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Abstract

Information Retrieval (IR) takes a fresh perspective in the context of the next-
generation digital libraries such as the Open Research Knowledge Graph (ORKG).
As scholarly digital libraries evolve from document-based to knowledge-graph-based
representations of content, there is a need for their information technology services to
suitably adapt as well. The ORKG enables a structured representation of scholarly
contributions data as RDF triples - in turn, it fosters FAIR (Findable, Accessible,
Interoperable, and Reusable) scholarly contributions. This thesis has practically ex-
amined three different IR service aspects in the ORKG with the aim to help users:
(i) easily find and compare relevant scholarly contributions; and (ii) structure new
contributions in a manner consistent to the existing ORKG knowledge base of struc-
tured contributions. In the first part, it will evaluate and enhance the performance
of the default ORKG Contributions Similarity Service. An optimal representation
of contributions as documents obtains better retrieval performance of the BM25 al-
gorithm in Elasticsearch. To achieve this, evaluation datasets were created and the
contributions search index reinitialized with the new documents. In its second part,
this thesis will introduce a Templates Recommendation Service. Two approaches
were tested. A supervised approach with a Natural Language Inference (NLI) objec-
tive that tries to infer a contribution template for a given paper if one exists or none.
And an unsupervised approach based on search that tries to return the most relevant
template for a queried paper. Our experiments favoring ease of practical installation
resulted in the conclusion that the unsupervised approach was better suited to the
task. In a third and final part, a Grouped Predicates Recommendation Service will be
introduced. Inspired from prior work [6], the service implements K-Means clustering
with an IR spin. Similar structured papers are grouped, their in-cluster predicate
groups computed, and new papers are semantified based on the predicate groups of
the most similar cluster. The resulting micro-averaged F-measure of 65.5% using
TF-IDF vectors has shown a sufficient homogeneity in the clusters.

Keywords: Digital Libraries, Knowledge Graph, ORKG, Structured Data, Informa-
tion Retrieval
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Chapter 1

Introduction

Digital libraries (DL) play an important role in scholarly knowledge dissemination
and exploration, which is a critical part of scholarly communication lifecycle. The
availability of massive scholarly records in DL platforms have already brought prac-
tical accessibility benefits to a variety of research communities for scholarship de-
velopment. However, given the present massive publication trends [36], researchers,
digital librarians, and scientific data curators are faced with new challenges. In par-
ticular, information organization via keyword-based search engines over document-
based scholarly records are proving to be no longer an efficient model for conducting
research or managing the research record. In this scenario, the task of systematic lit-
erature reviews [41], which involve summarizing vast amounts of investigations on a
specific topic, even in one’s own narrow discipline, is becoming practically impossible.
The core point of the problem is, that researchers have to glance over large volumes
of scholarly articles in order to acquire answers w.r.t a specific scientific inquiry [40].
A problem that is only more acute in a multidisciplinary context [24]. Scholarly
knowledge in its different forms like new ideas and approaches, standards and best
practices, the description of new phenomena and data, are still mostly unstructured
w.r.t. the machine interpretability terms, even that they have been existing for
long time abundantly as digital records on the web. Thus to the computer, schol-
arly content is semantically just an index of keywords, which clearly leaves buried
layers of their rich content. Considering the current semantic technologies, for in-
stance, the evolution of semantic modeling languages in terms of expressivity and
an expanding network of ontologies, DLs have an increased possibility to be more
semantically structured. Thus, scholarly applications could access the inquired data
more accurately. As a consequence, researchers can easily find what they are looking
for using such semantically structured data. To optimize scholarly knowledge orga-
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Chapter 1. Introduction

nization and representation in DL, some initiatives [34, 74] advocate for building an
interlinked and semantically rich knowledge graph structure using a combination of
human curation and machine learning.

