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ABSTRACT
Gesture as ‘language’ of non-verbal communication has been theo-
retically established since the 17th century. However, its relevance
for the visual arts has been expressed only sporadically. This may
be primarily due to the sheer overwhelming amount of data that
traditionally had to be processed by hand. With the steady progress
of digitization, though, a growing number of historical artifacts
have been indexed and made available to the public, creating a need
for automatic retrieval of art-historical motifs with similar body
constellations or poses. Since the domain of art differs significantly
from existing real-world data sets for human pose estimation due
to its style variance, this presents new challenges. In this paper, we
propose a novel approach to estimate human poses in art-historical
images. In contrast to previous work that attempts to bridge the
domain gap with pre-trained models or through style transfer, we
suggest semi-supervised learning for both object and keypoint de-
tection. Furthermore, we introduce a novel domain-specific art data
set that includes both bounding box and keypoint annotations of
human figures. Our approach achieves significantly better results
than methods that use pre-trained models or style transfer.

CCS CONCEPTS
• Computing methodologies→ Object detection; • Informa-
tion systems → Image search; • Theory of computation →
Semi-supervised learning; • Applied computing → Arts and hu-
manities.

KEYWORDS
human pose estimation, semi-supervised learning, style transfer,
art history
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1 INTRODUCTION
As ‘language’ of non-verbal communication, gesture has been theo-
retically established since the 17th century [23]. Its relevance for
the visual arts, however, has so far been expressed at most spo-
radically [1]: e.g., symbolically-performatively on the basis of the
medieval law-book manuscript of the Heidelberg Sachsenspiegel
[45], as the antiquity-receiving ‘Pathosformel’ [48, 49], or as a status
identifier exemplified in Roman sculpture [5]. This selectivity may
be primarily due to the sheer overwhelming amount of data that
traditionally had to be processed manually. Driven by the steady
progress of digitization, though, an increasing quantity of historical
artifacts has been indexed and made freely available to the public
online in recent decades. As a result, art historians can draw on
ever larger collections of art-historical imagery to demonstrate the
formulaic recapitulation of motifs with significant gesture or pose;1
as exemplified by Christ’s deposition from the cross in Figure 1.
This is accompanied by a need for search engines that retrieve hu-
man figures with similar poses, facilitating the search for objects
relevant to the individual scholar. It would thus become feasible
to examine dominant pose types or time-dependent bodily phe-
nomena on a large scale, as they were characteristic in Mannerism
through the overlengthening of limbs, e.g., in Jacopo da Pontormo’s
work (Figure 1b). Intra- as well as inter-iconographic recurrent mo-
tifs, whose radically altered semantics are disconcerting, might be
thoroughly discussed in this context. To date, however, only few ap-
proaches exist for human pose estimation in art-historical images,
possibly due to the lack of a sufficiently large domain-specific data
set. To deal with this issue, one type of approaches uses pre-trained
models, but without adapting them to the new domain [18, 29],
while others apply style transfer to real-world data sets to obtain
domain-specific training data [30], or fine-tune pre-trained models
using small, keypoint-level annotated data sets [30].

In this paper, we propose a novel approach to quantitatively
systematize the exploration of pose types in visual art utilizing
semi-supervised learning. We suggest a two-stage approach based

1For simplicity, we hereinafter do not distinguish between the terms ‘gesture,’ ‘posture,’
and ‘pose.’ Instead, we use the term ‘pose’ for any kind of physical expression.
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(a) (b) (c) (d)

Figure 1: The four depictions of Christ’s deposition from the cross highlight slightly varying poses: (a) Hans Pleydenwurff,
1465; (b) Pontormo, 1525–1528; (c) Caravaggio, 1603–1604; (d) Peter Paul Rubens, ca. 1612. All images are in the public domain.

on two Transformer models: the first model detects bounding boxes
of human figures, while the second model predicts the keypoints
of each box. We adapt a semi-supervised learning technique to re-
duce the performance loss caused by the shift between existing
real-world data sets and the art domain, and to reduce the amount
of art-historical labeled data. Our main contributions are as fol-
lows: (1) for object and keypoint detection, we suggest to combine
semi-supervised pipelines through a two-step approach built on
Transformer models with a teacher-student design; (2) to properly
test our approach, we introduce a sufficiently large art-historical
data set with both bounding box and keypoint annotations of hu-
man figures in 22 depiction styles; (3) in contrast to previous work,
we show that the synthetic generation of seemingly ‘realistic’ art
imagery inadequately reflects the stylistic diversity of historical
artifacts. For both detection steps, the incorporation of manually
labeled domain-specific material is performance-wise still required
in the training and test phases. The code and models are available.2

The rest of the paper is structured as follows. Section 2 reviews
related work on pose estimation and semi-supervised learning. In
Section 3, we describe our pose estimator and its extension to a
semi-supervised approach. In Section 4, we introduce our data sets
and report on the ablation studies performed. Section 5 presents a
user study to evaluate retrieval results from a human perspective.
We conclude with Section 6 and outline areas of future work.

2 RELATEDWORK
As with many other computer vision tasks, there has been steady
progress in human pose estimation over recent years, particularly
with the continued development of increasingly advanced deep
learning models and self-supervised learning techniques.

