ). Result of the classical interferometer ( ). The error bars and shaded areas represent
the statistical uncertainty of 100 repetitions.

Figure 4 (b) shows the variance of the population imbalance (∆f)2 as a function of the adjusted phase relation.
At an optimum value of t = 300µs, a minimal variance of −2.12+.70

−.83 dB below projection noise is reached. The
variances are obtained from a total number of 100 repetitions of the experiment per phase adjustment time t.
All error bars indicate one standard deviation of the statistical uncertainty and are obtained by an unbiased
estimation (see Supplements of Ref.7). Figure 5 (a) shows the fraction f̄ as a function of the detuning in the
vicinity of the mid-fringe position, as obtained from 390 experimental realizations for each microwave detuning
δ. The slope is proportional to the contrast of the interferometer and depends on the coherence properties
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Figure 5. Phase estimation uncertainty. (a) Mean values of the transferred fraction f̄ ( ) for five different microwave
detunings (bottom x-axis) and corresponding phase shifts (top x-axis) close to the mid-fringe position. The slope of the
linear fit ( ) is close to the optimum, as represented by our model ( ). The error bars represent the (sub- projection
noise) statistical uncertainty of 390 repetitions. (b) The phase estimation uncertainties ∆2θ normalized to the SQL ( )
reach well below the SQL ( ). The shaded area represents an upper bound of the uncertainty of the atom number
calibration of 1%.36 The small detuning dependency of the recorded sensitivity is reproduced by our single-atom model
including magnetic field noise ( ). The best phase estimation uncertainty of −1.56+.41

−.45 dB below the SQL is reached at
a detuning of −5.9 kHz. Error bars are the statistical uncertainty (1 s.d.) of 390 repetitions.

of the input state. A fit (blue solid line) yields a value of 0.48 rad−1, which is close to the optimal value of
0.5 rad−1. The variances of the population imbalance and the fitted slope yield the phase estimation uncertainty
(∆θ)2 = (∆f)2/(∂f̄/∂θ)2 displayed in Fig. 5 (b). At a detuning of −5.9 kHz, (∆θ)2 reaches a minimum value
−1.56+.41

−.45 dB below the SQL. The two-sample variance, which rejects long term technical drifts and is therefore

better suited to estimate the fundamental noise, reaches −2.05+.34
−.37 dB below the SQL.

The interferometric measurements also allow for a reconstruction of the squeezed vacuum state in mode |g〉.
The Wigner function in X-P -space after the optimal phase adjustment time of 300µs is obtained from an inverse
Radon transformation (see Fig. 6 (a) and30). Its profile is very close to the expected Gaussian distribution, and
is characterized by the squeezed and anti-squeezed widths along the X and P directions, respectively. While
this single-mode picture successfully describes the physics of our experiments, it can equivalently be described
by spin squeezing of the usual two-mode pseudo-spin operators, as visualized on the multi-particle Bloch sphere
in Fig. 6 (b). It is worth noting, that these collective pseudo-spin operators are identical to the SU(2) subspaces
exhibiting spin-nematic squeezing reported in Ref.37 Furthermore, the created squeezed vacuum state can also
be employed for phase sensing in a nonlinear interferometer scheme of the SU(1,1) type.38,39

In summary, our experiments present the first proof-of-principle implementation of squeezed vacuum in an
atomic microwave clock. Microwave fountain clocks, providing the realization of the SI second, are currently
limited by the SQL.22,40–42 In combination with the recently developed sources of Bose-Einstein condensed
atoms with small densities43,44 and high repetition rates,45 our results pave the way for the development of
a new generation of atomic microwave clocks operating beyond the SQL.30 Our method is particularly robust
during state preparation. In contrast to existing proposals, it avoids the generation of entangled states with a
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the optimal phase adjustment time of t = 300µs is shown. (b) The interferometer is illustrated on the multi-particle
Bloch sphere for the states |g〉 and |e〉, in terms of the pseudo-spin operators Jx = 1

2
(e†g + g†e), Jy = 1

2i
(e†g − g†e),

Jz = 1
2
(e†e− g†g). The employed squeezed vacuum corresponds to an elliptical uncertainty disk with variable orientation

angle depending on the phase adjustment time t. An optimal orientation angle, as shown, allows for a measurement of the
transferred fraction with a sub-projection-noise uncertainty. The two radio-frequency pulses generate rotations around
the Jx-axis (I/III). The phase shift corresponds to a rotation around the Jz-axis (II).

symmetric population of the two hyperfine levels, which is plagued by two-body losses in the excited hyperfine
state. The limitations of our method for sub-SQL interferometry have not been reached yet: besides overcoming
technical restrictions, it has been shown46 that an optimized version of the present interferometric scheme can
reach the ultimate Heisenberg limit of phase sensitivity ∆θ = 1/N .
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“Generation of macroscopic singlet states in a cold atomic ensemble,” Phys. Rev. Lett. 113, 093601 (Aug
2014).

[13] Hosten, O., Engelsen, N. J., Krishnakumar, R., and Kasevich, M. A., “Measurement noise 100 times lower
than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
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