This thesis explores technology in the context of such a knowledge-graph-based
next-generation digital library (DL). Specifically, the DL is called the Open Research
Knowledge Graph (ORKG) wherein the aim is to represent structured scholarly con-
tributions. In the ORKG, a scholarly contribution is interpreted as the result of the
investigation that contributes towards the advancement of scientific human knowl-
edge by adding something new. The ORKG is an infrastructure for the acquisition,
curation, publication and processing of semantic scholarly knowledge. It leverages
structured scholarly knowledge acquisition using crowdsourcing and text mining tech-
niques as well as supports knowledge curation, publication and processing.

Thus in the broader context of the ORKG as a DL service, this thesis focuses on
its Information Retrieval service aspects, while leveraging the structured data charac-
teristic of the ORKG. Whereas unstructured data retrieval is concerned with retrieval
of raw text out of a documents collection, structured data retrieval aims in contrast
to retrieve text fragments which put more semantic emphasis on the information
inquiry. Even in a structured data context the task of keyword-based searching to
find similar contributions is an exceedingly difficult task for the researcher. Adding
a new perfectly structured contribution to the ORKG can also be considered as a
non-trivial task due to the large number of existing entities with various semantic
meanings in the ORKG and the multiplicity of researchers scientific backgrounds.

Particularly, this thesis aims to evaluate and enhance an existing information
retrieval service in the ORKG called the Contributions Similarity Service and also
to enrich the ORKG with two new recommendation services to help researchers in
the process of structuring their contributions in the graph. For the latter purpose,
a recommendation service for each of Templates1 and Predicates will be introduced.
Having such IR services in the ORKG enhances the user experience in two respects:
1) similarly structured contributions will be found more easily and better relevance;
and 2) given unstructured text, existing template patterns or predicate clusters that
were used in semantifying similar texts will be available as suggestions thus expedit-
ing the structuring of a paper. Based on the mentioned aims the research questions
of this thesis are formally defined as follows:

i. What are the features of the default Contributions Similarity Service im-
plementation, what are its quantitative evaluations, and how can it be en-
hanced/optimized?

1An ORKG template is a subgraph defining a reusable domain-specific set of predicates and
their data types as building blocks of a structured contribution.
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ii. How can an applicable template from the ORKG knowledge base be recom-
mended to structure a new incoming paper?

iii. How can an applicable cluster of ORKG predicates be recommended as a unit
based on a query represented by a research paper to structure the paper?

The remainder of this work is structured as follows. Chapter 2 reviews the re-
lated work. Chapter 3 presents the features of the ORKG as a software platform. In
chapter 4 we evaluate and suggest enhancements to the default Contributions Sim-
ilarity Service. Chapter 5 describes one supervised and one unsupervised approach
to build a Templates Recommendation Service. Finally, chapter 6 introduces a clus-
tering method to group research papers, to which predicates can be recommended.
Each of the main thesis parts are concluded within their respective chapters.
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Chapter 2

Related Work

2.1 Scholarly Communication as Knowledge Graphs

Scholarly metadata KGs are common. Research Objects [12] and Nanopublica-
tions [29] use machine-readable abstract structures to link the products of a re-
search investigation, including articles, data, and other research artifacts. Recently,
SKGs are being based on article content. E.g., initiatives as the Semantic Publish-
ing and Referencing (SPAR) Ontologies [55] and the Journal Article Tag Suite [23]
which consider document structure and fine-grained discourse elements. There are
other comprehensive conceptual models for scholarly knowledge that capture prob-
lems, methods, theories, statements, concepts, and their relations [31, 21, 15, 50].
Allen [3, 4] investigated issues for implementing entire research reports as structured
knowledge bases. Fathalla et al. [27] semantically represent key aspects of surveys
as research problems, approaches, implementations, and evaluations. NLP-based Se-
mantic Scholar [5] and empirical research focused https://paperswithcode.com/

(PWC) are related systems. The key distinction of the ORKG from these works is
knowledge capture focus (full content vs. only contributions in ORKG).

