
VLSI Design
1995, Vol. 3, No. 1, pp. 67-80
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1995 OPA (Overseas Publishers Association)
Amsterdam B.V. Published under license by
Gordon and Breach Science Publishers SA

Printed in Malaysia

Stepwise Transformation of Algorithms
into Array Processor Architectures

by the DECOMP

UWE VEHLIES
Laboratorium fiir Informationstechnologie, University of Hannover

Schneiderberg 32, 30167 Hannover 1, FRG

(Received May 12, 1993, Revised January 4, 1994)

A formal approach for the transformation of computation intensive digital signal processing algorithms into
suitable array processor architectures is presented. It covers the complete design flow from algorithmic specifica-
tions in a high-level programming language to architecture descriptions in a hardware description language. The
transformation itself is divided into manageable design steps and implemented in the CAD-tool DECOMP which
allows the exploration of different architectures in a short time. With the presented approach data independent
algorithms can be mapped onto array processor architectures. To allow this, a known mapping methodology for
array processor design is extended to handle inhomogeneous dependence graphs with nonregular data depen-
dences. The implementation of the formal approach in the DECOMP is an important step towards design
automation for massively parallel systems.

Key Words: Computer-Aided Synthesis; Synthesis Algorithms; CAD for Architecture Design; Stepwise Trans-
formation; Mapping Methodology; Data Independent Algorithms; Run Time Protocol; Nonregular Dependence
Graphs; Array-Processor Architectures

1. INTRODUCTION

rogress in VLSI technology allows to integrate
more and more transistors into a single chip.

Thus, microelectronic systems with an increasing
complexity can be realized. But this also results in a
large quantity of design work manageable only with
efficient support by design tools.
At the same time the algorithms developed in

digital signal processing (DSP) grow in their com-
plexity thereby requiring more and more computa-
tional power and higher throughput rates. This is in
pa.rticular the case in the area of image and video
processing where algorithms for high definition tele-
vision (HDTV) and video telephone have to be
applied under real time conditions. Application spe-
cific integrated circuits (ASICs) for such systems can
be realized only using special purpose architectures
(cf [1]). One possible architecture are array proces-
sors [2] because they meet the requirements by a
massive application of pipelining and parallel pro-
cessing. In addition, due to their regularity and

modularity array processors are well suited for a
design process automated by design tools. These
trends influence the design methodology for micro-
electronic systems. In the past design work mainly
consists of logic design and layout synthesis. Today
these design tasks are well supported by commercial
tools. But there is a need to extend these tools
because increasing emphasis is given to decisions at
the architecture level.
Today the derivation of architectures is manually

performed by an intensive and error prone process.
In most cases only few different architectures are
examined. Due to this an unsuitable architecture
may be derived and it becomes impossible to fulfill
the requirements of a given algorithm. Thus, design
methodologies supporting the architecture level must
be developed and implemented in CAD-tools which
enable designers to explore different architectures
in a short time.

In this direction a lot of research is performed.
But due to the complexity of the design process the
solutions inevitably are restricted to small and/or

67

68 UWE VEHLIES

regular design problems. Exploiting regularity sev-
eral methodologies for mapping algorithms onto ar-
chitectures have been developed [2, 3, 4, 5, 6, 7,
8,9, 10, 11] and partly implemented in design tools
(see references in [12]). A disadvantage of these
methodologies and tools is that most of them are
restricted to special architecture types (e.g. array
processors consisting of one type of processing ele-
ment (PE) connected by regular data dependences)
or to a special class of algorithms (e.g. regular
algorithms representable by nested loop programs).
Furthermore, they do not support the complete de-
sign flow starting with the specification of the algo-
rithms and ending with a netlist description at the
gate level.
Due to these reasons the CAD-tool DECOMP

has been developed to support the mapping of algo-
rithms onto array processor architectures [13, 14].
The DECOMP requires PASCAL-descriptions [15]
of the algorithms as input and produces EDIF-
netlists [16] at register-transfer-level as output. Later
developments lead to a new implementation of the
frontend in the DECOMP which now is able to
compile data independent algorithms [17] into de-
pendence graphs (DGs) [12, 18]. The resulting DGs
consist of different node types connected by nonreg-
ular data dependences. Thus, they cannot be mapped
onto array architectures by the known design
methodologies. To allow the mapping of these DGs
a procedure for combining nodes of a different type
into one PE has been derived [19], and in addition
the mapping procedure proposed in [2] has been
extended to handle nonregular data dependences.
Currently the new mapping is implemented in the
DECOMP.
The design process captured by the DECOMP

cannot be performed in one step. Because of its
complexity it has to be split into manageable design
tasks each of them performing a specific design step.
This results in a method referred to as stepwise
transformation. A similar technique is known from
high-level synthesis where it is applied to transform
a behavioural description step by step into hardware
(cf [20]). The purpose of this paper is to outline the
formal approach underlying the stepwise transfor-
mation and its implementation. Furthermore, two
data representations, one assigned to the algorithm
level and the other assigned to the architecture
level, are defined, based on which one of the main
design steps of the transformation is explained in
more detail. With the presented approach data in-
dependent algorithms can be mapped onto highly
parallel array processor architectures. The main ad-
vantages of the presented transformation are its

ability to process nonregular algorithms and its de-
gree of automation.

In Section 2 of this paper the stepwise transfor-
mation is outlined, and in section 3 the data repre-
sentations are introduced. One of the main design
steps is explained in more detail in section 4. The
implementation in the CAD-tool DECOMP is de-
scribed in Section 5, and finally a design example is
given in Section 6.

2. THE STEPWISE TRANSFORMATION

The design process of mapping a given algorithm
onto an array processor architecture is performed in
four phases. These are

1. a specification phase,

2. a compilation phase,

3. a mapping phase, and

4. an optimization phase.

