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Abstract
We present a general framework for the analysis and modelling of frictional contact involving composite materials. The study
has focused on composite materials formed by a matrix of rubber and synthetic or metallic fibres, which is the case of standard
tires. We detail the numerical treatment of incompressibility at large deformations that rubber can experience, as well as the
stiffening effect that properly oriented fibres will induce within the rubber. To solve the frictional contact between solids,
a Dual Augmented Lagrangian Multiplier Method is used together with the Mortar method. This ensures a variationally
consistent estimation of the contact forces. A modified Serial-Parallel Rule of Mixtures is employed to model the behaviour
of composite materials. This is a simple and novel methodology that allows the blending of constitutive behaviours as diverse
as rubber (very low stiffness and incompressible behaviour) and steel (high stiffness and compressible behaviour) taking into
account the orientation of the fibres within the material. The locking due to the incompressibility constraint in the rubber
material has been overcome by using Total Lagrangian mixed displacement-pressure elements. A collection of numerical
examples is provided to show the accuracy and consistency of the methodology presented when solving frictional contact,
incompressibility and composite materials under finite strains.

Keywords Tire mechanics · Composite materials · Frictional contact · Hyperelasticity · Finite element method · Finite
strains · Mortar method · Dual augmented Lagrange multipliers method · Incompressibility

1 Introduction

The importance of pneumatic tires for vehicles like automo-
biles, trucks, bicycles and buses has continuously increased
since its commercial introduction in Europe in the 1950’s [1].
Among other characteristics, the success of this technology
is due to its high endurance, good wear and handling, low
weight and a reduced energy consumption.

The development and manufacturing of classical tire
structures and new environmentally friendly constructions
fulfilling the current high operating standards imply the
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conception and conduction of an exhaustive series of exper-
imental studies to asses the performance and safety of the
proposed designs [2, 3], which is expensive in both time and
monetary terms. In this regard, numerical methods like the
Finite Element Method (FEM) can contribute to the reduc-
tion of this experimental cost, enabling the estimation of the
stress/strain states of the tire under a wide range of loading
conditions. With the FEM, and after a proper material char-
acterisation, a very precise and detailed analysis of a design
can be performed and corrected before production starts [2,
4–6]. Conversely, structures formed by cord-reinforced rub-
ber materials, which is the case of study in this work, are
characterised by a high complexity in the numerical analy-
sis. In the case of tires, they are formed by several layers of
parallel fibres (cords) made of different materials as nylon,
polyester and steel. These fibres can have different spatial
orientations and volumetric participation and are embedded
in a rubber type matrix. One can easily infer from the pre-
vious description that a tire is a complex structure to model,
especially taking into account the geometrical and consti-
tutive non-linearities that can arise from its analysis [7–9].
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Generally, the tire is conformed by several layers of intercon-
nected parts with different material properties, i.e. sidewall,
tread, bead core, etc. The development of a numerical tool
that can accurately reproduce the mechanical behaviour of
this kind of complex composite structures in an efficient way
is of paramount importance and, due to its major complexity,
it has not been fully resolved in literature.

Historically, an approach to model this kind of compos-
ite material was using laminated shell elements combining
isotropic (rubber) and orthotropic behaviours (cords) [10].
Later, by adapting the composite theories applied to lami-
nates, the material properties of each individual constituent
were averaged over a Finite Element (FE) by an orthotropic
or anisotropic constitutive law, always restrained to small dis-
placements and strains [11, 12] and mostly within elasticity.
Another option consists in defining a set of rebar elements,
which represent the effect of several cord layers in combi-
nation with standard rubber FE [6]. Line cord elements can
either link two already existing rubber nodes, which compli-
cates themesh generation in order to properly orient the fibres
in the solid, or an intersection procedure has to be performed
inorder to estimate thedeformational state of thefibreswithin
the rubber. As expected, the previous approach requires a
detailed geometrical description of the model in terms of the
positioning and orientation of each cord, which can substan-
tially increase the preprocessing time. The strong point of
this methodology is that it allows the use of different con-
stitutive models for each material constituent, even though
the one applicable to the cord must be one-directional. More
recently, approaches like the one proposed in Wriggers et al.
[13] use the Virtual Element Method (VEM) [14] solving the
incompressibility constraint and it is generalised to include
the effect of inextensive fibres. Even though the results are
good, the implementation of the VEM is not trivial and, for
the case of inextensive fibres, a new set of Lagrange Multi-
pliers (LM) related to the fibre stresses has to be accounted
for via the Finite Element Analysis (FEA), which increases
the complexity of the numerical approach.

In this work, an adapted version of the existing Serial-
Parallel Rule of Mixtures (SP-RoM) [15–18] is proposed.
The methodology can be seen as a phenomenological
homogenisation of the material constituents, splitting their
behaviour in the so-called parallel (aligned to the fibre) and
serial (the remaining directions). The SP-RoM allows the use
of any constitutive model used under small and large strains.
Some modifications of the SP-RoM are detailed to simu-
late finite strains processes and incompressibility constraints.
Special operations have been developed to combine con-
stituent materials with very different stiffnesses, which is the
case of mixing rubber and steel cords. By using this method-
ology, the meshing and preprocessing efforts are minimal,
since the amount and orientation of the cords are assigned
at the constitutive level, with total modularity and generality

regarding the material laws behaviours. In the case of several
layers with different volumetric participation of fibres and/or
orientations, a nested stacking of layers can be used within
one single element, avoiding to discretize each layer with the
FEM, reducing notably the number of degrees of freedom
without losing accuracy. The proposed methodology can be
easily integrated in the global workflow of a FEM code with-
out the need of major implementations, other than making
use of a mixed u − p formulation and the adequate SP-RoM
constitutive law.

One of the main goals of tires is to ensure a sufficient
adherence to the ground when the vehicle is turning, accel-
erating or breaking, among other situations. This means that
the frictional contact between the tire and the ground surface
is a relevant and decision-making issue when designing the
geometry and material of the tire. Due to the relevance in the
field of study, a frictional computational contact mechanics
methodology for solids has been implemented and bench-
marked via a wide range of standard problems involving the
contact of fibre-reinforced rubber materials. In this regard,
a state of the art Dual Augmented Lagrange Multipliers
Method (DALMM) in combination with the Mortar Method
has been implemented [19–21], enabling a fully consistent
gap estimation and an exact contact constraint enforcement.
All the developments have been implemented within the
open-source FE code Kratos-Multiphysics environment [22,
23] and are fully available.

1.1 Pneumatic tire mechanics

A tire is a very complex composite structure, embedded in a
highly flexible and nearly-incompressible material (rubber),
several layers of stiff parallel string reinforcements made of
fabric and/or steel are placed in different proportions and
orientations [4, 24, 25]. Figure 1 shows a schematical view
of the different materials and layers that a general tire can
present. In the same figure one can see how the more super-
ficial reinforcement is usually aligned with the generatrix of
the tire (in blue). Then several layers of properly oriented
layers are placed (red and green). A layer parallel to the side-
wall includes a radial reinforcement to increase the vertical
stiffness of the tire. Finally, a steel loop (bead) is placed close
to the rim contact to hold the tire to the wheel.

In mechanical terms, the rubber can be seen as a flexible
matrix that holds the fibre reinforcement in place and a mate-
rial that offers a good frictional performancewhen contacting
against the ground. The material properties of the rubber can
be different depending on their functionality: the tread (grey
area in Fig. 1) has to be much harder that the rubber used
in the sidewall. Conversely, the fibres used (steel or fabric)
offer a high stiffness contribution in tension (in compression
they can buckle) and provide tire rigidity and puncture resis-
tance. In this regard, the material, positioning, quantity and
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Fig. 1 Schematic model section representing different regions of a tire.
Black strips indicate the different orientations that the cords and steel
fibres can present

orientation of the reinforcement are the most relevant factors
related to the performance of a tire.