Human pose estimation deals with the localization of a per-
son’s skeleton by detecting associated keypoints, i.e., skeleton co-
ordinates that mostly correspond to joint points of elbows, shoul-
ders, etc. [7, 11, 24, 28, 41, 51, 55]. The problem can be solved in
two ways. The top-down approach first detects persons, indexes
them with bounding boxes, and then determines keypoints for each
person [24, 28, 41]; while the bottom-up approach first detects key-
points, and then merges them to simultaneously identify persons
and their basic pose [7, 11, 34]. Current work on the respective
strategies shows that top-down methods generally yield better re-
sults, but at the cost of computational complexity [11]. Two-stage
estimation makes the runtime linearly dependent on the number of
detected persons in a scene, as the individual instances are cropped,
and thus more forward steps are required for keypoint recognition.

2https://github.com/TIBHannover/iart-semi-pose, all last accessed on August 15, 2022.

However, since there is no real-time requirement for the domain
considered here, runtime is of secondary importance. Further dif-
ferences result from the prediction of the individual keypoints.
Heatmap-based methods generate a dense likelihood map for the
individual joints [41], whereas regression models directly predict
coordinates of the individual components and optimize them [28].
While heatmap-based methods tend to perform better, the advan-
tage of regression-based models is that they require fewer pre- and
post-processing steps [28]. Therefore, we also make use of such
models in our proposed method, as they are easier to integrate.

Few studies specifically address the estimation of human poses
in art-historical images. This may be due to the fact that domain-
specific data sets are usually only superficially indexed [2, 21, 33]
and rarely include fine-grained annotations at the level of concrete
image details [12, 31, 40, 54]. A publicly accessible data set that
contains poses of human figures in artworks does not yet exist. Rel-
evant previous work employs different approaches to deal with the
lack of annotated training data: they (1) analyze only self-annotated
data sets, without training models or performing inference [17]; (2)
use trained pose estimators from another domain without adapta-
tion [18, 29]; (3) apply style transfer to real-world data sets to close
the domain gap [30]; or (4) leverage small, keypoint-level annotated
data sets to fine-tune pre-trained models [30].

Semi-supervised learning aims to exploit a (potentially large)
set of unlabeled data in addition to a (typically small) set of labeled
data to improve the resulting model. To use the rest of the material
during training, pseudo-labels are either generated [27, 52], or inte-
grated into the loss with consistency regularization [26, 32]. One
type of state-of-the-art methods uses a teacher-student approach.
During training, an image is fed into a teacher model, which then
generates a label for a student model that is being trained. The
teacher model update can be iteratively selected from a previously
trained student model [52], or the teacher is an Exponential Moving
Average (EMA) of the student [43]. Another type of semi-supervised
methods uses data augmentation to generate better feedback sig-
nals for unlabeled data, or combines pseudo-label generation and
consistency regularization [3, 4, 39]. Similar to semi-supervised clas-
sification, localization methods are based on consistency regular-
ization [19, 42] and pseudo-label generation [46, 53]. The challenge
increases, however, since not only the respective concept must be
assigned, but also its position in the image must be detected.

3 SEMI-SUPERVISED POSE ESTIMATION
In this section, we describe our method for automatic domain adap-
tation for human pose estimation. First, we introduce the two-stage

1108

https://github.com/TIBHannover/iart-semi-pose


Semi-supervised Human Pose Estimation in Art-historical Images MM ’22, October 10–14, 2022, Lisboa, Portugal

Set of Query Embeddings

Set of Query Embeddings

Positional Encoding 

Positional Encoding

Set of Keypoints

Set of Boxes

CNN Backbone Transformer Encoder Transformer Decoder

CNN Backbone Transformer Encoder Transformer Decoder

Crop

Figure 2: The two-stage human pose estimator uses two Transformers [8, 44] to predict human poses in an image. The input of
the first model is the entire image, which, using a Convolutional Neural Network (CNN) backend and appropriate positional
encoding, serves as input to a Transformer that predicts a fixed set of person bounding boxes. After filtering irrelevant
detections, the individual boxes are cropped and serve as input for the second stage. This second Transformer model computes
a set of keypoints that serve as the final prediction after filtering background classes.

Transformer-based detection model in Section 3.1. We then use it
in the common approach of fine-tuning pre-trained models with
stylized, approximately domain-specific images. In Section 3.2, we
demonstrate how ‘real’ art-historical images can be used in the
training stages with the extension of a semi-supervised process.

3.1 Transformer-based Detection
The proposed approach is organized in two steps: first, persons are
detected in an input image and bounding boxes are computed; in a
second step, the individual boxes are scanned for keypoints. The
initial system is based on Li et al.’s method [28], which is built on
two Transformer models for object detection [8, 44]. The overall
architecture is shown in Figure 2.