The phases themselves are divided into smaller de-
sign tasks each of them performing a correct-
ness preserving transformation. This means, without
changing the I/O-behaviour of the algorithm. Thus,
a given algorithm is step by step transformed into an
array processor architecture. The phases and its
design tasks are depicted in Fig. 1.
The specification phase consists of only one step

which is the Program development. In this step the
given algorithm is manually specified in a high-level
language which is executable using standard compil-
ers. Besides the algorithm the specification may
contain an interface description specifying how the
input data is provided and how the output data is
required. In addition design constraints like maxi-
mum chip area and maximum delay times can be
specified for the array processor or its PEs.

In the four steps of the compilation phase the
description of the algorithm is modifed in a way that
a dependence graph can be built from it. First, by
application of compiler techniques [21] the given
specification is symbolically executed [17] and the
performed assignments are listed in the so-called
run time protocol (RTP)[12]. For example the sym-
bolic execution of the statements

a[1] :=0;

FOR i:= 1 TO 2 DO

b[2, i] c[0];

all] all] + hi2 i]; (1)

TRANSFORMATION OF DSP ALGORITHMS 69

4

Algorithm

Program
development

Symbolic pro-
gram execution

Introduction
of SAC

Placement

DG-derivation

assilgunent

tdaptation to deq
siln constraints

Extraction

ttigh-level pro-
grarnming language

Run time
protocol

Graph

1: Specification phase
2: Compilation phase
3: Mapping phase
4: Optimization phase

Hardware descrip-
Netlist tion language

FIGURE Transformation steps and representation of design data

leads to the following RTP:

a(1) 0

b(2) c(0)

a(1) (+a(1)b(1))

b(4) c(0)

a(1) (+a(1)b(O)) (2)

A unique extraction of the data dependences needed
to build a DG only is possible if the RTP is given in
single assignment code (SAC). In this code every
variable is assigned one value only during the execu-
tion of the algorithm. Thus, in the second compila-
tion step SAC is automatically introduced by adding
an additional index where necessary. The RTP

changes to

a(1 0) 0

b(2) c(0)

a(1 1) (+a(10)b(1))
b(4) c(0)

a(1 2) (+a(1 1)b(0)) (3)

The allocation of the assignments to nodes in the
DG is performed according to the indices of the
variables on the left side of the assignments. Conse-
quently, all left side variables must have the same
number of indices. Furthermore, more regularity in
the DG can be achieved if the nodes for the assign-
ments are allocated under consideration of loop-
counters in the input program or the similarity of
the right sides of the assignments. Thus, in the third
compilation step different placement algorithms can
be applied to the RTP in order to achieve the
highest possible degree of regularity and parallelism.

70 UWE VEHLIES

At last a localisation can be performed to avoid
global data dependences in the resulting DG. Dur-
ing the localisation additional assignments which
propagate the variables via neighbouring nodes only
are introduced in the RTP. In the given example
(0) is propagated via (2 0) and (3 0) to b(4 0).
Finally ttle RTP may be as follows:

a(10) 0

b(20) c(0)

c(20) c(0)

c(30) c(20)

a(11) (+a(10)b(1))
b(40) c(30)

a(12) (+ a(11) b(0)) (4)

The mapping phase consists of two steps which are
the DG-derivation and the mapping onto signal flow
graphs (SFGs). In the DG-derivation the RTP is
transformed into a DG consisting of nodes and arcs
(see example in Sec. 6). Then a mapping which is
based on the multi projection method proposed in
[2] is applied, and the DG is mapped onto a SFG
thereby reducing the number of dimension by one.
The mapping step can be applied to the resulting
SFGs again to reduce the number of dimensions to
a maximum of two. For a realization the advantage
is given that the architectures can be implemented
using only short and local connections between the
PEs. Global connections on the chip should be
avoided because their delays may dominate the de-
lays of the gates.

In contrast to most of the known methodologies
the proposed mapping has the advantage not to be
restricted to homogeneous DGs with regular data
dependences. It is also capable of mapping different
nodes into the same PE by merging their internal
structure as described in [19]. In addition, the
method proposed in [2] is extended to handle DGs
with irregular data dependences [22]. Furthermore,
in the mapping step different projections can be
applied. They result in a number of possible SFGs
which differ in the number of PEs, the connections
between the PEs, the data-I/O, the time needed for
a complete computation of the algorithm, and other
criteria. A suitable SFG fulfilling given design con-
straints is then selected and passed to the next
phase.

In the optimization phase the selected SFGs are
modified to array processor architectures. Because

the SFGs are represented at the word level, first of
all word widths for all arcs of the SFGs must be
introduced. For this, the minimum and maximum
values of the input signals are specified as a number
range at the inputs of the SFG. Then a simulation
function runs over the SFG calculating the mini-
mum and maximum value for every arc in the graph
as well as for every internal connection of the PEs.

Thereafter the derived architecture can be
adapted to given design constraints. Not in every
case for example it is possible to derive an architec-
ture which requires the input data in the same way
as it is provided by the external input interface.
Therefore, register-multiplexer circuits for sorting
the data coming from the input interface can be
synthesized and put in front of the derived array
processor. The problem of data supply for array
processors has been studied in [23, 24].
The last step, the extraction of a netlist in a

hardware description language, is performed by a
direct conversion of the used data structure. The
netlist is given at the register transfer level. The
smallest blocks at this level are registers and arith-
metic building blocks like adders and multipliers
which can be generated using building block genera-
tors [25, 26] or other synthesis tools.
For implementation purpose it would be conve-

nient to have the same data structures between
every design step. Thus, the order of the steps can
be changed or single steps can be left out. On the
other hand the requirements from the algorithmic
side of the transformation are totally different from
those of the architectural side. Consequently, as
shown in Fig. 1 the stepwise transformation is based
on two different data representations, the RTP and
a graph representation. The RTP is only used in the
compilation phase. It is set-oriented, recursively de-
fined (see Sec. 3.1) because it describes a sequence
of assignments. In contrast the graph representation
is blockoriented, hierarchically defined (see Sec. 3.2)
because it describes the interconnections of hierar-
chically organized blocks.