In modelling terms, a tire is a flexible structure under
arbitrary loads, displacements, rotations, impacts, etc. This
implies that a numerical tool must be capable of capturing
accurately finite strains of the material and large displace-
ments. As detailed in Sect. 2, a Total Lagranian (TL)
description of motion has been used to capture the kine-
matics of the problem at hand. The quasi-incompressibility
exhibited by the rubber can induce a “locking” of the solu-
tionwhen using standard displacement-based FEM.Amixed
displacement-pressure (u − p) formulation has been imple-
mented to overcome this numerical issue. In order to model
the fibre contribution to the global behaviour of the compos-
ite material, a modified version of the SP-RoMmethodology
for finite strains has been used, which efficiently reproduces
the behaviour of long-fibre reinforced composites. Finally, in
order to properly simulate the different orientations that the
fibre layers can present, a rotation of the local axes of the FE
(cylindrical coordinates) and a posterior rotation of the local
axes of each layer within the FEM have been implemented.

Summarising, this work presents an implicit numerical
framework for studying in an efficient and accurate way tire
mechanics, including the following requirements:

• A non-linear complex composite material, taking into
account the quasi-incompressibility and high flexibility of
the rubber, as well as the orientation and position of the
steel/fibre cords which its stiffness can be 10,000 times
higher than the rubber.

• Large displacements and finite strains of the material com-
ponents. This allows the modelization of tires under any
loading and boundary conditions.

• The “micro-buckling” effect of the fibres is tackled, as it
can be relevant when the composite material is submitted
to compressive loads.

• A general constitutive law for the composite material con-
stituents. We have used incompressible Neo-Hookean or
Mooney Rivlin hyperelastic laws for the rubber and com-
pressible Neo-Hookean laws for the fibres.

• An automatic orientation of the fibres of each layer.
• Frictional contact between solids. This is of paramount
importance for tire mechanics, in order to ensure a suffi-
cient adherence of the tyre to the ground.

2 Constitutive modelling: finite strain
composite materials treatment for tires

In this section, a description of the constitutive models used
for the material constituents (rubber and fibres) is provided.
Themethodologies used to combine thematerial constituents
behaviour to obtain the composite mechanical response are
described.One important contribution of thiswork is the gen-
eralisation of the SP-RoM to deal with finite strains and to
overcome the numerical instabilities that the incompressibil-
ity of the rubber and the high stiffness the fibres may induce.

2.1 Constitutive modelling of material constituents

2.1.1 Quasi-incompressible rubber

The near-incompressibility exhibited by many hyperelastic
materials like rubber induces a hydrostatic pressure that can
be applied to that material without any change in shape and,
at the same time, maintaining a certain stress level [26, 27].
This implies that the stress in this kind of materials cannot be
uniquely determined only from strains. This incompressibil-
ity issue results in an ill-conditioning of the stiffness matrix
and “locking” problems in purely displacement-based FEM.
Locking means that the constraint conditions due to incom-
pressibility related to the pure volumetric mode, can only be
fulfilled with a stiffening of the bending modes [27]. Sev-
eral approaches can be used to overcome this limitation,
the simplest one consists in sub-integrating the volumetric
deformation terms by using low-order integration rules [28].
Unfortunately this approach looses accuracy and stability
when FE are subjected to large strains. Another alternative
consists in using F-bar elements [29], based on the use of a
compatible deformation gradient fieldwith an assumed coun-
terpart. This approach is quite straightforward but is limited
to quadrilaterals/hexahedras and its consistent linearization is
rather complex. Finally, the use of multi-field or mixed prin-
ciples [27] are based on the idea of not only including the
displacement field, but also the volumetric strain or pressure
fields. In their general form they have the disadvantage of
increasing considerably the number of degrees of freedom
(DoF) of the system, which is computationally expensive.
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However, in some cases, a static condensation at FE level of
the pressure DoF can be performed, thereby mitigating this
problem. That said, and being one of the simplest and poliva-
lent approaches, a mixed u − p TL element has been selected
to deal with incompressibility. The implementation is based
on the work of Comellas et al. [26]. where the classical dis-
placement field (u) is complemented by the the elemental
pressure p, which interpolation is different from the one used
for the displacements. In this case, the equations of motion
in residual form can be written as:

[
Kuu Kup

Kpu K pp

][
�u
�p

]
=

[
f ext

0

]
−

[
f int
u

f int
p

]
(1)

where f ext is the external forces vector whereas theKmatri-
ces and the internal forces vector f int can be obtained via
[26]

Kuu =
∫

�0

BT Ct B d�0 +
∫

�0

BT SB d�0 (2)

Kup = −
∫

�0

BT J C−1 d�0 = KT
pu (3)

K pp = −
∫

�0

1

κ
d�0 (4)

f int
u =

∫
�0

BT S d�0 (5)

f int
p =

∫
�0

(J − 1) + p

κ
d�0 (6)

where B and B are the standard linear and non-linear
strain–displacement transformation matrices, respectively,
Ct is the tangent constitutive matrix, �0 is the reference con-
figuration domain, κ is the bulk modulus, S is the second
Piola-Kirchhoff stress vector, J is the Jacobian determinant
of the deformation gradient tensor and p is the pressure
obtained.

Since the pressure p is defined only at element level, the
equations to be solved in Eq. (1) can be condensed and
reduced to:

K̄�u = f ext − f̄
int

, (7)

where

K̄ = Kuu − Kup K −1
pp K

T
up (8)

and

f̄
int = f int

u − Kup K −1
pp f int

p . (9)

Fig. 2 Nearly-incompressible block submitted to a partial load, original
source Schroder et al. [31]

With this u − p FEM methodology the locking effect
when modelling nearly-incompressible materials is over-
come. Next, it is required to define a proper hyperelastic
law for the rubber material which, in order to be consistent
with the mixed u-p FE, has to distinguish the volumetric and
deviatoric terms. That said, the energy density function of
the Neo-Hookean case results in [26]:

� = �̃ + �vol = C1( Ĩ (1)
C − 3) + 1

2
κ(J − 1)2, (10)

where C1 = μ/2 (Lamé constant) and Ĩ (1)
C = J−2/3 I (1)

C the
volume-preserving first invariant of the right Cauchy-Green
tensor C. Differentitation of the energy density function with
respect to C yields the constitutive equation in the reference
configuration

S = 2C1 J−2/3(I − 1

3
I (1)
C C−1) − p JC−1. (11)

The related tangent tensor is defined in Comellas et al. [26]
but in thiswork the expressionhas been automatically derived
by using the AceGen software [30].

Minimal quasi-incompressible material example A simple
example of a quasi-incompressible classical benchmark is
solved to demonstrate the stability and accuracy of the ele-
ment implementation performed in this work. The example
consists in an incompressible solid block under a constant
partial load. The problem was proposed in Schröder et al.
[31] as a benchmark to asses the stability of the FEM when
solving incompressible materials and singularities in the
Neumann boundary conditions. The geometry of the prob-
lem is depicted in Fig. 2. The dimensions in mm are: h = 50,
w = 50, l = 50, a = 25, b = 25 and the load q = 3
MPa. The upper surface of the block has the displacements
fixed in the x–y plane. The bottom surface, on the contrary,
is only fixed in vertical z direction. Due to symmetry, only
one quarter of the whole geometry has been modelled. The
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Fig. 3 Displacement field obtained with the implemented FE and the result provided in Schröder et al. [31]. Displacement units in m

Lamé parameters of the material are λ = 499.92568 MPa
and μ = 1.61148 MPa.

Figure 3 shows the results obtained with the imple-
mented mixed u-p element together with the regularized
Neo-Hookean hyperelastic law for a coarse and fine meshes.
The results are in good agreement with the expected values
given in Schröder et al. [31], which evidences that the locking
effect due to incompressibility is circumvented, even when
coarse meshes are used.

2.1.2 Fabric and steel fibres

In this work, the fibres are restricted to elastic behaviour,
but its generalisation to orthotropy, plasticity or damage is
straightforward and dealt by the rule of mixtures (Sect. 2.2).
Since the fibres are typically submitted to moderate or rela-
tively small strains, the compressible Neo-Hookean hypere-
lastic constitutive law has been used. In this case, the strain
energy function used is the classical one given by:

� = C1(I (1)
C − 3) − C1 ln(J ) + C2

2
(J − 1)2, (12)

from which the constitutive law and tangent tensor can be
obtained [27].

2.2 Modelling composite materials in finite strains

Tomodel the composite nature of tires, a modified version of
the S-P RoM [15–18], which is an extension of the Mixing
Theory, has been adapted to finite strains.