In the person detection phase, feature descriptors are com-
puted using a CNN backend combined with a two-dimensional
position embedding. After this input is flattened into a sequence
of visual features, it is passed to a Transformer encoder, which
is later used in the cross-attention modules of the decoder. The
other input of the Transformer decoder is a fixed set of trainable
query embeddings, where the size of the set represents the max-
imum number of objects to be detected. The output is fed into
two Multilayer Perceptron (MLP) heads. The first head acts as a
classifier and distinguishes between person 𝑐𝑏,𝑖 and background
∅, while the second one performs a regression on four outputs for
the position and size of the corresponding box 𝑏𝑖 ∈ [0, 1]4. At the
beginning of the keypoint prediction stage, visual features for
each bounding box are determined using a CNN backend. The im-
age features, combined with position encoding and a new set of
input query embeddings, are transformed to a fixed set of keypoint
predictions using the Transformer. The main difference between
the two models is that the prediction head predicts only the coordi-
nates of keypoints 𝑘𝑖 ∈ [0, 1]2, and instead of predicting only the
person or background, classifies the type of keypoint 𝑐𝑘,𝑖 .

During the training phase, it is necessary to match the fixed
set of predictions with the variable number of ground-truth labels

per image. We thus need to find an optimal assignment �̂� between
prediction 𝑦 and ground-truth labels 𝑦 in the permutation of 𝑁
elements 𝜎 ∈ 𝔖𝑁 with the lowest matching cost 𝐿𝑚 :

�̂� = argmin
𝜎∈𝔖𝑁

𝑁∑︁
𝑖

𝐿𝑚

(
𝑦𝑖 , 𝑦𝜎 (𝑖 )

)
(1)

The optimal solution for this problem can be solved using the Hun-
garian algorithm [25] and yields the assignment function �̂� (𝑖). The
assignment loss includes both the class probability and the position
of the predicted object compared to the ground-truth annotation.
For bounding box prediction with index 𝜎 (𝑖), we define the class
probability 𝑐𝑏,𝑖 as 𝑝𝜎 (𝑖 )

(
𝑐𝑏,𝑖

)
and the predicted box as 𝑏𝜎 (𝑖 ) . Sim-

ilarly, for keypoint prediction, we define the probability of class
𝑐𝑘,𝑖 as 𝑝𝜎 (𝑐𝑘,𝑖 ) (𝑖) and the predicted keypoint as 𝑘𝜎 (𝑖 ) . With these
definitions, we establish the following loss functions:

𝐿𝑚,𝑏 (𝑦,𝑦) = −1{𝑐𝑏,𝑖≠∅}𝑝𝜎 (𝑖 )
(
𝑐𝑏,𝑖

)
+ 1{𝑐𝑏,𝑖≠∅}𝐿𝑏

(
𝑏𝑖 , 𝑏𝜎 (𝑖 )

)
(2)

𝐿𝑚,𝑘 (𝑦,𝑦) = −1{𝑐𝑘,𝑖≠∅}𝑝𝜎 (𝑖 )
(
𝑐𝑘,𝑖

)
+ 1{𝑐𝑘,𝑖≠∅}𝐿𝑘

(
𝑘𝑖 , 𝑘𝜎 (𝑖 )

)
(3)

For bounding box prediction, the class probability defined as the
𝐿1-distance of the bounding box 𝑏𝑖 , and the Generalized Intersec-
tion over Union (GIoU) [37] 𝐿𝑖𝑜𝑢 (·, ·) are chosen as the basis for
cost function 𝐿𝑏 , where we follow Li et al.’s approach and imple-
mentation [28]. For keypoints 𝑘𝑖 , only the class probability and the
𝐿1-distance of the coordinates are considered:

𝐿𝑏

(
𝑏𝑖 , 𝑏𝜎 (𝑖 )

)
= _𝑖𝑜𝑢𝐿𝑖𝑜𝑢

(
𝑏𝑖 , 𝑏𝜎 (𝑖 )

)
+ _𝐿1

𝑏𝑖 − 𝑏𝜎 (𝑖 )
 (4)

𝐿𝑘

(
𝑘𝑖 , 𝑘𝜎 (𝑖 )

)
= _𝐿1

𝑘𝑖 − 𝑘𝜎 (𝑖 )
 (5)

where hyperparameters _𝑖𝑜𝑢 and _𝐿1 indicate the weight of each
loss component. Predictions that could not be assigned to a ground-
truth label are instead assigned to the background class ∅ during
optimization; their bounding boxes and keypoint coordinates are
not considered in the loss. After the best assignment is found, the
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Figure 3: In the semi-supervised training pipeline adapted
from Xu et al. [53], each batch consists of labeled and unla-
beled images with strong and weak augmentations generated
for unlabeled ones. The teacher uses the weakly labeled data
to generate pseudo bounding boxes (or pseudo keypoints)
that are used to train the strongly augmented images. This
involves thresholding the predictions and then transferring
the corresponding boxes (or keypoints) to the coordinate sys-
tem of the strongly augmented image.

loss can be calculated as follows:

𝐿𝐻,𝑏 (𝑦,𝑦) =
𝑁∑︁
𝑖=1

[
− log 𝑝�̂�

(
𝑐𝑏,𝑖

)
+ 1{𝑐𝑏,𝑖≠∅}𝐿𝑏

(
𝑏𝑖 , 𝑏�̂� (𝑖)

)]
(6)