3. REPRESENTATION OF DESIGN DATA

3.1 Algorithm Based Data Structure

The run time protocol which is produced by a sym-
bolic program execution describes a given algorithm
in a maximum expanded form. It holds one entry for
every performed assignment and lists them in the

TRANSFORMATION OF DSP ALGORITHMS 71

uv, n
PUn

TABLE
Sets and elements used in the run time protocol

denotes the n-th processing step

external input variable,
set of all external input variables

constant, set of all constants

known variable,
set of all known variables in the n-th processing step

used variable,
set of all used variables in the n-th processing step

variable produced (assigned) in the n-th processing step

at the beginning. Then, starting at n 0 for every
time step n the produced variables pU are calcu-
lated using the set @n of used variables which is a
subset of JUn containing all variables known at
that time step. At the same time, the sets JUn+l
are calculated new for the following time steps. For
that the variable pu and the set JU from the
actual time step are used. Because in every time
step the calculations use values from the directly
preceding time step only, the RTP is said to be
defined recursively.

given execution order. Furthermore to all successive
entries a discrete time step is assigned.

Formally a RTP can be described by grouping
together the variables of the algorithm into different
sets. Besides the set of external input variables
(oe’7/) and the set of constants (’) two more sets
are defined at every discrete time step. One set
(JUn) contains all variables which are known at a
specific time step, the other set (@) contains all
variables which are used by the assignment per-
formed at that time step. For the definition of the
RTP the sets and elements are named as given in
Table 1. The RTP itself is defined in Def. D.1.

Def.: Structure of the run time protocol (D.1)

Jo {kvlkv v kv

PVn fn(n)ln. Vn>O

This definition expands to the run time protocol
shown in Table 2. Based on the external input
variables iv and the used constants c the RTP is
initialized at time step n 0 with the set Y’. All
input variables and constants can be collected in
JUT/0 because in ordinary programs they are known

Time step

TABLE 2
Maximum expanded run time protocol

Assignment

0

N-1
N

pvo f0(Y/0)lr/c

PV ?n(@’n) @7/n ,)K7/n

PVN_ :=)N_ I(O’N_ 1)[’N_ C,N_
pv

3.2 Architecture Based Data Structure

At the register transfer level array processors are
represented by DGs and SFGs. These graphs consist
of interconnected PEs which themselves consist of
building blocks like adders and multipliers repre-
senting the basic operations of the implemented
algorithm. The interconnections in DGs are arcs
with zero delay, and in addition the DG is free of
loops and cycles by definition. Interconnections of
SFGs may contain registers (delays). Thus, SFGs
may have loops and cycles with at least one register
on them.
A design hierarchy in which DGs, SFGs, PEs, and

building blocks can be represented as blocks is given
by the following 3 levels:

1. Graph-level Representation of DGs and SFGs
by PEs and their interconnections (also re-
ferred to as arcs).

2. Processor-level Representation of PEs by
building blocks and their interconnections.

3. Operator-level Representation of building
blocks. These are the smallest blocks at the
register transfer level. Thus, their internal
structure is not considered here.

DGs and SFGs are represented on the same level.
Thus, in the following the statements for DGs are
valid for SFGs as well except otherwise mentioned.
Furthermore, nodes of DGs and PEs of SFGs are
always referred to as PEs.
The blocks on each level formally are defined as

4-tuple as follows:

Deft: Block description (D.2)

bb (A, ., ._/’, .)

72 UWE VEHLIES

with

A as a 2-tuple describing the attributes of the
block,

’ as the set of subblocks used in the block.

a*’ as the set of signals which represent the inter-
connections of the subblocks, as well as the
inputs and outputs of the block,- as the set of functions which represent the func-
tionality of the block. The functions also repre-
sent the netlist of the block.

This definition was originally developed in [19]
slightly modified as a model for complex processing
elements. The attributes A in bb are defined as
follows:

Def.: Attribute (D.3)

A (typ,

with

typ as the identifier for the type Of the block.
It is one of the symbols DG, SFG, PE, or
BB (building block),

-’ as a set of type specific attributes tsa

Each type specific attribute tsa is a 2-tuple of the
following form:

Def.: Type specific attribute (D.4)

TSA (att, val)

with

The set o- in Def. D.2 contains functions F
which are defined as follows:

De[.: Function (D.5)

F (bb, Sn, out)

with

bb as a block which represents an opera-
tion like addition or more complex
the operation of a PE (the blocks in a
PE are called operators, too),

in C as the ordered set of input signals for
the block,

out , as the ordered set of output signals
for the block.

The given definition implicitly assumes that every
block has at least one input and one output. Fur-
thermore, the subblocks bb and signals s
must have unique names inside a block because the
netlist is given by referencing to these names. The
order of the signals in the sets ,.in and out is
not important except when the functions are used
for a symbolic verification at the operator level.
Then the order is important for operators (blocks)
which are not commutative (e.g., subtraction or divi-
sion).

In addition, the signals s ’ optionally can be
defined as a 3-tuple as follows:

Def.: Signal (D.6)

att

val

indicating the attribute type. att also is used
as keyword to distinguish different attributes.

as the value of the attribute.