The evolution of classical homogenisation into the S-P
RoM, allows to account for composites formed by two mate-
rial constituents: fibre and matrix and considering different
behaviours depending on the material orientation and load-
ing. The iso-strain condition is only valid in the fibre direction
(also called parallel behaviour). An iso-stress condition holds

for the orthogonal spatial directions of the fibre (serial direc-
tion), i.e.,

Parallel behaviour :
{

cEP = f EP = mEP

cSP = f k f SP + mk mSP
(13)

Serial behaviour :
{

cES = f k f ES + mk mES

cSS = f SS = mSS
(14)

where E is the Green-Lagrange strain tensor, S the second
Piola-Kirchhoff stress tensor, k is the volumetric partici-
pation, c, f and m stand for composite, fibre and matrix,
respectively, andP and S indicate parallel or serial behaviour,
respectively. When dealing with oriented composite mate-
rials, it is always advisable to formulate the equations in
the reference configuration, since rotations and differential
volume changes can occur between the different material
constituents. Fulfilling the set of equations at integration
point level, described in Eqs. (13)–(14), defines a non-linear
implicit set of equations (for non-linear constitutive laws)
which resolution is detailed in [15–18, 32].

The SP-RoM ensures that the strains in the fibre direction
are equal for the fibre and the matrix and, conversely, the
stresses are in equilibrium in the serial direction. In standard
composite materials, like reinforced concrete, FRP’s, lami-
nated materials, etc, the latter condition is easily achieved by
the algorithm. However, if one of the material constituents
stiffness is higher than 10,000 times that of the other mate-
rial, a noticeable reduction of the numerical performance,
or even non-convergence is exhibited. Since in tires the rub-
ber material is notably more flexible than the steel/fabric
cords, a modification of the SP-RoM has been developed, as
described in the next section.
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2.3 Particularisation of the SP-RoM for tire
mechanics

In the modified version of the SP-RoM, the fibre is contribut-
ing to the composite stiffness only in the parallel direction
whereas the matrix stiffness is considered only in the serial
direction. In [15–18, 32] one can study how, by defining two
fourth order tensors, one corresponding to the parallel direc-
tion Pp and the other one to the serial direction Ps , the strain
and stress tensors can be split in their parallel (p subscript)
and serial (s subscript) counterparts as

E = Ep + Es , S = Sp + Ss , (15)

being Ep the strain in the parallel direction, i.e.

Ep = Pp : E (16)

and Es the strain in the serial direction:

Es = Ps : E. (17)

The fourth order projector tensors in the serial and parallel
direction are computed as

Pp = Np ⊗ Np with Np = e1 ⊗ e1 (18)

and

Ps = I − Pp (19)

where the director vector e1 determines the parallel behaviour
(fibre direction), and I is the identity tensor. The stress state
may be split analogously, by finding its parallel and serial
parts using the 4th order tensors Pp and Ps .

Knowing the constitutive laws used in the matrix mate-
rial and the fibres, mCl and f Cl respectively (Sects. 2.1.1
and 2.1.2), the composite stress used to compute the internal
forces vector can be obtained as

cS = f k( f Sp) + mk( mSp)︸ ︷︷ ︸
Parallel behaviour

+ mSs︸︷︷︸
Serial behaviour

(20)

Equation (20) describes a composite material in which the
parallel (fibre) direction behaviour is weighted between
the fibre and matrix constitutive laws, whereas the serial
behaviour is dominated by thematrix. Typically the direction
of the fibre in e1 is unique (not mandatory), so the micro-
buckling effect can be modelled by applying the Macaulay
brackets to the parallel fibre contribution to the composite
stress 〈 mSp〉. For the sake of completeness, the different con-
tributions to the composite stress can be obtained as

f Sp = f Cl(Ep),
mSs = Ps : mCl, mSp = Pp : mCl(E).

(21)

The Sp-RoM add to the simple material constitutive laws
(fibre and matrix) a certain measure of the strain, in this case
theGreen-Lagrange strain tensorE. However, as described in
Sects. 2.1.1 and 2.1.2, different versions of the Neo-Hookean
hyperelastic laws are based on the right Cauchy-Green ten-
sor C. Hence, inside each constituent material law, an initial
equivalent right Cauchy-Green tensor C̃ is computed as
C̃ = 2ERoM + I, ERoM being the strain provided by the
SP-RoM [the input strain in Eq. (21)] and I the identity ten-
sor.

With all these modifications to the standard SP-RoM, one
can run large strain composite simulations accounting for
incompresibility and high stiffness differences between the
material constituents in an efficient and accurate way.

2.4 Fibre orientation andmulti-layer materials

In the previous section we showed how one can numerically
treat fibre reinforced composite materials using the SP-RoM
and its particularisation to tire materials. However, described
in previous sections, tires are complex structures formed by
several layers of differently oriented fibre reinforced rubber,
(Fig. 4). In order to model this kind of multi-layered mate-
rials, an iso-strain condition is assumed for all the different
layers existing within a FE (Fig. 5).

This means the same strain state is assumed for each layer,
the strain twill be rotated to the layer local axes, and the
stresses will be integrated according to the SP-RoM if the
layer is fibre-reinforced, or to any constitutive model oth-
erwise. Algorithm 1 describes schematically the operations
followed to calculate the composite stress of a multi-layered
material in finite strains. In the Algorithm, layk corresponds
to the volumetric participation of the corresponding layer
with respect to the FE volume.

In Algorithm 1 one can see how an additional rotation
at elemental level is performed. This is done to avoid the
definition of multiple composite materials if, as in the case
of tires, a cylindrical (or spherical) symmetry can be used.

Fig. 4 Typical layered fibre-matrix type of material in tires
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Fig. 5 Schematical separationwhen analysingmore than one layer com-
posite material, some of them can be fibre reinforced or simple material

After the stress is integrated at elemental or layer level, the
rotations must transform to global axes when checking the
equilibrium of the structure.

3 Frictional computational contact
mechanics

3.1 Introduction

This section details the derivation of the frictional Mor-
tar contact condition formulation with Augmented Dual
Lagrange Multiplier, presented in Mataix et al. [19], which
is based mainly on the work of Popp [33, 34] and Gitterle
[35], Cavalieri and Cardona [36, 37] and Yastrebov [38, 39],
among others [40–42].

Contact mechanics problems are based on the Ini-
tial Boundary Value Problem (IBVP) of non-linear solid
mechanics and unilateral contact constraints (Fig. 6). Uni-
lateral contact leads to a constrained minimisation problem
with inequality constraints, or more generally to so-called

variational inequalities. Both frictionless and frictional con-
tact can either be formulated as variational inequalities with
a constrained solution or as saddle point problems based
on Lagrange multipliers; the last option has been the one
adopted in this case.

The motivation for dual Lagrange multipliers [43, 44] lies
in the fact that an extension of the master side basis functions
to the slave side of the interface has a global support for
standard Lagrange multipliers.

3.2 Strong formulation

In order to facilitate the understanding of the developments
proposed, we define first place the frictionless problem and
later introduce the frictional one. For the frictional case, the
part relative to the solutions spaces is the same as the one
presented for the frictionless case, as well as the balance of
linear momentum (22).

3.2.1 Frictionless contact

On each subdomain�i
0, the IBVP of finite deformation elas-

todynamics needs to be satisfied, viz Eq. (22). Here we are
adding the Boundary Condition (BC) terms to the linear form

and splitting in two different domains (i = 1, 2) the prob-
lem. This includes the Dirichlet BC in (22b), the Neumann
BC from (22c) and the initial BC defined in (22d) and (22e).

∇ · σ i + bi = ρi üi in �i × [0, T ] (22a)

ui = ui on �i
u × [0, T ] (22b)

σ i · ni = ti on �i
σ × [0, T ] (22c)

ui
(
Xi , 0

)
= ui

0

(
Xi

)
in �i

0 (22d)

u̇i
(
Xi , 0

)
= u̇i

0

(
Xi

)
in �i

0 (22e)
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Fig. 6 Contact kinematics

Fig. 7 Contact conditions

The contact constraints in the normal direction are typ-
ically expressed in the form of Hertz-Signorini-Moreau
conditions as given in Eq. (23), and Fig. 7a. In optimisation
theory these conditions are denominated usually as Karush-
Kuhn-Tucker (KKT).