𝐿𝐻,𝑘 (𝑦,𝑦) =
𝑁∑︁
𝑖=1

[
− log𝑝�̂�

(
𝑐𝑘,𝑖

)
+ 1{𝑐𝑘,𝑖≠∅}𝐿𝑘

(
𝑏𝑖 , 𝑏�̂� (𝑖)

)]
(7)

During the inference of bounding box prediction, it is sufficient
to filter the predicted boxes using a threshold function. However,
during the inference step of keypoint prediction, it is necessary to
find an optimal assignment again because the Transformer model
predicts up to 𝑁 points, but the number is usually larger than
the maximum number of possible keypoints per person. Since no
ground-truth information is known during inference, the following
cost function is used:

𝐿𝑚,𝑘 (𝑦,𝑦) = −𝑝𝜎 (𝑖 )
(
𝑐𝑘,𝑖

)
(8)

Compared to object detection methods such as Faster Region-based
CNN (R-CNN) [36] and YOLO (You Only Look Once) [35], the
approach does not predict multiple bounding box candidates for
each image region, but only a fixed set of boxes for each image.
This greatly simplifies post-processing, as no overlapping bounding
boxes are predicted for same-person instances, and the imbalance
between background and foreground classes is much smaller.

3.2 Semi-supervised Domain Adaptation
To extend the available data sets for bounding box and keypoint
detection in art-historical images, we augment the training pipeline
by adapting the semi-supervised approach from Xu et al. [53]. Since
we use a Transformer model instead of a Faster R-CNN, the number

of predicted bounding boxes and keypoints is considerably smaller
and simplifies certain steps. An overview of the semi-supervised
pipeline is shown in Figure 3. The basic principle is to use both
labeled and unlabeled examples to train a student model. Here,
the teacher, whose weights are based on the EMA of the student
weights, serves as a generator of pseudo-labels for bounding boxes
and keypoints. For this purpose, weakly augmented unlabeled im-
ages are used for person detection and weakly augmented cropped
bounding boxes for keypoint prediction. Subsequently, the pre-
dicted objects are filtered with the threshold 𝜏 = 0.9 and projected
onto the strongly augmented unlabeled images. Contrary to Xu
et al. [53], it is not possible to determine target labels for the back-
ground class from the teacher, because negative teacher predictions
do not have to contain any valid coordinates and therefore cannot
be assigned to an output of the student using the Hungarian algo-
rithm. Therefore, we use the teacher prediction for bounding boxes
and keypoints only if it is not a background class. To not distort
the ratio between negative and positive boxes or keypoints, we
suggest to use the same threshold to filter negative examples; but
this time from the forward step of the student. This is necessary
because there is no relationship between the predicted coordinates
of the teacher’s negative classes and the student’s negative predic-
tions. The total loss now includes a supervised component 𝐿𝑠 and
an unsupervised component 𝐿𝑢 . It is calculated as follows:

𝐿 = 𝐿𝑠 + _𝑢𝐿𝑢 (9)

Depending on the current target, the supervised loss is the same
as for supervised learning, 𝐿𝑠 ∈

{
𝐿𝐻,𝑏 , 𝐿𝐻,𝑘

}
. For the unsuper-

vised loss part, we use the prediction of the teacher model to detect
bounding boxes or keypoints. Therefore, for the prediction of the
bounding box with index 𝑖 , we define the probability of class 𝑐𝑏,𝑖 as
𝑝𝑡

(
𝑐𝑏,𝑖

)
and the predicted box as 𝑏𝑡 . Similarly, for the teacher key-

point prediction, we define the probability of class 𝑐𝑘,𝑖 as 𝑝𝑡
(
𝑐𝑘,𝑖

)
and the predicted keypoint as 𝑘𝑡 . With these definitions, we can
establish the loss functions:

𝐿𝑢,𝑟𝑒𝑔,𝑏 =

𝑁∑︁
𝑖

1{𝑐𝑏,𝑖≠∅;𝑝𝑡 (𝑐𝑏,𝑖 )≥𝜏}𝐿𝑏
(
𝑏𝑡𝑖 , 𝑏�̂� (𝑖)

)
(10)

𝐿𝑢,𝑟𝑒𝑔,𝑘 =

𝑁∑︁
𝑖

1{𝑐𝑘,𝑖≠∅;𝑝𝑡 (𝑐𝑘,𝑖 )≥𝜏}𝐿𝑘
(
𝑘𝑡𝑖 , 𝑘�̂� (𝑖)

)
(11)

The classification loss of the unlabeled examples is given by the
positive classes resulting from the teacher’s probability of exceeding
threshold 𝜏 and the negative examples from the student’s prediction:

𝐿𝑢,𝑐𝑙𝑠,𝑏 = −
𝑁∑︁
𝑖

1{𝑐𝑏,𝑖≠∅;𝑝𝑡 (𝑐𝑏,𝑖 )≥𝜏} log 𝑝�̂�
(
𝑐𝑏,𝑖

)
(12)