S (Si, bbin, bbut)

Type specific attributes for example are TSAo
(dim(2 4)) describing the index space of a DG or

TSAee (ind(ll)) as the index point at which a PE
is located in a DG. Different types of blocks may
also have the same type of attribute. For example a
building block may have the attribute TSAtB (area
42), hnd a PE which contains three of these building
blocks may have the attribute TSAeE (area 126).
For describing the reference to the attributes the
following two functions are used:

fatt(TSA) att

Lal(TSA) val

As example: fatt(TSApE) fatt(ind(ll))) ind

(5)

with bbin as the block at which the signal starts and
bbeer as the block at which it ends. Then the
description of a block contains redundant informa-
tion which for example can be used for a consistency
check of the netlist.
A problem arises if internal signals of a block are

allowed to be an output, too. In this case the output
cannot be recognized automatically. In the pre-
sented model this is handled by fork-elements which
have one input and more. than one output. The
function for a fork-element for example is ffork
(fot’kl, {Sl}, {s2s3}).
As an example for the presented data representa-

tion the PE shown in Fig. 2 is given. This PE could
be used in a DG as block bbo_ o.

TRANSFORMATION OF DSP ALGORITHMS 73

(PE, {(ind, (0 0))})
{add mul fork}
{sl s sa s4 intl int int3}
{(add, {sl s}, {intl})

(]o, {mt,},{ t})}

bbo-o (PE0_0, {s s. s3}, {s4 int3})

FIGURE 2 Processing element and its formal representation

4. DESCRIPTION OF A MAIN
TRANSFORMATION STEP

Due to space limitations a detailed explanation of
the complete stepwise transformation does not fit
into this paper. For this reason, the main design
step dg-derivation has been selected for explanation
because it is the interface between the two data
representations. It transforms the run time protocol
into a graph based, object-oriented data structure
which can be easily converted into a netlist descrip-
tion.
Normally graphs are described by a 2-tuple G

(//, 5e’) consisting of a set of nodes and a set of
arcs. The arcs are described by a & j in which
and j are index points out of //(cf[2]). For the
mapping of algorithms onto VLSI architectures in
addition the external interfaces must be described.
Due to this, the DGs derived during the stepwise
transformation are described by a 4-tuple as given in
Def. D.7.

DeL: Dependence graph
(and also signal flow graph) (D.7)

with

as the set of nodes represented by
their indices,

as the set of dependences connecting
the nodes, usually referred to as arcs,

as the set of external input depen-
dences,

as the set of external output depen-
dences,

The dependences are given by a 4-tuple as follows:

Def.: Dependences (D.8)

dep (start, end, name, delay)

Herein start and end denote the index points of the
start and end node of the dependence, name is the
individual name of the dependence and delay is
the number of delays associated with the depen-
dence. It should be noticed that the arcs in a DG
always have zero delay by definition. The delay is
specified because the definitions apply to SFGs as
well. Furthermore, the values of such dependences
are accessed by the following four functions:

Def.: Access to dependences (D.9)

fs(de p) start

fe(dep) end

fn(dep) name

fd(dep) delay

For the derivation of a DG first the set 9 of
produced variables and the set ’ of used vari-
ables are built from a maximum expanded RTP (see
Table 2) as follows:

N

:= U {PVi} (6)
i=1

N

2zU:= LJ ff/ (7)
i=1

With these sets the external input and output arcs of
the DG are given by Eq. 8 and 9, respectively. The
symbol e means that there is no value at this place.

74 UWE VEHLIES

As defined, the functions find and fnam
index and the name of a variable.

return the

..d,.in {depinldepi (e, find(PVi), fnam(UU), O)

with pv fi(@i
/ uv (i c (/\s))} (8)

ou, {depou,[dWou (fina(PVi) e, Lam(POi), O)

with pv fi(@
apv (@)} (9)

The sets /nd contain assignments of arbitrary
complexity described in prefix form, for example
(O(UVl[jljz]UVz[klk2]) uv3[1112]) in which and

denote any operators. For the translation of
these assignments into functions of a block as de-
fined in Def. 5 they first must be split into simple
assignments only containing one operator which can
be implemented by an arithmetic building block.
This is performed by introducing additional vari-
ables which lateron lead to node internal signals.
After the splitting the simple assignments can be
directly translated into functions as shown in Eq. 14:

The dependences between the nodes are deter-
mined by Eq. 10. Therein >- k means the assign-
ment is performed before the assignment k.

depp, deppv u,

(Lnd(PUi), Lnd(PUk), Lam(PU,), O)
with ipv fi(@’i)

Ai>-k

pv @Uk} (10)

The orientation of a dependence in the n-dimen-
sional index space of the derived DG is given by the
vector r as follows:

pv f/(@’/)
-) po[ili2] (e((UVl[jlJ2]uv2[klk2])uv3[lll2])- pv*[ili2] ()UVl[jlJ2]uv2[klk2])

A pv[ili2] (@pv*[ili2]uv3[lll2])

(, {SuSu}, {s,.,))
/,, (e, {s,,,,tSu}, {s,o,})

FeA Fe (14)

As the result of these transformations all sets snd
are mapped into sets /n*a which describe the func-
tionality of the nodes in the architecture based data
structure (see Eq. 15)

r fe(dep) fs(dep) (11)

Due to the placement according to the indices of
the produced variables dependences with r N (N
is the zero vector) may occur for the moment. Be-
cause such dependences are not allowed in a DG
they later on are transformed into node internal
signals.

After determination of the dependences the inter-
nal structure of the nodes is derived. Because this is
a complicated operation first the index set is
developed with Eq. 12. It contains all index points of
the n-dimensional index space at which a node of
the DG is located.