2.2 Information Retrieval over Knowledge Graphs

Knowledge Graphs, with their ubiquitousness and structured representation of in-
formation, are an instrument in Information Retrieval that enable semantic search.
Reinanda et al. [62] summarize IR over KGs in different tasks and approaches. In
particular, Document Retrieval and Entity Retrieval tasks. We subsequently provide
a brief description of each task and the respective common approaches.

4
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2.2. Information Retrieval over Knowledge Graphs

Query Document Retrieval. The aim of this task is to rank documents w.r.t.
each other from a documents collection given a query based on its relevance to the
query. Expansion-based approaches [20, 76] leverage different query expansion strate-
gies to enrich the query with information from the KG entities and their links. Latent
factor approaches [76, 45] map queries and documents to a latent space based on
the entities and their relationships in the KG and then rank the documents with a
similarity measure like KL-Divergence [38]. Language modeling approaches [61, 25]
introduce document retrieval by leveraging language models based on entity or term
frequencies in the KG. Ensan and Bagheri [25] computed the query likelihood model
based on an undirected graphical model built around the entities. Deep learning
approaches [77, 46] utilize KG embeddings, where query and documents are repre-
sented as embeddings of entities and the semantic relatedness is computed in the
embedding space.

Query Entity Retrieval. This task aims at ranking entities of a KG based on their
relevance to a given query. As in document retrieval tasks, some works [10, 11, 56]
leverage language modeling approaches to retrieve entities from KGs with different
modeling strategies. Van Gysel et al. introduce in their works [72, 71, 30] neural ap-
proaches for entity retrieval, where they learn distributed word representation from
textual evidence in an unsupervised way and improve their work by learning term
and entity representations in a different latent space. Multi-fielded representations
approaches [39, 58, 70] define a KG entity as an object with fields and their rela-
tionships, where it is represented as a set of fields with bag-of-words values. Then
they apply multi-fielded retrieval algorithms such as TF-IDF [65] and BM25F [54]
to build a language model.

This work utilizes the knowledge gained from different related works. In particu-
lar, we leverage the multi-fielded entities representation in chapters 4 and 5 with the
BM25 [64] multi-fielded retrieval algorithm to build a language model for both queries
and documents. In chapter 5 we also introduce a supervised neural approach, where
the multi-fielded entities and text queries are represented in SciBERT [13] latent
space. Whereas in chapter 6 we utilize an unsupervised algorithm to group simi-
lar texts represented in SciBERT latent space that are then mapped to structured
entities in the ORKG.

5



Chapter 2. Related Work

2.3 Information Retrieval Evaluation Metrics

As stated in the standard textbook on Information Retrieval [49] and in a survey on
evaluation in Information Retrieval [66], there is a set of common evaluation metrics
in the research field that can be classified depending on the retrieval results set.
For ranked retrieval results, the most common metrics are Mean Average Precision
(MAP), Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain
(NDCG), which can handle an ordered set of results. On the other hand, Precision,
Recall and their harmonic mean F-measure are considered as the common metrics for
dealing with unranked retrieval results. In chapter 3, MAP and MRR are applied in
the evaluation part to measure retrieval ranks. And in chapters 5 and 6, the precision,
recall, and f-measure, are applied where only retrieval results are considered.

6



Chapter 3

The Open Research Knowledge
Graph

Since the Open Research Knowledge Graph (ORKG) digital library forms the basis
of this thesis, it is explained in detail in this chapter for its existing features.

The ORKG leverages the knowledge graph (KG) model for representing schol-
arly contributions. In the ORKG, a scholarly contribution is interpreted as the result
of the investigation that contributes towards the advancement of scientific human
knowledge by adding something new. The ORKG is an infrastructure for the acquisi-
tion, curation, publication and processing of semantic scholarly knowledge. It lever-
ages structured scholarly knowledge acquisition using crowdsourcing and text mining
techniques as well as supports knowledge curation, publication and processing. The
platform is hosted online at https://www.orkg.org/. The software underlying the
platform is open source at https://gitlab.com/TIBHannover/orkg and users can
provide feedback on issues and features, guide future development with requirements,
and, last but not the least, contribute to the implementation itself. Eight main char-
acteristic features of the knowledge-graph-based ORKG DL that differentiate it from
the traditional document-based DLs are the following.