−
𝑁∑︁
𝑖

1{𝑐𝑏,𝑖=∅;𝑝�̂� (𝑐𝑏,𝑖 )≥𝜏} log𝑝�̂�
(
𝑐𝑏,𝑖

)
𝐿𝑢,𝑐𝑙𝑠,𝑘 = −

𝑁∑︁
𝑖

1{𝑐𝑘,𝑖≠∅;𝑝𝑡 (𝑐𝑘,𝑖 )≥𝜏} log𝑝�̂�
(
𝑐𝑘,𝑖

)
(13)

−
𝑁∑︁
𝑖

1{𝑐𝑘,𝑖=∅;𝑝�̂� (𝑐𝑘,𝑖 )≥𝜏} log𝑝�̂�
(
𝑐𝑘,𝑖

)
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Table 1: An overview is given of the data sets used in our
experiments. Persons are indicated by bounding boxes asso-
ciated with them. Up to 17 keypoints are stored per person.

Data set Split Images Persons Keypoints

COCO 2017 Training 118,287 262,465 1,642,283
Validation 5,000 11,004 68,215
Test 0 0 0

Total 123,287 273,469 1,710,498

COCO 2017 Training 236,574 524,930 3,284,566
(stylized) Validation 10,000 22,008 136,430

Test 0 0 0

Total 246,574 546,938 3,420,996

People-Art Training 1,746 1,330 0
Validation 1,489 1,080 0
Test 1,616 1,088 0

Total 4,851 3,498 0

PoPArt Training 1,553 2,069 30,415
Validation 643 704 10,367
Test 663 741 10,863

Total 2,859 3,514 51,645

ART500k Training 318,869 0 0
Validation 0 0 0
Test 0 0 0

Total 318,869 0 0

4 EXPERIMENTAL SETUP AND RESULTS
In this section, we introduce our data sets and discuss the quantita-
tive and qualitative studies. For the training and test phases of our
pipelines, we use various real-world, synthetically generated, and
art-historical data sets (Section 4.1). To evaluate the performance
of each model and approach, we first conduct a series of ablation
studies (Section 4.2) and then qualitatively assess our method’s abil-
ity to provide reasonable predictions (Section 4.3). To evaluate the
experiments, we use the metrics and tools from the COCO API.3

4.1 Data Sets
An overview of the data sets used in our experiments with their
respective splits is shown in Table 1. All data sets are based on the
Common Objects in Context (COCO) format, where each person
instance is labeled with up to 17 keypoints.

The largest annotated data set results from the COCO 2017 de-
tection and keypoint challenge, which includes 118, 287 training
and 5, 000 validation images with person instances.4 To evaluate
the performance of the common scenario that uses style transfer to
close the domain gap between annotated real-world training and
art-historical inference data, we generate a stylized version of the
data set. For this purpose, we leverage the style transfer approach

3https://github.com/cocodataset/cocoapi.
4https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset.

from Chen et al. [10] to create two style variants for each COCO im-
age, where the style images are randomly selected from the Painter
by Numbers data set [33].

The models are grounded in two domain-specific, sufficiently
large data sets that recycle openly licensed subsets of the art-
historical online encyclopedia WikiArt5: the 2016 compiled People-
Art data set [6, 50], in which human figures are marked with bound-
ing boxes enclosing them. The second data set, called Poses of
People in Art (PoPArt), is introduced here and identifies 17 limb
points in addition to bounding boxes. Both data sets approximately
reflect the diversity of art-historical depictions of human figures
through time by featuring 43 and 22 different styles, respectively;
ranging from impressionistic to neo-figurative and realistic vari-
ants. The pre-existing People-Art data set is enhanced on two
levels. First, we integrate additional negative examples of mammals
that were frequently false positively classified as humans [50]. Sec-
ond, we use the largest resolution of images provided by WikiArt
to avoid further complicating the detection of relatively small fig-
ures due to possible image artifacts in low-resolution reproductions.
After these preparatory measures, People-Art features 1, 746 train-
ing, 1, 489 validation, and 1, 616 test images. The annotation of the
novel PoPArt data set was performed according to the following
principles (see Figure 5a for some examples with ground-truth an-
notations): (1) the body of a human figure must be recognizable,
which implies that more than six keypoints are annotatable, cover-
ing at least head and shoulder area; (2) a maximum of four figures
are annotated per image; if more than four instances are shown,
those whose body permits to annotate as many limbs as possible
are selected; (3) if an occluded body part can be sufficiently approx-
imated by another visible one, the respective associated keypoint is
annotated; (4) in profile views, eyes and ears are usually annotated
on the non-visible side of the face as well. The data set includes
1, 553 training, 643 validation, and 663 test images, where each split
contains proportionally the same number of images per style.

With the ART500k data set [31], we moreover integrate an
art-historical data set not annotated with person instances into
the training procedure. A 50% split of all ART500k images with a
total of 318, 869 examples is generated, which we use in our semi-
supervised learning approach as unlabeled data.