:= {indlEIpv amit ind find(pu)} (12)

Then for every ind , i.e. for every node, a set

Jind is developed by application of Eq. 13. This set
contains all assignments of the given run time proto-
col which produce a variable with the index ind.
Thus, all these assignments are placed in the same
node.

ind {PVi f/(aW/)lf/na(PVi) ind) (13)

{FIF (bbin,ut) with Ela gind

witha F/AF/xFk/x ...} (15)

From the sets /*d and with the functions

fbb(F) bb

f ,in(F)

f F) ofout (16)

a set of node descriptions can be derived as follows:

//:= {nln (Annnnnn)

with A (PE{(ind ind)}) with ind e"

A& U {fbb(F)}
F.*

(f,i,(F) U

A /*a} (17)

TRANSFORMATION OF DSP ALGORITHMS 75

The derived sets completely describe the DG which
becomes

a (,if’, ..o-,., ..tg,in, .out) (18)

Finally the description of the DG required for the
hierarchically defined, architecture based data rep-
resentation (see Def. 2) is derived by the following
equation:

DG (ADa Da :Da Da)

with ADa (DG, {(dim, dim) })
A

A DG .’),U in U out

A a(FIF (pe, r,
(19)

with pe /A pe (An, n, n,)

of the run time protocol once only. The other sets
are calculated from these basic sets without time
consuming search operations. Furthermore, if regu-
lar algorithms like matrix-matrix-multiplication are
processed the basic sets could be derived immedi-
ately during the symbolic execution in the compila-
tion phase. This is very fast, but only possible if no
special placement is required.
Another point is that the placement according to

the indices of the produced variables may result in
DGs with cycles which are not allowed by definition.
But, these cycles only exist at the graph level. Due
to the single assignment property, which is automat-
ically introduced during the compilation phase they
do not exist at the processor level. Therefore, they
can be broken up easily by assigning the concerned
operations to other nodes in the DG. Furthermore,
in the presented approach the existence of such
cycles is already checked during the placement at
the compilation phase. Thus the derived DGs are
free of loops and cycles.

A’p/e ’-’pe

A’’utpe ’#’ppe} 5. THE CAD-TOOL DECOMP

In Eq. 19 the two sets ’J’pe and
derived from the functions of the PE as follows:

are

{slZlF with s fpin(F)

A tF n with s fjou,(F)}

{sl:IF nn with s fjout(F)

A F nn with s f,in(F)}

(20)

(21)

Furthermore, the dimension dim of the DG is given
by

dim:= max (n(pui)) (22)
Vi=I N

where n(pti) denotes the number of indices of the
variable pui. In the stepwise transformation the di-
mension is already determined during the placement
in which the assignments of the RTP are assigned to
index points of a n-dimensional index space by
consistently changing the indices of the produced
variables.
A synthesis algorithm for the derivation of DGs

from the RTP has to apply the given equations in
the order as described above. The main advantage
of this approach is that the basic sets 97, 7/and
the respective dind are derived by linear processing

To show the feasibility of the formal approach pre-
sented in this paper the stepwise transformation has
been implemented in the CAD-tool DECOMP.
COMMON LISP [27] has been used as implementa-
tion language because it offers various possibilities
for the implementation of object oriented data
structures as required by the presented formal ap-
proach. In addition, it is well suited for rapid proto-
typing. The program structure of the DECOMP is
shown in Fig. 3.
The transformation of a given algorithm starts

with an input description in the high-level language
PASCAL. Besides the algorithm this input descrip-
tion also may contain a specification of the external
interfaces and given design constraints. The first
transformation step in the compilation phase, the
symbolic execution, is performed by application of
compiler techniques [21]. Precise, the frontend com-
piler of the DECOMP analyses the input descrip-
tion based on a grammar describing the input lan-
guage. Thus, by changing this grammar, other input
languages can be implemented easily without chang-
ing the source code of the compiler.
The symbolic execution as well as the introduction

of single assignment code (SAC), the localisation,
and the placement (see Fig. 1) together are imple-
mented in the program component compilation
which produces a localized and placed RTP in SAC

76 UWE VEHLIES

PASCAL-Description
(Algorithm, Interface, Design constraints)

Compilation

Control/
Strategie

Mapping
onto SFG

Run time
protocol

DG-derivation

#liacr!-shel% DataoI/O
adaptation

’atInternalurea struct Interactive
analysis

Word width
assignment

Extraction
Verified

performance-
PE-array data

f’Design inter--"BB-synthesis vk,shange format/

EDIF VHDL

FIGURE 3 The structure of the DECOMP

as output. This RTP is input to the program compo-
nent DG-derivation which translates it into the in-
ternal data structure. The internal data structure is
able to represent graphs (DGs and SFGs) as well as
PEs and their building blocks. Furthermore, to avoid
confusion with the design data the internal data
structure is only accessible via a macro-shell.
The second step of the mapping phase, the Map-

ping onto SFG, is implemented in an own program
component providing various functions for project-
ing a given DG onto different SFGs. Additionally, it
provides functions for comparison and verification
of the SFGs. For example the verification function
simulates the data flow in the SFGs by reading input
data from a file (the same file as used by the original
PASCAL program) into the SFG and then calculat-
ing the output values of each PE. The PEs are
processed in the order given by the inherent sched-
ule of the SFG as many times as necessary to
calculate all output data. The output data then can
be compared to the data produced by running the
PASCAL program.
From the optimization phase the two steps ’word

width assignment’ and ’extraction’ are implemented
in two successive program components. The word

width assignment takes a SFG from the internal data
structure and after introducing the maximum needed
word widths it passes the SFG to the extraction. The
extraction generates a special design interchange for-
mat (DIF)which is used to communicate with other
design tools.
Via the DIF a building block generator [25, 26] is

connected to the DECOMP. Thereby, the synthesis
of the required building blocks can be performed
outside the DECOMP and the performance data of
the generated building blocks can be written back
into the DIF. Furthermore, different netlist convert-
ers are implemented allowing the translation of the
DIF into the standards EDIF and VHDL Thus,
further design steps like simulation and layout syn-
thesis can be performed with commercially available
CAD-tools.
The performance data of the generated building

blocks can be transferred back into the internal data
structure of the DECOMP. Then, based on this data
the created architectures, or rather SFGs, can be
interactively analysed with respect to the specified
design constraints. The program component interac-
tive analysis provides functions e.g., for the calcula-
tion of area and delay parameters of the architec-
tures. If an architecture does not fulfill required
constraints it can be modified and extracted again.
This design cycle implements the optimization step
’adaptation to design constraints’.