1. Structured research contributions. The ORKG aims to capture structured
and semantified scholarly articles for their research contributions.1 The structured
information includes: basic metadata about the paper (e.g., title and authors); struc-
tured content about the research contribution describing the addressed problem, the
utilized materials and methods, and the obtained result. In the graph, the metadata
and contributions underlay different encapsulating nodes. And a paper can be con-

1https://www.orkg.org/orkg/add-paper

7

https://www.orkg.org/
https://gitlab.com/TIBHannover/orkg
https://www.orkg.org/orkg/add-paper


Chapter 3. The Open Research Knowledge Graph

nected to more than one contribution node. An example of a structured article in
the ORKG for its contributions is depicted in Figure 3.1.

Figure 3.1: The Front-end flattened graph view of a scholarly article having its two
contributions (see red Tabs titled ‘Contribution 1’ and ‘Contribution 2’) structured
in the Open Research Knowledge Graph platform.

2. Templates. ORKG supports the possibility of creating templates that stan-
dardize the structure of content types of a contribution; and of reusing the templates
when describing new research contributions. Figure 3.2 shows the specification of the
attributes of a process that estimates the basic reproduction number of a population
using a specific method.

3. Comparisons. The ORKG also supports downstream applications such as the
creation of surveys over structured scholarly contributions. In other words, given

8



Figure 3.2: A template in the Open Research Knowledge Graph to model the stan-
dardized properties of the ‘Basic reproduction number estimate’ contribution infor-
mation from scholarly articles.

articles structured for their research contributions, it is possible to compare several
contributions across papers that address a specific research problem. Figure 3.3
shows an example of an automatically computed survey.

4. Graph visualization. The example screenshots so far show how research
contribution data is presented in the statement browser in the ORKG Front-end.
However, since the ORKG is a knowledge graph, paper and research contribution
descriptions can also be visualized as a graph. Indeed this is the data structure for

9



Chapter 3. The Open Research Knowledge Graph

Figure 3.3: An automatically compiled survey of structured contributions for the
Covid-19 reproductive number (https://www.orkg.org/orkg/problem/R12219/
COVID-19_reproductive_number) research problem in the Open Research Knowl-
edge Graph platform.

storing the structured contribution descriptions in the Back-end. In the Front-end,
additionally, the ORKG makes available an alternative graph view providing a com-
plementary way to interact with ORKG content. It is a dynamic user interface for
visual exploration of graph data and includes a range of features to make exploration
of highly structured graph data intuitive. The graph is automatically optimally ar-
ranged on the screen. Nodes can easily be expanded, collapsed or removed. The
nodes can be represented in a graph or tree layout. Users can search for information
in the graph. An example of a graph view of a structured paper contributions can
be seen in Figure 3.4.

5. Observatories. The ORKG implements the model of Observatories to organize
and highlight structured scholarly knowledge contributors at the institutional level.
With the help of this feature, the pooling of disciplinary expertise is enabled. Obser-
vatories comprise essentially groups of experts (e.g., senior researchers) affiliated with
different institutions that curate and organize ORKG content for a specific discipline,
and within that typically a specific research area or even a research problem. Since
such knowledge curation and organization is time consuming, ORKG acknowledges
the contribution of experts as well as the institutions they are members of. Figure 3.5
shows how this acknowledgment is implemented as provenance information for the

10
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Figure 3.4: The graph view of one research paper in the Open Research Knowledge
Graph having its metadata (e.g. title, authors, date) and structured data of one
contribution. Expanding, collapsing or removing a node can be triggered by clicking
on the respective icon at the respective node.

description of research contributions. Observatories and their experts can contribute
in numerous ways to ORKG. In addition to adding and describing papers or curat-
ing existing papers, observatories play a crucial role in knowledge organization for a
particular research area. In ORKG, observatories can for instance specify templates
for the information types that are most relevant to their area of research. In doing
so, observatories help ensure the creation of high quality and comparable structured
scholarly knowledge for their area.