4.2 Ablation Study
For person detection, we leverage the weights of a Detection
Transformer (DETR) model [8] pre-trained on COCO 2017 and
reinitialize the classification head. An Adam optimizer [22] with a
learning rate of 𝑙𝑟 = 5𝑒 − 6 is used for the Transformer and with
𝑙𝑟 = 1𝑒 − 7 for the ResNet-50 backbone [15]. Similar to Li et al. [28],
all classes except persons are ignored; small bounding boxes are
not considered. Models are trained for 200, 000 iterations with a
batch size of four, with all images randomly scaled to a maximum
size of 1, 333 pixels per side. When training the semi-supervised
models, the batch size is increased by four additional unlabeled
images. The weights of the different loss hyperparameters are set
to _𝐿1 = 5, _𝑖𝑜𝑢 = 2, and _𝑢 = 0.5.

The results for the respective test sets are shown in Table 2,
including a comparison with the best state-of-the-art method to

5https://www.wikiart.org/.
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Table 2: Person detection results are reported for the People-Art and PoPArt test sets, respectively. For PoPArt, 𝐴𝑃𝑆 is neglected
as no test data is available for small human figures, most of which have no annotatable pose due to their size. Entries without
style transfer and without semi-supervised learning correspond to the state-of-the-art method of Li et al. [28] with fine-tuning
to the respective training data set. The best performing approach per test set is indicated in bold.

Test set Train set Stylized Semi 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 𝐴𝑅

People-Art COCO 2017 0 % 0.3118 0.5106 0.3175 0.0075 0.2118 0.3294 0.6728
COCO 2017 0 % ✓ 0.3696 0.5970 0.3885 0.0007 0.2115 0.3950 0.7351
COCO 2017 50 % 0.3686 0.6113 0.3871 0.0045 0.2386 0.3941 0.7257
COCO 2017 50 % ✓ 0.3744 0.6277 0.3792 0.0024 0.2193 0.4011 0.7296
COCO 2017 100 % 0.3727 0.6256 0.3922 0.0240 0.2406 0.3981 0.7165
COCO 2017 100 % ✓ 0.3846 0.6333 0.4047 0.0115 0.2313 0.4108 0.7221

People-Art 0 % 0.4280 0.7279 0.4350 0.0676 0.2123 0.4636 0.7041
People-Art 0 % ✓ 0.4428 0.7381 0.4590 0.0509 0.2412 0.4769 0.7291

PoPArt COCO 2017 0 % 0.2287 0.3041 0.2433 0.1096 0.2336 0.7997
COCO 2017 0 % ✓ 0.2422 0.3353 0.2612 0.0324 0.2469 0.8377
COCO 2017 50 % 0.2322 0.3168 0.2480 0.0400 0.2397 0.8365
COCO 2017 50 % ✓ 0.2261 0.3125 0.2452 0.0347 0.2324 0.8277
COCO 2017 100 % 0.2542 0.3540 0.2730 0.0360 0.2624 0.8128
COCO 2017 100 % ✓ 0.2359 0.3310 0.2516 0.0480 0.2423 0.8284

PoPArt 0 % 0.4898 0.6566 0.5279 0.2639 0.4945 0.8468
PoPArt 0 % ✓ 0.5073 0.6728 0.5302 0.2132 0.5119 0.8561

date [28]. We notice that our semi-supervised learning technique
on People-Art always results in an improvement of Average Pre-
cision (AP) and Average Recall (AR). Moreover, AP maintains this
advantage as the proportion of style-transferred material increases,
but becomes successively smaller. The domain-specific data further
increases the performance significantly, such that AP rises from
0.4280 to 0.4428 and AR from 0.7041 to 0.7291. With 𝐴𝑃50 = 0.7381,
the performance of our approach is considerably above the best
results of 𝐴𝑃50 = 0.68 and 𝐴𝑃50 = 0.583 reported so far by Kadish
et al. [20] and Gonthier et al. [13] for the data set, respectively. For
PoPArt, we find that semi-supervised learning with art-historical
images enhances AP less; thus, our proposed method with COCO
2017 annotations has similar performance to using style transfer.
The comparison between training with COCO 2017 data and train-
ing on PoPArt indicates a larger improvement especially in AP.
This deviation can be explained by the different types of annota-
tions, as PoPArt was annotated exclusively for pose estimation and
contains fundamentally fewer ground-truth bounding boxes of hu-
man figures. Nevertheless, our proposed semi-supervised learning
approach is beneficial: the performance increases from 0.4898 to
0.5073 for AP and from 0.8468 to 0.8561 for AR.

In the keypoint prediction stage, we use the High-Resolution
Net with 32 feature channels (HRNet-W32) as backbone with an
input resolution of 384×288 pixels [41]. Again, we leverage the pre-
trained weights on COCO 2017 from Li et al. [28] and reinitialize
the classification layer. The model is trained for 150, 000 iterations
with a batch size of 16; the learning rates are set to 𝑙𝑟 = 1𝑒 − 5 for
the Transformer and 𝑙𝑟 = 1𝑒−6 for the HRNet. We divide both rates
by 10 and train for another 50, 000 iterations with Adam. For the
semi-supervised methods, we add to the batch 16 unlabeled images
generated from the models’ predictions from Table 2 on ART500k.
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Figure 4: The distribution of positive and negative classes
on PoPArt (orange) and the teacher’s predicted distribution
for unlabeled data on ART500k (blue) are shown. It is evi-
dent that the teacher recognizes fewer bounding boxes in the
person detection phase (a) and estimates more points in the
keypoint prediction phase (b) in comparison.