The weak formulation expresses the balance of linear
momentum for the unilateral contact problem at the inter-
face �i

c. A Lagrange multiplier vector field λn is introduced,
thus setting the basis for a mixed variational approach. Uni-
lateral contact constraints are typically formulated (and later

also numerically evaluated) in the current configuration as

gn ≥ 0, pn ≤ 0, pngn = 0 on �i
c × [0, T ] (23)

3.2.2 Frictional contact

Friction combines the interactions of elastic and plastic
deformations at the contact interface, interaction with wear
particles, micro-fractures, excitation of electrons, etc. The
most commonly used friction model is based on Coulomb’s
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law (Fig. 7b). It can be defined as

φco := ‖tτco‖ − μ‖pn‖ ≤ 0 (24a)

vτ , rel(X1, t) + βtτco = 0 (24b)

β ≥ 0 (24c)

φcoβ = 0 (24d)

being μ the friction coefficient, and β the velocity-traction
ratio. Equation (24a) requires themagnitude of the tangential
stress vector to not exceed the product of the coefficient of
friction and the normal contact pressure.When the tangential
stress is less than theCoulomb limit (φco < 0), the continuity
equation (24d) forces β to be zero and, accordingly, the tan-
gential relative velocity to be zero. This is called stick state.
When the tangential stress is at theCoulomb limit (φco = 0)),
β may be greater than zero in (24d) and therefore the tangen-
tial stress is forced to oppose the relative tangential velocity
in (24b),inducing the slip state.

The tangent direction τ is defined as the complementary
direction to the normal vector n. The expression of τ and the
tangent Lagrange multiplier λτ are given by

τ = I − n ⊗ n (25a)

λτ = λ − nλn . (25b)

3.3 Weak formulation

As in previous sections, the introduction of the weak formu-
lation of the IBVP has been split into the frictionless and
frictional cases.

3.3.1 Frictionless formulation

In this work we use the Augmented Lagrangian method
applied to contact problems with friction proposed by
Pietrzak andCurnier [45]. It is based on a reformulation of the
contact and friction laws into a system of equations without
inequalities. This overcomes the saddle point problem of the
standard Lagrange multiplier. The resulting Lagrangian (L)
can be seen as a combination of the standard LM Lagrangian
and the penalty approach. In order to avoid additional sym-
bols we will introduce this method considering a scalar
Lagrange multiplier, instead of a vector one, so we avoid
the need to add a multiplication to the normal vector in each
expression.

The functional related to the contact (Lco(u, λn) =
LVco + LM) can be defined as

Lco(u, λn) =
∫

�1
c

kλn · gn + ε

2
g2

n − 1

2ε
〈kλn + εgn〉2d�i

co

(26)

where ε is a positive penalty parameter, k is a positive scale
factor, and 〈〉 is the Macaulay bracket operator, which is
defined as:

〈x〉 =
{

x x ≥ 0
0 x < 0

(27)

This contact functional is C1 differentiable saddle-point, as
shown in Fig. 8a. The solution is obtained as the set of values
that render this functional stationary.

The functional of Eq. (26) can be split in two different
terms, as (28). In Eq. (28) kλn + εgn ≤ 0 defines the contact
zone and kλn + εgn > 0 the gap zone.

Lco(u, λn) =
∫

�1
c

{
kλn · gn + ε

2 g2
nd�

i
co if kλn + εgn ≤ 0

− k
2ε λ2n if kλn + εgn > 0

d�1
co (28)

Finally, we can differentiate Eq. (28) to obtain the variational
form, where we have defined the augmented normal pressure
λ̄n = kλn + εgn :

δLco(u, λn) =
∫

�1
c

{
λ̄n · δgn + kgnδλn if λ̄n ≤ 0

− k2
ε

λnδλn if λ̄n > 0
d�1

co

(29)

The functional of Eq. (29) makes that the system obtained
varies if the nodes are present in the contact zone or in the
gap zone.

Cartesian Components of Lagrange multiplier
In order to be able to statically condense the resulting sys-

tem of equations, Cartesian components LM are employed.
Additionally, the Cartesian components LM aremore consis-
tent with the frictional formulation shown later. This is done
by considering properties from the dual Lagrange multiplier
approach, which is detailed in Appendix A.1.

The main modification consists in the replacement of the
contact pressure LM, or λn , by a LM defined in theCartesian
components, represented as λ, where the normal components
(λn) are different or equal to zero, and the tangential ones
(λτ ) are always zero (in the frictionless scenario). This can
be summarised as
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Fig. 8 Augmented Lagrangian function for the contact problem

{
λn = n · λ

λτ = λ − n · (n · λ) = 0
(30)

Cartesian components ALM Taking as base the solution pre-
sented in Sect. 3.3.1, and the modifications introduced in the
previous section, it is required to define the Augmented LM
by Cartesian components as

λ̄ = kλ + εngn . (31)

Taking this into account, for the contact contributions of the
potential and its variation, Eq. (28) can be reformulated as:

Lco(u, λ) =
∫

�1
c

{
λ̄n · (

u1 − u2
) + ε

2 g2
nd�

i
co if λ̄n ≤ 0

− k
2ε λ2 if λ̄n > 0

d�1
co (32a)

δLco(u, λ) =
∫

�1
c

{
λ̄n · (

δu1 − δu2
) + kgnδλ · n if λ̄n ≤ 0

− k2
ε

λδλ if λ̄n > 0
d�1

co (32b)

δLλ(u, λ) =
∫

�1
c

k(n · δλ) · gn − k2

ε

(λ − n · λ)(δλ − n · δλ)d�1
co (32c)

where λn = k(n · λ) + εgn notation has been used.

3.3.2 Frictional formulation

Augmented Lagrangian Method with Friction The ALM
method to solve contact problemswith friction is very similar
to the frictionless case as initially proposed by Pietrzak and
Curnier [45]. Additionally to these references, the work of
Cardona [46] and Yastrebov [38] have been considered here.
Focusing in the contact functional (Lco(u, λ) = LVco +
LM), one can rewrite it as

Lco(u, λ) =
∫

�1
c

ln + lτd�
i
co, (33)

where ln and lτ are the corresponding parts of the Augmented
Lagrangian formulation for the normal and tangent contri-
butions respectively, given as

ln(gn , λn) =
{

λ̄ngn − εn
2 g2

n , λ̄n ≤ 0, (Contact zone)

− k2
2εn

λ2n , λ̄n > 0, (Gap zone)

(34a)

with λ̄n = kλn + εngn being the augmented Lagrange mul-
tiplier for the normal direction, and

lτ (vτ , rel , λτ ) =

⎧⎪⎨
⎪⎩

{
λ̄τ · vτ , rel − ετ

2 vτ , rel · vτ , rel , ‖λ̄τ‖ ≤ −μλ̄n , stick
− 1

2ετ

(
k2λτ · λτ + 2μλ̄n‖λτ‖ + μ2λ̄2n

)
, ‖λ̄τ‖ > −μλ̄n , slip

, λ̄n ≤ 0, (Contact zone)

− k2
2ετ

λτ · λτ , λ̄n > 0, (Gap zone)

(34b)
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where λ̄τ = kλτ + ετvτ , rel stands as the augmented
Lagrange multiplier for the tangent direction and εn and ετ

are positive penalty parameters, both for normal and tangent
direction and k is a positive scale factor. Using the Macaulay
bracket operator, from Eq. (27), we can re-write the previous
expressions as

ln(gn , λn) = 1

εn

(
k2λ2n − 〈λ̄n〉2

)
, (35a)

lτ (vτ , rel , λτ ) = 1

ετ

(
k2λτ · λτ − ‖λ̄τ ‖2 − 〈‖λ̄τ ‖ − μ‖ − λ̄n‖〉2

)
(35b)

This functional is a C1 differentiable saddle-point, as
shown in Fig. 8b. As in the frictionless case, the solution
does not depend on the value of parameters ε and k. Finally,
we can derive Eq. (33) to obtain the variational form as

δLco(u, λ) =
∫

�1
c

⎧⎪⎪⎨
⎪⎪⎩

λ̄n · δgn + kgnδλn + λ̄τ · δvτ , rel + vτ , rel · δλ̄τ if ‖λ̄τ‖ ≤ −μλ̄n (Contact stick zone)

λ̄n · δgn + kgnδλn − μλ̄n
λ̄τ

‖λ̄τ ‖δvτ , rel − kλτ +μλ̄n
λ̄τ

‖λ̄τ ‖
ετ

δλτ if ‖λ̄τ‖ > −μλ̄n (Contact slip zone)

− k2
εn

λnδλn − k2
ετ

λτ δλτ if λ̄n > 0 (Gap zone)

d�i
co

(36)

The functional defined by Eq. (36) varies depending if the
nodes are present in the contact zone (slip or stick) or in the
gap zone. Hence, the system is not a priory known like in the
frictionless but adding the stick/slip condition.