In addition, the program component data I/O-
adaptation provides functions for generation of reg-
ister-multiplexer circuits which adapt the input in-
terface of a designed architecture to a given external
interface. The generated circuits are represented in
the same data structure as the SFGs. Therefore, the
same design steps can be applied to them.
The program components of the DECOMP allow

a straightforward conversion of an algorithm into an
architecture as intended by the formal approach of
the stepwise transformation. The components of the
DECOMP can be used interactively or in an auto-
mated way. In the latter case the program compo-
nent control/strategy performs an experience based
heuristic search to find architectures close to given
design constraints. To allow this the control /strategy
has access to all data structures.

6. A DESIGN EXAMPLE"

In this section a design example for the stepwise
transformation of an algorithm into an array proces-
sor architecture is given. Here the blockmatching

TRANSFORMATION OF DSP ALGORITHMS 77

PROGRAH blockmat ching;
CO|ST nn 3;
VAR <-- vaiabls declaations -->
BE6II
<-- specication of desi constrains -->
<-- description of the put teae -->
x_n[l] :- maxt;
FOR n :- to D0
BEII
x_m [i] max
FOR m :- to D0
BEGIN
x_i[l] := 0;
FOR k := o D0
BEGII
x_k[l] := 0;
FOE i :- I o D0
IF (i-) TI

IF (k-) A (i-) A (m-) TN
BEGIN
x_k[l] :- x_k[l] + abs(x_[i-l,k-l] _[i+n-2,k+m-2]);
x_i[l] :- x_i[l] + x_k[l];
x_s[l] :- s(x_[l].x_i[l]);

E
ELSE
BEGIN
x_k[i] := x_k[I] + abs(x_[i-l,k-1] y_[i+n-2,k+m-2]);
x_i[l] :-x_i[l] + x_k[l];
x_[l] :- n(x_[l],x_i[l]);
E

ELSE
BEII
x_k[l] :- x_k[I] + abs(x_[i-l,k-l] y_[i+n-2,k+m-2]);
x_i[l] := x_i[l] + x_k[l];
E

ELSE
x_k[1] :- x_k[1] + abs(x_[i-l,k-1] y_[i+n-2,k+m-2]);

E; E; E;
<-- description oT he oupu eae -->
E.

FIGURE 4 Algorithmic part of the input description

algorithm from the area of image processing has
been chosen (cf [28]). It is shown in Eq. 23.

N N

U- minm, E E IXi, k
i=1 k=l

Yi+m,:+n[

N N
V (m, n)lU n, m

2 2

(23)

n and m can only take integer values of the speci-
fied interval. In the following only the calculation of
U is considered. First of all, the algorithm has to be
formulated in the high-level language PASCAL
which is required as input for the DECOMP. The
algorithmic part of the input description which has
been formulated for N 3 is shown in Fig. 4. It
consists of four nested loops, two of them for the

calculation of the sums over and k and two of
them for calculating the sums over the variable
displacements in m and n. The input description
neither is localized nor is it given in single assign-
ment code. It should be noticed that the declaration
of all variables x and y as array of the
length one is necessary due to the prototype imple-
mentation of the DECOMP-compiler which other-
wise cannot distinguish between variables used for
calculation of data and variables used as loop
counter. Further, for verification purpose the input
description can be execut.ed using a standard PAS-
CAL compiler.
The given input description is translated into a

RTP by the DECOMP-compiler which at the same
time automatically introduces SAC. Then a place-
ment algorithm is applied which consistently changes

78 UWE VEHLIES

TABLE 3
Parts of the RTP for the blockmatching example

0 ((X_K (1111))
((X_K (2111))

2 ((X_K (3111))
3 ((X_I (3111))
4 ((X__K (1211))
5 ((X_K (2211))
6 ((X_K (3211))
7 ((X_ (3211))
8 ((X_K (1311))
9 ((X_K (2311))

10 ((X_K (3311))
11 ((X_I (3311))
12 (X_H (3311))

116 ((X_K (3333))
117 ((X__ I(3333))
118 ((X_H(3333))
119 ((X._N(3333))

+ 0(ABS(_(X_IN(00))(Y_ IN(00))))))
+ (X_K(1111))(ABS(_(X_IN(10))(Y_ IN(10))))))
+ (X_K(2111))(ABS(_(X_IN(20))(Y_ IN(20))))))
+ 0(X_K(3111))))
+ 0(ABS(_(X_IN(01))(Y_ IN(01))))))
+ (X_K(1211))(ABS(_(X_IN(11))(Y_ IN(11))))))
(+ (X_K(2211))(ABS(_(X_IN(21))(Y_ IN(21))))))
+ (X_I(3111))(X_K(3211))))
+ 0(ABS(_(X_IN(02))(Y_ IN(02))))))
+ (X_K)(1311))(ABS(_(.X_IN(12))(Y_ IN(12))))))
+ (X_K(2311)(ABS(_(X_IN(22))(Y_ IN(22))))))
+ (X_I(3211))(X_K(3311))))
(HIN 999999 (X_I(3311))))

+ (X_K(2333))(ABS(_(X.2 IN(22))(Y_ IN(44))))))
+ (X_I(3233))(X_K(3333))))
(HIN (X_H(3323))(X_ I(3333))))
(HIN(X_N(3332))(X_H(3333))))

the indices of the produced variables in the RTP
according to the loop counters. Thus, the regularity
inherently given in the blockmatching algorithm is
exploited. Parts of the resulting RTP are shown in
Table 3.
With the DG-derivation as described in Sec. 4 a

4-dimensional DG is derived. It consists of 81 nodes
of 4 different types. So, the assignments 116 to 119
are placed in the same node because the indices of
their produced variables are the same. Due to the
regularity of the blockmatching algorithm, the nodes
of the DG are connected in a regular manner allow-
ing several different projections. With the program
component mapping onto SFG the multiprojection
described in [2] is applied and the DG is projected
three times. The used projection and schedule vec-
tors are as follows:

1. projection: d (1000) s (1000)

2. projection: d 2 (100) $2 (100)

3. projection: d 3 (10) s 3 (11)

Every projection reduces the dimension of the graph
by one. Thus, the resulting SFG which is shown in
Fig. 5 has one dimension and consists of three
different PEs. The numbers at the connections de-
note the number of delays (registers) associated with
them. Besides the two inputs x_in and y_in for the
image data every PE has several inputs for interme-
diate values calculated during processing an image.
In addition, every PE has control inputs s which
determine whether a signal (e.g., x_i) is taken from
the feed-back loop or from an external input. The
external inputs are used for the input of start values
(e.g., 0 or maxim) for the intermediate sums. The
resulting minimum U for Eq. 23 is produced by the
output x_m of the third PE after 43 clock periods.
The PE at the index (1) is shown in Fig. 6. It

consists of two multiplexers and five arithmetic
building blocks. The path from the inputs x_in and
y_in via the blocks -, ABS, +, +, and MIN to the
output represents the calculation of Eq. 23. The two
multiplexers are used to select an external input
value or one stored in the registers of the feed-back
loops. The sequences of control signals for the mul-

---s._x_i(1) x..i"l "s..xi(2) x_ik-- ----.Acm(3) xiJ.

l x y l x-iny.in -IX’_iny.aa

FIGURE 5 Architecture for the blockmatching example

TRANSFORMATION OF DSP ALGORITHMS 79

FIGURE 6 Internal structure of processing element at the
index

tiplexers are automatically derived during the multi-
projection. It is also possible to verify the SFG at
the word-level. Therefore a verification function is
implemented in the DECOMP which simulates the
SFG using the same input data as the PASCAL
description. The SFG represents an architecture for
the given algorithm if the output data of the verifi-
cation function is equal to the output data of the
PASCAL program.

In the final design steps word widths for all con-
nections are automatically introduced based on
specifications given in the input description. Such
specifications contain a number range or a concrete
word width for the external input signals. After this
the SFG is translated into an intermediate design
interchange format from which netlists in EDIF or
VHDL can be generated.
The example has been processed with a prototype

implementation of the DECOMP on a VAXstation
4000/60. The compilation into a DG and the
straightforward multiprojection onto the SFG to-
gether were performed in approximately 40 CPU
seconds, the verification took approximately 17 CPU
seconds, and the introduction of the maximum
needed word widths approximately 27 CPU seconds.

7. CONCLUSIONS

The presented formal method performs an auto-
matic mapping of data independent digital signal
processing algorithms onto array processor architec-
tures. It covers the complete design flow from algo-
rithmic specifications in a high-level language to the
generation of netlist descriptions at the register
transfer level. The presented approach extends
known design methodologies because it can handle
inhomogen dependence graphs with nonregular data

dependences. Thereby, also irregular algorithms can
be mapped onto an architecture which is as regular
as the given algorithm. As basic architecture type
array processors have been chosen because they
provide high computation power due to a massive
application of pipelining and parallel processing. In
addition, due to their regularity, they are well suited
for an automatically performed design process. The
presented stepwise transformation divides the com-
plete design task into smaller parts which can be
independently handled by a CAD-tool.
The feasibility of the approach has been shown by

the implementation in the CAD-tool DECOMP.
With the DECOMP it is possible to translate an
executable PASCAL-description of a data indepen-
dent algorithm into a dependence graph. Single
assignment code is automatically introduced and
global connections are localized. The dependence
graphs can be mapped onto different signal flow
graphs which are modified to architectures by the
introduction of maximum needed word widths. The
DECOMP supports comparison of the derived ar-
chitectures to each other and to given design con-
straints. Thus, an optimal architecture can be se-
lected and translated into an intermediate design
interchange format from which netlists at the regis-
ter transfer level can be generated in EDIF or
VHDL. Furthermore, the interfaces of the synthe-
sized architectures can be adapted to an external
data supply by generation of register-multiplexer
circuits. Supporting designers at the architecture
level, which currently is not sufficiently supported by
commercial design tools, the DECOMP is an impor-
tant step towards design automation. In addition,
the given blockmatching example shows that the
derived architectures are comparable to those known
from the literature.
With the DECOMP the designers are enabled to

explore interactively different architectures in short
time. Herein, the problem, which also is present in
other design methodologies, is the existence of an
exhaustive number of different design solutions. It is
not possible to control an automatically performed
mapping process in such a way that it maps the
algorithm straightforward onto an optimal architec-
ture. Therefore, the decisions in the design steps
(e.g., which placement algorithm has to be chosen,
how the localisation has to be performed, and which
projection vectors have to be applied) are based on
heuristic and empirical knowledge. For example, the
projection directions are chosen parallel to the coor-
dinate axes. Therefore, in the future, criteria must
be developed which allow estimation of the perfor-
mance data of the architectures (e.g., area, time,

80 UWE VEHLIES

number of inputs...) at a very early design stage.
Currently a design strategy is developed which
based on such criteria allows the further automation
of the interactively performed design process in the
DECOMP.

Acknowledgment

This work has been supported by the Fraunhofer Gesellschaft
contract number T/RF33/K0011/ K1311.

References

[1] P. Pirsch, "VLSI Architectures for Digital Video Signal
Processing". P. Dewilde and S. Vandewalte, editors, Com-
puter Systems and Software Engineering (State of the Art),
pp. 65-100. Kluwer Academic Publishers, Dordrecht, 1992.

[2] S.Y. Kung, VLSI-Array Processors, Prentice Hall Informa-
tion and System Sciences Series, Englewood Cliffs, Thomas
Kailath edition, 1988.

[3] J.A.B. Fortes, K.S. Fu, and B.W. Wah, "Systematic Ap-
proaches to the Design of Algorithmically Specified Systolic
Arrays". Proc. ICASSP, pp. 300-303, March 1985.