Predicted bounding boxes whose confidence level is above 0.5 are
used for this purpose. The effects of keypoint prediction are similar
to those of person detection: we observe that AR can be significantly
improved by our semi-supervised learning technique. Models not
only trained with style-transferred images show an increase in AP.
In particular, for those using PoPArt, AP rises from 0.4844 to 0.5258
and AR from 0.7078 to 0.7464. Results for the PoPArt test set are
summarized in Table 3. Unlike Jenícek and Chum [18], we find that
OpenPose [7] with𝐴𝑃 = 0.1388 and𝐴𝑅 = 0.4382 is not competitive
to approaches that are specifically trained for the given task.

To evaluate the behavior of our semi-supervised approach,
we examine the number of positive and negative teacher predic-
tions during training. To this end, we illustrate the ratios between
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Table 3: Keypoint detection results are reported for the PoPArt test set with predicted bounding boxes of the model with the
same strategy. 𝐴𝑃𝑆 is neglected as no test data is available for small human figures, most of which have no annotatable pose
due to their size. For PoPArt train sets, the first entry refers to the training data set used for bounding box detection and the
second to the training data set used for keypoint prediction. The best performing approach is indicated in bold.

Test set Train set Stylized Semi 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑀 𝐴𝑃𝐿 𝐴𝑅

PoPArt COCO 2017 0 % 0.2285 0.2811 0.2545 0.0236 0.2367 0.5540
COCO 2017 0 % ✓ 0.2525 0.3173 0.2810 0.0122 0.2639 0.7009
COCO 2017 50 % 0.2401 0.3072 0.2672 0.0215 0.2531 0.6672
COCO 2017 50 % ✓ 0.2413 0.3052 0.2665 0.0180 0.2554 0.6880
COCO 2017 100 % 0.2657 0.3426 0.2932 0.0153 0.2845 0.6765
COCO 2017 100 % ✓ 0.2518 0.3167 0.2813 0.0169 0.2653 0.6896

People-Art/PoPArt 0 % 0.2841 0.3622 0.3073 0.0378 0.2916 0.7185
People-Art/PoPArt 0 % ✓ 0.2971 0.3637 0.3272 0.0204 0.3118 0.7583

PoPArt/PoPArt 0 % 0.4844 0.6060 0.5319 0.0771 0.4920 0.7078
PoPArt/PoPArt 0 % ✓ 0.5258 0.6392 0.5735 0.0308 0.5350 0.7464

(a) (b) (c) (d)

Figure 5: Ground-truth annotations (a), as well as predictions
of OpenPose [7] (b), the model trained without style transfer
and without semi-supervised learning (c), and PoPArt (d)
overlaid on test examples from PoPArt.

negative and positive bounding boxes (Figure 4a) and keypoints
(Figure 4b) of the labeled and unlabeled parts of a batch. As we
compute the target labels for the background class directly from
the student’s predictions, we can see in both cases that the ratio of
the background increases sharply until it reaches the maximum at
about 10, 000 iterations. After that, it starts to decrease in favor of
positive classes as the confidence score of the teacher’s predictions
starts to exceed threshold 𝜏 . In case of keypoints, it becomes appar-
ent that the ratio between supervised (PoPArt) and unsupervised
components (ART500k) per batch is equalized, and later on average
more keypoints are detected in ART500k than in PoPArt.

4.3 Qualitative Analysis
To qualitatively assess our method’s ability to provide reasonable
predictions, we visually compare it to ground-truth annotations
and two of the other models. Figure 5b illustrates that OpenPose al-
most consistently tends to estimate only parts of the face and some
points of the torso; holistically correct predictions are rare. Bodies in
non-realistic settings are often not captured, exemplified by Henri
Edmond Cross’s Neo-Impressionist example from the early 20th
century (Figure 5b, first row). This is also noticeable in the model
trained on COCO 2017 without style transfer and unsupervised
learning (Figure 5c). However, more suitable approximations of the
lower body are identified, at least for Jean-Baptiste Camille Corot’s
Knight (1868; Figure 5c, third row) and Fra Angelico’s religious
drawing of King David (ca. 1430; fourth row). Highly problematic,
though, are hidden limbs or bodies not depicted from usual per-
spectives, illustrated by the detail of Michelangelo’s Sistine Chapel
ceiling painting in Figure 5c (second row). Our proposed model,
trained on PoPArt and with semi-supervised learning, even man-
ages predominantly complex scenarios (Figure 5d). Minor errors
result from limbs assigned to the wrong side of the body (first row),
poorly contrasting or rather abstractly drawn body parts—or over-
laps with limbs of other persons, which in PoPArt were primarily
due to Aubrey Beardsley’s works. This is especially true for styles
that introduce complications even when manually labeled, e.g., in
case of the Japanese genre Ukiyo-e, since expressive poses with
strongly flowing robes often lack clear assignment of joint points.
In addition, the correct assignment of points can be disturbed if the
image shows a person and his or her mirror image.