The discretization and its numerical integration of the dif-
ferent functionals can be studied in 1.

4 Numerical examples

We present a set of numerical examples to ensure the con-
sistency and validity of the methodologies provided. The
first example consists in a hyperelastic plug submitted to a
confinement and frictional contact. The second example is a
classical benchmark used for tire mechanics. This example,
commonly named as “Grosch wheel”, consists in a rubber
wheel that is forced to rotate along his axis with different
longitudinal miss-alignments, inducing frictional horizontal
forces. Finally, a real Goodyear GT2 195/65R15 tire experi-
ment is numerically reproduced.

4.1 Press fit

The problem consists of the numerical simulation of a press-
fit process of a block in a channel according to [47, 48]. The
geometric andmaterial parameters are shown inFig. 9,where
only half of the domain is simulated due to symmetry. ANeo-
Hookean compressible hyperelastic material is considered
for both materials with the values from Table 1. With this

Table 1 Parameters considered for press fit

Body Young modulus (Pa) Poisson ratio Friction
coefficient

Die 21 × 109 0.32 0.1

Block 1 × 109 0.47 0.1

problem, it is possible to evaluate the behaviour of the contact
element in a friction contact problem with large deformation
and sliding.

The process is modelled by applying a non-homogeneous
boundary displacement u = 1000mm on the left face of the
block. The height of the block is greater than the channel,
imposing an initial penetration �ini tial = 1mm and con-

sequently an initial contact stress. The first time step uses
u = 0mm and the program generates the normal stress nec-
essary to the non-penetration condition and separates the
bodies in contact. After this step, a non-homogeneous bound-
ary condition u = 1000mm is applied. We consider a plane
strain state and an UL (Updated Lagrangian) formulation.
Different result snapshots can be seen in Fig. 10 in which
the Von-Mises stress contour fill is plotted. As expected, the
friction induced by the contact of the plug against the walls
deforms the hyperelastic material in the vertical direction
(due to pressure) and some lateral distortion (due to the hori-
zontal frictional forces). Quantitatively, Fig. 11 shows a very
good agreement in terms of time evolution of the horizontal
force needed to push the hyperelastic plug.

4.2 Grosch wheel

In this example, a rolling rubberwheel is studied. The geome-
try of thewheel canbe seen inFig. 12 (1680hexahedralmixed
elements for the rubber and 600 standard TL elements for the
ground). The problem corresponds to the so-called Grosch
wheel, widely used for standardised friction experiments of
rubber [49–51]. The wheel has an outer radius of 40 mm,
an inner radius of 17.5 mm and a thickness of 18 mm. The
material properties are given in Table 2. The proposed mixed
element has been used in the rubber material and standard
TL elements at the rim and ground. Neo-Hookean hypere-
lastic constitutive laws have been used. The ground has been
fixed at its lower surface whereas the Dirichlet boundary
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Fig. 9 Press fit problem

Fig. 10 Press fit 2D solution. Von Mises stress contour fill. Units in [Pa]

conditions on the wheel have been applied at the cylindri-
cal symmetry line at the centre of the rim material. Initially,
the wheel is pressed 4 mm downwards and then the ground
starts moving horizontally with different miss-alignments at
a velocity of 2.5 mm/s, inducing horizontal frictional forces.
As expected, the more miss-alignment, α, the more frictional
forces are induced by the wheel.

Figure 13 shows the induced tangential pressures for dif-
ferent α angles. As expected, the bigger α is, the larger the
tangential stresses induced. Since the material is highly flex-
ible, one can see how the wheel gets deformed due to the
friction against the ground. This effect is especially notice-
able for α = 45 deg, which after 6 s of simulation the wheel

gets totally distorted. As expected, for the α = 0 deg case,
the tangential stresses point inwards the wheel due to the
Poisson effect. For the other angles, the tangential stresses
are proportional and opposed to the advancing velocity.

Finally, the temporal evolution of the vertical and horizon-
tal reaction forces can be studied in Fig. 14 for different α

miss-alignments. As it can be seen, the vertical forces remain
constant in all simulation regardless of the angle. However,
the horizontal reaction tends to increase together with α. For
the α = 45 case, the tangential forces induce a distortion of
the wheel in such a way that at t = 6s the wheel contacts
the ground with its lateral edge, inducing the simulation to
be unstable.
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Fig. 11 Solution for 2D press fit compared with references [47, 48]

4.3 Pneumatic tire

In this section, the experimental results of a real Goodyear
195/65R15 tire obtained by Holscher et al. [24] are numer-
ically reproduced. The tire has been inflated with different
internal pressures (2, 2.5 and 3 bar) and then loaded mono-
tonically. As expected, the deformation of the tire increases
non-linearly with load and strongly depends on the internal
pressure. A schematical view of the geometry can be seen
in Fig. 15 in which the different layers of oriented steel/fibre
cords can be identified. The material properties of the mate-
rial constituents are given in Table 3 and the characteristics
of the different composite materials involved can be seen in
Table 4, inspired by the photographic information provided
in Holscher et al. [24]. Table 4 shows the tread material is
simply composed by one layer of rubber. The tire core is
formed by three different layers, each one with its own fibre
orientation andmodelled by the SP-RoMcombining a rubber
matrix and steel/fibre cords. Finally, the sidewall is formed
by one layer of composite material combining rubber and
fibre cords. All the volumetric participations are estimated
according to Holscher et al. [24]. The geometrical position

Table 2 Parameters considered for the Grosch wheel example

Body Young modulus (Pa) Poisson
ratio

Friction
coefficient

Rubber 20 × 106 0.4995 1.0

Rim 2 × 1011 0.29 –

Ground 2 × 1011 0.29 1.0

of each composite material is depicted in Fig. 17. The fric-
tion coefficient has been chosen to be 0.5. As Fig. 17 shows,
the tire thickness of the tire has been discretized with four
mixed FE. The FE mesh used can be seen in Fig. 16. Mixed
elements have been used for the tire composite materials and
standard TL elements for modelling the ground.

Once the tire has been pressurised (2, 2.5 and 3 bar), a
downwards boundary condition is applied on the bead mate-
rial, acting as an equivalent rim, pressing the tire against the
ground up to a vertical reaction of 4 kN. The deformed shape
of the tire before and after the application of the internal pres-
sure and after making contact against the ground are depicted
in Fig. 18. The contact surface and the induced normal pres-
sure can be seen in Fig. 19, for two vertical reactions of 2 kN
and 4 kN, respectively.

A comparison between the experiment described in
Holscher et al. [24] and the results of the simulation in terms
of force-displacement evolution is depicted in Fig. 20. A very
good agreement between the experimental and numerical
results for all the different internal pressures studied have
been obtained. This ensures that the material stiffness and
the contact forces have been accurately estimated. Finally,
Fig. 21 shows the tire profile for different conditions, com-
paring the simulated results and the experimental data. The
similarity in tyre profile in all scenarios between the obtained
and simulated results is excellent. This evidences that the
flexibility of the material has been correctly reproduced with
the methodologies presented in this work.

Fig. 12 Geometry and
dimensions of the Grosch wheel
analysed [49, 51]
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Fig. 13 Tangential frictional forces for different angle miss-alignments of the Grosch wheel

Fig. 14 Time evolution of the horizontal and vertical reaction for dif-
ferent longitudinal miss-alignments of the Grosch wheel

5 Concluding remarks and future work

We have proposed a general framework for predicting the
mechanical behaviour of highly complex composite struc-
tures. Indeed, the numerical analysis of tires implies solving
several issues and non-linearities, namely, volumetric incom-
pressibility and finite strains of the rubber-like material,
large displacements and rotations of the geometry, compos-
ite material treatment and inclusion/orientation of the fibres

Table 3 Parameters considered for the simple materials for the tire
example

Body Young modulus [Pa] Poisson ratio

Rubber (tread) 2.0 × 106 0.4995

Rubber (sidewall) 5.0 × 106 0.4995

Rubber (core) 30.0 × 106 0.4995

Steel belts 2.0 × 1011 0.3

Cord ply 3.97 × 109 0.3

through the rubber and a large difference of stiffness inside
the composite material. In addition, since the main purpose
of tires is to ensure a proper adherence of the vehicle to
the ground in contact. The proposed constitutive technology
has been extended to account for frictional contact between
deformable solids.