[4] D.I. Moldovan, "On the Design of Algorithms for VLSI
Systolic Arrays". Proc. IEEE, vol. 71, pp. 113-120, January
1983.

[5] P. Quinton, "Automatic Synthesis for Systolic Arrays from
Uniform Recurrent Equations". Proc. of 11th Annual In-
tern. Symp. on Computer Architecture, pp. 208-214. IEEE,
June 1984.

[6] S.K. Rao, Regular Iterative Algorithms and their Implemen-
tation on Processor Arrays, PhD thesis, Stanford University,
October 1985.

[7] L. Thiele, "On the Hierarchical Design of VLSI Processor
Arrays". Proc. ofIEEE International Symposium on Circuits
and Systems (ISCAS), vol. 3, pp. 2517-2520, 1988.

[8] J. Bu, Systematic Design of Regular VLSI Processor Arrays,
PhD thesis, Delft University of Technology, May 1990.

[9] J. Bu, Ed F. Deprettere, and L. Thiele, "Systolic Array
Implementation of Nested Loop Programs". E.F.
Deprettere, editor, Algorithms and Parallel VLSI Architec-
tures, pp. 111-118. Elsevier, Amsterdam, 1991.

[10] J.H. Moreno and T. Lang, "Matrix Computations on Sys-
tolic-Type Meshes (An Introduction to the Multimesh
Graph Method)", IEEE Computer, pp. 32-51, April 1990.

[11] V. Van Dongen, From Systolic to Periodic Array Design,
PhD thesis, Universit Catholique de Louvain, Louvain,
Belgium, January 1991.

[12] U. Vehlies and U. Seiler, "The Application of Compiler
Techniques in Systolic Array Design". Proc. ISCAS, vol. 1,
pp. 240-243. IEEE, June 1991.

[13] U. Vehlies, "DECOMP-A Program for Mapping DSP-
Algorithms onto Systolic Arrays". G.M. Megson, editor,
Transformational Approaches to Systolic Design. Chapman
and Hall, London, 1994.

[14] U, Vehlies and A. Crimi, "A Compiler for Generating
Dependence Graphs of DSP-Algorithms". E.F. Deprettere
and A.J. Van der Veen, editors, Algorithms and Parallel
VLSI Architectures, vol. B, Proceedings, pp. 319-328.
Elsevier, Amsterdam, 1991.

[15] D. Cooper, Standard Pascal-User Reference Manual, W.W.
Norton & Company, New York, 1983.

[16] EDIF Steering Committee, EDIF: Electronic Design Inter-
change Format Version 200. Washington, 1987.

[17] A. Berlin and D. Weise, "Compiling Scientific Code Using
partial Evaluation", vol. 23(12), Computer, pp. 25-37,
December 1990.

[18] U. Vehlies, "The Derivation of Dependence Graphs from
PASCAL Programs for Array Processor Design".
P. Quinton and Y. Robert, editors, Algorithms and Parallel
VLSI Architectures H, pp. 371-376. Elsevier, Amsterdam,
1991.

[19] U. Vehlies, "Mapping Different Node Types of Depen-
dence Graphs into the same Processing Element".
M. Valero, S.-Y. Kung, T. Lang, and J.A.B. Fortes, editors,
Proc. Application Specific Array Processors 1991, pp. 72-86.
IEEE Computer Society Press, Los Alamitos, 1991.

[20] R. Camposano, "From Behaviour to Structure: High-level
Synthesis", (10) IEEE Design & Test of Computers,
pp. 8-19, October 1990.

[21] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers-Principles,
Techniques and Tools, Addison Wesley, 1986.

[22] U. Vehlies, "Mapping Dependence Graphs with Irregular
Data Dependences onto signal flow graphs". Technical
report, Laboratorium fiir Informationstechnologie, Univer-
sity of Hannover, 1993.

[23] M. Sch6nfeld, P. Pirsch, and M. Schwiegershausen,
"Synthesis of Intermediate Memories Needed to Handle
the Data Supply of Processor Arrays". W. Rosenstiel, edi-
tor, Fifth International ACM & IEEE Workshop on High-
Level Synthesis, pp. 21-28. March 1991.

[24] M. Sch6nfeld, P. Pirsch, and M. Schwiegershausen,
"Synthesis of Intermediate Memories for the Data Supply
to Array Processors". P. Quinton and Y. Robert, editors,
Algorithms and Parallel VLSI Architectures H, pp. 365-370.
Elsevier, Amsterdam, 1991.

[25] A. Miinzner and P. Pirsch, "BADGE-Building Block Ad-
viser and Generator". Proc. ISCAS, vol. 3, pp. 1887-1890,
May 1989.

[26] A. Miinzner, "Building Block Generation considering the
inherent Hierarchy of Arithmetic Operations". Proc. of the
IFIP Working Conference on Logic and Architecture Synthe-
sis, pp. 277-286, May 1990.

[27] G.L. Steele Jr., COMMON LISP, Digital Press, 1984.
[28] T. Komarek and P. Pirsch, "Architectures for Block Match-

ing Algorithms", vol. 36(10), IEEE Transactions on Circuits
and Systems, pp. 1301-1308, October 1989.

Biography

DR. UWE VEHLIES was born July 7, 1960 in Hameln, Germany.
After taking his school-leaving exam in 1980 he completed his
military service. From 1981 to 1988 he studied electrical engineer-
ing at the University of Hannover concentrating on communica-
tions processing. He received the diploma degree in July 1988.
From August 1988 to June 1993 he was research assistant at the
Information Technology Laboratory in Hannover. Working in the
group of Prof. P. Pirsch he was involved in the development of
CAD-tools especially for the design of array processor architec-
tures. In August 1993 he got his PhD. Since then he is involved in
the development and advice of software for business applications.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