5 USER STUDY ON RETRIEVAL RESULTS
In this section, we report the results of a user study that aimed to
evaluate the quality of the automatically generated keypoints from
a human perspective in a retrieval scenario. We first describe the
generation of keypoint descriptors and the experimental setup of
the user study before discussing the results.

Keypoint descriptors. For the retrieval task, we convert key-
points into a consistent feature vector representation. In doing so,
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Table 4: Results of the user study are reported on the retrieval
of similar poses with Normalized Discounted Cumulative
Gain (NDCG) as the ranking metric.

Train set Stylized Semi @5 @10 @15

COCO 2017 0 % 0.5626 0.5929 0.6309
COCO 2017 0 % ✓ 0.5702 0.5676 0.5957
COCO 2017 50 % 0.6124 0.6054 0.6234
COCO 2017 50 % ✓ 0.5713 0.5900 0.6094
COCO 2017 100 % 0.5728 0.5958 0.6131
COCO 2017 100 % ✓ 0.5845 0.6069 0.6304

PoPArt 0 % 0.5675 0.5722 0.5943
PoPArt 0 % ✓ 0.6413 0.6205 0.6344

Figure 6: Query images for the user study include art-
historical poses such as ‘Adlocutio’ and ‘Venus pudica.’

descriptors for the same pose should be nearly identical regard-
less of position or scale. As pose discrimination depends heavily
on the relational configuration between body parts [16], we do
not leverage joint coordinates directly [14, 38]. Instead, we build
on Chen et al. [9] and employ a 52-dimensional feature descriptor
that uses the orientation between two keypoints. We obtain 1, 515
images from the ART500k data set not used for training in Sec-
tion 4.2, to which bounding box and keypoint models are applied.
For each pose, the descriptor from Chen et al. [9] is calculated. In
addition, we selected 10 poses with varying art-historical specificity
and utilized them as query images (Figure 6). The small number of
examples naturally can only inadequately cover the large variabil-
ity of relevant body constellations; it is, nonetheless, sufficient to
ascertain the models’ basic suitability for retrieval tasks.

Experimental setup. For our study, we developed a web inter-
face with detailed instructions for annotation. A total of 12 subjects
were recruited, personally invited by the participating departments
of computer science and art history. These included seven com-
puter scientists, two art historians, and three persons from other
professions. In the study, several pages were shown, consisting of
a query image and the corresponding top-20 retrieval results. For
each displayed image, participants were asked to vote on whether
they thought it was ‘relevant,’ ‘irrelevant,’ or ‘indifferent’ to the
query. After the questioning, the individual results were ranked
in this order: ‘relevant,’ ‘indifferent,’ and ‘irrelevant.’ We used Eu-
clidean distance to compute a ranking based on the automatically

computed descriptors and compared it to the user-generated rank-
ing. The results of the user study are reported in Table 4 and show
that our proposed approach also outperforms competing models in
retrieval, nevertheless, with decreasing variations between models.
This can possibly be explained by the fact that it is not necessarily
relevant for a user if the alignment of individual keypoints changes
as long as the basic pose has very similar meaning. However, it may
also be that the number of subjects is too small for such conclusions,
or that the participants’ art-historical knowledge was insufficient
to interpret certain details of the poses. In this context, the degree
of similarity at which subjects consider poses to be similar is rele-
vant. For instance, one participant excluded crucifixion scenes in
which Christ looked to the left rather than downward with his head
bowed, as in the query image.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have investigated domain adaption techniques to
estimate human poses in art-historical images. To this end, we have
suggested a two-stage approach based on two Transformer models
that utilizes a semi-supervised teacher-student design. To reduce
the gap between photographs of real-world objects and the art do-
main, we augmented images depicting real-world scenes with unla-
beled, domain-specific data. Moreover, we introduced a reasonably
large art-historical data set called Poses of People in Art (PoPArt) to
systematically test the validity of human pose estimators. Compar-
isons with more common approaches that use pre-trained models
or adapt existing data sets with style transfer indicated that per-
formance can be further improved with unlabeled data. While it
is not necessary to annotate large amounts of art-historical data,
it is essential to include at least smaller, domain-specific labeled
data in the training procedure, rather than relying solely on syn-
thetically generated imagery. Depending on the test set, models
trained entirely or partially with style transfer underperform in
Average Precision by between 7.32 to 28.12% for person detection
and between 27.33 to 28.15% for keypoint prediction, even with
semi-supervised learning. Furthermore, a user study confirmed the
feasibility of the proposed approach for retrieval tasks, thus also en-
abling the search for resembling poses of human figures; however,
in this case the difference with other models performance-wise is
smaller. Our method enables the engagement of humanities schol-
ars by providing them with state-of-the-art methods for indexing
human poses in large art image databases. Although our approach
specifically targets the curation of art and cultural objects, it is
likely applicable to other domains with few labeled training data.

In the future, we intend to analyze the potential of recently intro-
duced Transformermodels, such as the Pyramid Vision Transformer
presented by Wang et al. [47]. Further improvement of the training
process could be achieved by applying style transfer to unlabeled
instead of only labeled data. We also plan to extend the PoPArt data
set with additional bounding boxes, enhancing its usefulness for
training person detection models.
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