Each issue has been solved by:

• Incompressibility and large displacements For tackling the
incompressibility that rubber-like materials may exhibit, a
standard mixed Total Lagrangian u-p element has been
successfully used. In order to employ a more robust for-
mulation, a mixed displacement-volumetric strain (u −
det(F)) will be developed in the future in the large dis-
placement framework starting from thework of Rossi et al.
[52] in the small strain regime.
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Fig. 15 Schematical distribution of layers in the studied tire by Holscher et al [24]

• Composite material treatment in finite strains For effi-
ciently modelling composite materials, a phenomenologi-
cal homogenisation has been proposed: the serial-parallel
rule of mixtures, which has been also extended to finite
strains. With this technology, the mechanical behaviour
of fibre-reinforced composite materials can be accurately
reproduced since it distinguishes between the so-called
parallel (direction of the fibre) and the serial (the remain-
ing directions) response of the composite. In the standard
SP-RoM, the global behaviour of the composite is obtained
by iteratively solving an implicit system of equations. This
procedure is generally very efficient but, when incom-
pressibility and high flexibility of one constituent (rubber)
is combined with a far stiffer and compressible material
like steel fibres, a loss of performance or even divergence
of the iterative strategy can occur. To circumvent this prob-
lem, a convenient modification of the standard SP-RoM
has been developed in which the serial behaviour of the

composite is dominated by the rubber, whereas in the par-
allel direction the different contributions of the rubber and
steel/fibre cords are taken into account. With this simpli-
fication, the system of equations to be solved are explicit
and the convergence of the constitutive problem is ensured
with a noticeable reduction of the computational cost. In
order to model different layers of fibre-reinforced com-
posite materials, a classical rule of mixtures extended to
finite strains has been implemented and used. The full
tire example (Sect. 4.3), the proposed modified SP-RoM
can efficiently and accurately reproduce the mechanical
response of a real tire with different layers and orientation
of fibre-reinforced rubber materials.

• Frictional contact For solving frictional contact prob-
lems, a state of the art DALMM combined with a Mortar
method discretization was employed and validated. The
proposed contact methodology is especially suited for
implicit frameworks and it is totally consistent in terms

Table 4 Composite materials
definition for each layer of the
tire

Tread

Layer Id Layer volumetric
participation

Euler angles Matrix material, Vol.
participation

Fibre material, Vol.
participation

1 1.0 (0,0,0) Rubber (tread), 1.0 -

Steel/fibre composite (tire core)

Layer Id Layer volumetric
participation

Euler angles Matrix material, Vol.
participation

Fibre material, Vol.
participation

1 0.5 (0,0,0) Rubber (core), 0.84 Fibre cords, 0.16

2 0.25 (0,20,0) Rubber (core), 0.828 Steel belts, 0.172

3 0.5 (0,-20,0) Rubber (core), 0.828 Steel belts, 0.172

Sidewall

Layer Id Layer volumetric
participation

Euler angles Matrix material, Vol.
participation

Fibre material, Vol.
participation

1 1.0 (0,0,0) Rubber (sidewall), 0.62 Fibre cords, 0.38
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Fig. 16 Different views of the Goodyear GT2 195/65R15 FE model, 212,325 nodes and 7560 linear hexahedral elements

Fig. 17 Detail of the FE mesh used and the material distribution: bead
material in red, tread in grey, sidewall in cyan and steel belt composite
in green

of gap estimation, even when large sliding and displace-
ments are expected.After studying the frictional forces and
reactions retrieved from the conducted numerical exam-
ples and comparing them to the reference results, one

can ensure that the formulation and its implementation
is correct, robust and variationally consistent. As far as
this work is concerned, the friction coefficient is given as
a known constant material property. This assumption is
sufficient for many applications in structural mechanics;
however, in the special case of rubber friction on rough
surfaces, the resulting simplification is not entirely satis-
fied [53]. Generally, the rubber material undergoes large
strains during contact, such that the frictional properties
result for the main part from internal energy dissipation
and not just from the combination of surfaces in contact.
As it is apparent from experiments, the friction coeffi-
cient depends heavily on various parameters like sliding
velocity, surface roughness, normal forces and tempera-
ture change, which are known only in the micro-scale. To
solve this kind of problems in the future, a procedure pro-
posed in Reinelt and Wriggers [53, 54] and Wagner et al.
[55] will be followed in which a sequence of computations
at different scales has to be performed in order to obtain the
total friction law at the macro-scale for elastomer friction.

(a) No internal pressure (b) Internal 2.5 Bar pressure (c) 2000 N force (d) 4000 N force

Fig. 18 Deformed shape of the tire for different scenarios
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Fig. 19 Nodal contact pressure at different time seps, units in [Pa]

Fig. 20 Time evolution of the vertical reaction for different inter-
nal pressures, comparison with the experimental results provided in
Holscher et al. [24]
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Appendix 1: Augmented Lagrangemultiplier
parameters calibration

In this section we present a simple patch test [56] example,
in order to show the influence of k and ε in the condition
number (κ) of the stiffness matrix or LHS. We will see as the
ε affects always negatively to κ , meanwhile k can improve
or worsen depending on the range value considered.

The properties of the materials considered are listed in the
Table 5. Taking Eq. (37) and assuming h ≈ 10, our reference
values will correspond with ε = k = 100. Additionally, the
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Table 5 Parameters considered for ALM parameters calibration

E Solid 1 ν Solid 1 [Pa] E Solid 2 [Pa] ν Solid 2

100 0.3 100 0.3

Fig. 22 Condition number study for the ALM

load considered at the top face of the punch block is equal to
1 Pa.

ε = k ≈ 10
Emean

hmean
(37)

κ(A) = σmax(A)

σmin(A)
(38a)

κ(A) = |λmax(A)|
|λmin(A)| (38b)

The condition number (κ) of a function measures it sensi-
tivity with respect to the input arguments. A problem with a
low condition number is said to be well-conditioned, while
a problem with a high condition number is said to be ill-
conditioned. In order to compute the corresponding κ one
should evaluate the SVD, in order to compute the maximal
and minimal singular values required in (38a). This expres-
sion can be simplified if A is normal (A∗ A = AA∗); in this
case we can simply compute κ considering the maximal and
minimal eigenvalues as shown in (38b).1 In Fig. 22 we can

1 We are considering SVD as it is the proper definition of the condition
number, but in fact this is a very expensive operation and can be applied

see the proposed mesh for the 3D Taylor patch test, as well
as the displacement solution of the problem.

Figure 23 represents graphically the results from Table 6.
On the left, we plot the surface plot without any additional
consideration, on the other hand, on the contour plot the k
axis considers a logarithmic scale. In this continuous repre-
sentation, it is possible to conclude several facts; foremost,
is that the ε increases always the condition number, and the
k may improve or not the κ depending on its value. Second
of all, it is important to mention that, particularly in the right
figure, the value estimated from Eq. (37), provides the best
conditioning in overall.

Appendix 1.1: Discretisation and numerical
integration

Dual Lagrange multipliers: The FE discretisation of the dis-
placement field corresponds with the standard ones in finite
element formulations. In addition, an adequate discretisation
of the Lagrange multiplier vector λ is needed, and will be
based on a discrete Lagrange multiplier space Mh , being
an approximation of M. Thus, we can define the discrete
Lagrange multiplier as in Eq. (39), with the shape functions
� j and the discrete nodal Lagrange multipliers λh :

λh =
m1∑
i=1

� j

(
ξ1, η1

)
λ j . (39)

Details on how to define dual Lagrange multiplier shape
functions � j using the so-called bi-orthogonality relation-
ship with the standard displacement shape functions Nk have
first been presented in Wohlmuth [44]. A common notation
of the bi-orthogonality condition is described in Eq. (40),
where �1

co, h represents the discrete contact interface.

∫
�1

co, h

� j N 1
k d�

i
co = δ jk

∫
�1

co, h

N 1
k d�

i
co, j , k = 1, . . . , m1

(40)

Herein, δ jk is the Kronecker delta, and the most common
choice m1 = n1 is assumed. For practical reasons, the bi-
orthogonality condition is typically applied locally on each
slave element, represented with the index e, yielding Eq.
(41), where m1

e represents the number of Lagrange multi-
plier nodes of the considered slave element.∫

e
� j N 1

k de = δ jk

∫
e

N 1
k de, j , k = 1, . . . , m1

e (41)

Footnote 1 continued
only in small systems. Another alternative if A is symmetric, then it is
possible to compute the ratio between the max and min eigenvalues of
A. In the case that A is not symmetric, it is possible to compute the max
and min eigenvalues of

√
AT A.
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Fig. 23 Condition number study graphic representation

Table 6 Results of numerical
experiment for ALM parameters k ε κ k ε κ k ε κ

1 1.00E−12 1.13E+05 10 1000 1.74E+04 1000 10 1.92E+04

1 1.00E−02 1.13E+05 10 10,000 2.69E+05 1000 100 1.81E+04

1 1 1.13E+05 100 1.00E−12 1.74E+04 1000 1000 3.14E+04

1 10 1.18E+05 100 1.00E−02 1.74E+04 1000 10,000 6.43E+04

1 100 1.63E+05 100 1 1.74E+04 10,000 1.00E−12 6.64E+05

1 1000 6.15E+05 100 10 1.74E+04 10,000 1.00E−02 6.63E+05

1 10,000 2.69E+07 100 100 1.74E+04 10,000 1 6.63E+05

10 1.00E−12 1.74E+04 100 1000 1.74E+04 10,000 10 6.63E+05

10 1.00E−02 1.74E+04 100 10,000 9.38E+04 10,000 100 3.53E+05

10 1 1.74E+04 1000 1.00E−12 6.60E+04 10,000 1000 3.26E+06

10 10 1.74E+04 1000 1.00E−02 6.60E+04 10,000 10,000 7.38E+05

10 100 1.74E+04 1000 1 5.75E+05

Combining the biorthogonality condition in Eq. (41) and the
partition of unity property of the dual shape functions, one
can obtain:

∫
e
� j de =

∫
e

N 1
j de, j = 1, . . . , m1

e . (42)

The element-wise bi-orthogonality condition inEq. (41)must
be satisfied in the physical space, and not simply in the finite
element parameter space. Consequently, a matrix system of
size m1

e ×m1
e must be solved on each slave element. The first

step for doing this is to introduce unknown linear coefficients
a jk such as:

� j (ξ , η) = a jk N 1
k (ξ , η), Ae = [a jk] ∈ R

m1
e×m1

e (43)

It can easily be verified that, as a second step, insertion of
Eq. (43) into Eq. (41) yields the unknown coefficient matrix
Ae as (44), where J (ξ , η) is the slave Jacobian determinant.

Ae = DeM−1
e

De = [d jk] ∈ R
m1

e×m1
e , d jk

= δ jk

∫
e

N 1
k (ξ , η)J (ξ , η)de

Me = [m jk] ∈ R
m1

e×m1
e , m jk

=
∫

e
N 1

j (ξ , η)N 1
k (ξ , η)J (ξ , η)de

(44)

Mortar operators:
Considering the discrete Lagrange multiplier defined in

Eq. (39) we can rewrite −δLco, h as in Eq. (45), where χh is
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the interface mapping.

−δLco, h =
m1∑
j=1

n1∑
k=1

λT
nj

(∫
�1

c, h

� j N 1
k d�

i
co

)
δd1nk

−
m1∑
j=1

n2∑
l=1

λT
nj

(∫
�1

c, h

� j

(
N 2

l ◦ χh

)
d�i

co

)
δd2nl

(45)

Numerical integration of the mortar coupling terms is exclu-
sively performed on the slave side�c, h of the interface. In Eq.
(45), nodal blocks of the two mortar integral matrices com-
monly denoted as De andMe can be identified. This leads to
the following definitions:

D[ j , k] = D jkIndim

=
∫

�1
c, h

� j N 1
k d�

i
coIndim , j = 1, . . . m1, k = 1, . . . n1

=
ngp∑
g=1

wgφg j N 1
gk J 1

g

M[ j , l] = M jlIndim

=
∫

�1
c, h

� j

(
N 2

l ◦ χh

)
d�i

coIndim , j = 1, . . . m1, k = 1, . . . n2

=
ngp∑
g=1

wgφg j N 2
gk J 1

g .

(46)

Discrete contact condition in tangential direction:
Following the same procedure for the normal direction

we can obtain the part equivalent for the tangential direction.
The most relevant thing to take into account before any defi-
nition is the concept of the relative velocity in the tangential
direction vτ , rel , where we will use for our definition the dis-
crete form of the material velocity field ẋi , which uses the
same shape functions for interpolation as the xi . We can then
define:

∫
γ 1

c

vτ , rel · (δλτ − λτ )dγ

≈
nslaves∑

j=1

(δλτ − λτ )
T τ j

[∫
γ 1

c

� j N 1
j dγ ẋ1j

−
nmaster∑

l=1

∫
γ 1

c

� j

(
N 2

l · ξ
)

dγ ẋ2l

]
≥ 0∀δλ ∈ M(λ).

(47)

One can express this equation using the mortar operators,
see Sect. 1, what will allow the obtention of the following

expression (48). Where ṽτ j is the weighted relative velocity.

∫
γ 1

c

vτ , vel · (δλτ − λτ )dγ ≈
nslaves∑

j=1

(δλτ − λτ )
T

τ j

[
D j ẋ1j −

nmaster∑
l=1

Ml ẋ2l

]
=

nslaves∑
j=1

(δλτ − λτ )
T ṽτ j ≥ 0

(48)

Slip definition: An important aspect of a proper formulation
of frictional laws in the finite sliding context is framed indif-
ference [35, 42] of the rate measures involved. This affects
the tangential relative velocity of the contacting bodies in the
considered case of frictional contact. This assures that this
quantity is unaffected by any rigid body motion which the
two contacting bodies might experience at the instant of the
question. Mathematically, this can be tested with formulat-
ing the tangential relative velocity in an alternative reference
frame. Then in the current (mortar projected) instance, we
must ensure frame indifference.

Working in the time continuous case first, one may readily
show that the tangential component of the mortar projected
tangential velocity is not frame indifferent (49a). Frame indif-
ference is assessed by viewing the motion from another
reference frame, denotes in the following by superscripts
c(t), which can be related to the original spatial frame
via (49b). Where c(t) is the relative rigid body translation
between the original spatial frame and observer, while a
relative rotation is produced by the proper orthogonal ten-
sor, (49c). The frame indifferent relative tangential velocity
should satisfy. However, by considering the effect of the
transformation (49b) on (49a), it is readily seen that (49d).

ṽnononbj
τ = τ j

[
D j ẋ1j −

nmaster∑
l=1

Ml ẋ2l

]
(49a)

ẋ(1∗)
l = c(t) + Q(t)ẋ1l (49b)

ṽ∗
τ = Q(t)ṽτ (49c)

ṽnonobj∗
τ = Q(t)ṽnonobj

τ − Q̇(t)

[
D jx1j −

nmaster∑
l=1

Mlx2l

]
· τ j

(49d)

Because the term
[
D jx1j − ∑nmaster

l=1 Mlx2l
]

�= 0 in general

ṽnonobj∗
τ does not satisfy the equation (49c), and thus some
modifications are required to this relative velocity measure
to assure material frame indifference. It is possible to restore
the objectivity with the inclusion of the rate of a mortar pro-
jected distance between the two bodies, denoted as g. Then
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Fig. 24 Technical details

in consequence (50) is obtained.

ṽτ = τ j

[
D j ẋ1j −

nmaster∑
l=1

Ml ẋ2l − ġ

]
(50)

We obtain an expression which retains the interpretation of
the tangential relative velocity in the case where perfect
sliding occurs (i.e. when ġ = 0), but which contains the
modification necessary to make the velocity measure objec-
tives under all conditions of contact. This is readily seen by
using direct calculation to exactly re-express (50) as (51b),
considering (51a).

ġ = d

dt

[
Ḋ jx1j −

nmaster∑
l=1

Ṁlx2l

]

=
[
Ḋ j ẋ1j −

nmaster∑
l=1

Ṁl ẋ2l

]
+

[
Ḋ jx1j −

nmaster∑
l=1

Ṁlx2l

]

(51a)

ṽτ = τ j

[
Ḋ jx1j −

nmaster∑
l=1

Ṁlx2l

]
(51b)

The time derivatives of themortar operators can be defined
using any desired scheme, for example using the backward
Euler (52) scheme as time discretisation.

d(·)
dt

≈ (·)t+�t − (·)t

�t
(52a)

dD
dt

≈ Dt+�t
l − Dt

j

�t
,
dM
dt

≈ Mt+�t
l − Mt

l

�t
(52b)

With this we can define tangential relative velocity ṽτ as
(53a), that multiplies by�t gives us the nodal slip increment
ũτ (53b).

ṽτ = τ j

[
Dt+�t

j − Dt
j

�t
x1j −

nmaster∑
l=1

Mt+�t
l − Mt

l

�t
ẋ2l

]
(53a)

ũτ = τ j

[(
Dt+�t

j − Dt
j

)
x1j −

nmaster∑
l=1

(
Mt+�t

l − Mt
l

)
ẋ2l

]

(53b)

Appendix 1.2: Technical details

Exact integration In order to integrate the mortar operators
defined in Section Appendix 1.1, one may take into account
an exact integration, like seen in Fig. 24a in 3D, and the cor-
responding adaptation in 2D (see [33] for more details). In
the case shown in Fig. 24a, a clipping and posterior tessella-
tion algorithm must be implemented. These definitions have
an important role in the definition and computation of the
directional derivatives.

Normal definition In order to consider a smooth and con-
tinuous approximation of the normal field defined at the
nodes of the FE mesh, an average normal definition has been
used as shown in Fig. 24b. This definition must be taken into
account in the definition of the consistent directional deriva-
tives.

Appendix 1.3:Work-flow. Solution algorithm

The following section introduces the algorithm to be con-
sidered in order to solve the frictional contact problem. It is
relevant to highlight the fact that this algorithm is relatedwith
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the semi-smooth strategy of the next section 4. The algorithm
is presented in Algorithm 2.

For a frictional case, one needs to consider a quite complex
active, which includes the active/inactive for the frictionless
contact contribution, and the slip/stick state for the frictional
contributions. In addition, it is needed to compute the cor-
responding residuals for these states, related with the LM
solution, as well as the displacement. The last stated, means
that the residual corresponding to the LM is divided into three

different components, the relative to the normal direction, the
relative to the tangent direction associated to the slip state,
and finally the one obtained from the stick state. It is relevant
to separate the residuals from the slip/stick states, as themag-
nitude orders from these components change greatly, and it
may be difficult to achieve a convergence if mixing them.We
remark the need to do this search at each time step in order
to adapt to the evolution of the geometry.

Algorithm 2 Algorithm for the frictional contact problem
1: procedure Algorithm for the frictional contact problem
2: t = 0 and i = 0. Initialise the solution for u0 = 0
3: In case of solving LM solution, Initialise the LM solution λ0 = 0
4: Initialise the active set A0

1 and I0
1 such that A0

1 ∪ I0
1 = S and A0

1 ∩ I0
1 = ∅

5: Initialise the slip/stick set A0
sl1 and A0

st1 such that A0
sl1 ∪ A0

st1 = A0
1 and A0

sl1 ∩ A0
st1 = ∅

6: while t < tend do
7: t = t + Δt and i = i + 1. Initialise the increment of solution for Δui

1 = 0
8: In case of solving LM solution, Initialise the LM increment of solution Δλi

1 = 0
9: Search for potential contact pairs, and if required update the active set, respecting step 4

10: We define the problem as not converged conv = false
11: while conv = false do
12: Find the solution corresponding to the system
13: Update the solution, so ui

n+1 = ui
n + Δui

n+1 and λi
n+1 = λi

n + Δλi
n+1

14: Update the active set as in Eq. (54). The threshold is represented in (55).

Ii+1
n+1 :=

{
j ∈ S|thresholdi+1

n+1 ≥ 0
}

Ai+1
n+1 :=

{
j ∈ S|thresholdi+1

n+1 < 0
} (54)

threshold = kλn + εḡn or kn · λ + εḡn (55)

15: Update the slip/stick set as in Eq. (56). To evaluate this, we require the frictional
threshold F , considering Coulomb’s law, for the cases represented in Eq. (57). Also tangent
contact stress Eq. (58).

Ai+1
sln+1 :=

{
j ∈ A|tτ

co ≥ F i+1
n+1

}

Ai+1
stn+1 := {j ∈ A|tτ

co < Fn+1} (56)

F = μ (kn · λ + εnḡn) (57)

tτ
co = ‖kτ · λ + ετ ũτ‖ (58)

16: Compute the corresponding residual to check Eq. (59).

‖ru‖ < toleranceu, ‖rλn‖ < toleranceλn , ‖rλsl
τ
‖ < toleranceλsl

τ
, ‖rλst

τ
‖ < toleranceλst

τ
(59)

17: Converged if Ai+1
sln+1 = Ai

sln+1, Ai+1
stn+1 = Ai

stn+1, Ii+1
n+1 = Ii

n+1 and residuals Eq. (59).
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Fig. 25 Nodal NCP function, or Lagrangian (L)

Appendix 1.4: Active set strategy (Semi-smooth
Newton Raphson)

As previously stated, the fully discretised unilateral contact
problem introduces one significant complexity in the prob-
lem resolution. This issue is the contact specific inequality
constraints, which introduces two different sets of discrete
active and inactive constraints, which are unknown a priory.
This previous dilemma does not appear for the mesh tying
case, where the subsets are known a priory. From a mathe-
matical point of view, this introduces an additional source of
non-linearity apart from the already existing geometric and
material non-linearity. This issue can be solved with the con-
sideration of an appropriate strategy, a common approach is
the Primal-Dual Active Set Strategies (PDASS).

The principle behind any active set strategy for unilateral
contact is to iterate looking for the correct subset of mas-
ter–slave nodes in contact until there is no variation in the
respective subsets in the given time step. On the other hand,
the contact non-linearity cannot be simply solved in applica-
tion of the PDASS. This is because finding the correct active
setA cannot be resolved by a standardNewton–Raphson type
approach.

It can be affirmed that in each one of the non-converged
subsets we can apply a standard Newton–Raphson type algo-
rithm, in the same manner it is applied to the other types
of non-linearity. These non-converged subsets are obtained
from rearranging the KKT conditions. In Popp [33] the dis-
crete KKT conditions are reformulated within a so-called
Non-Linear Complementary Function (NCP), this NCP is
equivalent to the Lagrangian (L) contribution for the LM in
theALM, therefore in case of consider anALMformulation it
is de facto considered in theLagrangian (L) definition. Equa-
tion (60) shows the expression which defines the frictionless
NCP. This corresponds with the augmented normal contact
pressure λ̄n presented before Eq. (29), and the criteria will

consist on activate/inactivate the corresponding node if the
augmented contact pressure λ̄n is in compression or traction
correspondingly. The graphical representation can be seen in
Fig. 25a, where the equivalence with the KKT conditions is
indicated in red colour, and this is drifted accordingly to the
penalty ε contribution.

Cλn = kλn − max(0, kλn + εḡn) (60)

Hence, the PDASS considered accommodates derivative
information on the subsets, allowing the resolution in con-
sidering Newton–Raphson algorithm also for the contact
non-linearity.

The reformulation of frictional contact conditions is sim-
ilar to the frictionless case. As well as in the former case,
the LM contribution of the Lagrangian (L) in the ALM (34)
replaces the NCP presented in Popp [33] and Gitterle [35].
This NCP takes the form of a two component vector equation
and is written as (61), the visual representation can be seen in
Fig. 25bThis representation shows a distinctive behaviour for
the slip/stick states in the similar manner to the one presented
in the Fig. 8b for the frictional Lagrangian (L) contribution.
For the frictional problem, the PDASS is taken into consid-
eration in considering the workflow presented in Sect. 3.

Cτ (λτ , ũτ ) = max(μλ̃n , ‖λ̃τ‖)λτ − μmax(0, λn)λ̃τ (61)
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