6. Data Science. The structured and semantic description of scholarly knowledge
enables easier reuse of fine-grained structured scholarly knowledge in downstream ap-
plications. The comparisons feature discussed earlier is only one example of a down-
stream advanced information technology application on the ORKG. The structured
data, however, can be leveraged in various other data analytics settings. To support
this diversity, the ORKG implements a web-based interface (REST API), which can
be used in, for instance, Python programming to access and process ORKG content.
For Python, we also provide a specialized ORKG library, which further simplifies

11



Chapter 3. The Open Research Knowledge Graph

Figure 3.5: A research contribution in the ORKG with a provenance of
the observatory “Occupants’ Perception and Behaviour” https://www.orkg.

org/orkg/observatory/Occupants_perception_and_behaviour and the organi-
zation “Uniklinik RWTH Aachen” https://www.orkg.org/orkg/organizations/

Uniklinik_RWTH_Aachen shown on the right side of the contribution view.

accessing ORKG content (https://pypi.org/project/orkg/0.11.3/).1 With it
one can load ORKG structured information (individual contribution descriptions
and comparisons) into a data analysis environment such as Jupyter Notebooks and
language-native data structures such as pandas DataFrame to further process data
and create domain-specific applications for data visualization, interpolation, mod-
eling, simulation, etc. An example is depicted in Figure 3.6. More information on
performing data science with the ORKG data is available online https://www.orkg.
org/orkg/help-center/article/15/ORKG_Data_Science_with_Jupyter.

1The documentation of the ORKG Python package is accessible online at https://orkg.

readthedocs.io/en/latest/index.html.
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Figure 3.6: An instance of implementing visualization data analytics on an imported
ORKG comparison data in a Jupyter notebook using the ORKG Python API.

7. Benchmarks. This feature enables tracking the progress of scientific research
tasks defined as datasets. E.g. Question Answering defined over the SQUAD
dataset [59] (https://www.orkg.org/orkg/benchmark/R119758/problem/R2061).
Benchmarks are a special case of an ORKG Contribution. A Benchmark for an eli-
gible paper can be defined by leveraging the Leaderboard template (https://www.
orkg.org/orkg/template/R107801) to structure contributions from the paper, and
the relevant dataset, model, and evaluation measures will automatically be plotted
in a new or existing performance evolution trends chart. The charts are grouped by
Research problem, Dataset, and Metric. Figure 3.7 illustrates a benchmark page.

8. SmartReviews. This is a novel conceptualization of a research article in the
context of leveraging the ORKG structure contributions and surveys. This new
feature called SmartReviews enables multiple users to create review or a survey
article basically grouping multiple surveys etc. in the context of one scientific findings
narrative. SmartReviews are dynamic, community maintained articles that anyone
can contribute to (similar to Wikipedia). SmartReview articles consist of several
ORKG components, including: comparisons, visualizations, and individual paper
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Chapter 3. The Open Research Knowledge Graph

Figure 3.7: A benchmark page in the ORKG for the Text Summarization research
problem on the CNN/Daily Mail dataset showing different systems evaluated with
the Rouge L metric. A list of all benchmarks are online at https://www.orkg.org/orkg/
benchmarks.

contributions. This proposes a novel direction in the writing of academic articles
leveraging in part machine-actionable data in the context of discourse text.
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Figure 3.8: A SmartReview article created from structured surveys in
the ORKG. More information on creating smart reviews can be found here
https://www.orkg.org/orkg/help-center/article/6/SmartReviews_-_creating_

review_articles_with_the_ORKG.
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Chapter 4

Scholarly Contributions Similarity

As the first information retrieval service aspect in ORKG, this thesis addresses the
similarity service over research contributions called Simcomp. It was first introduced
by Jaradeh et al. [34] to help researchers view the most similar other ORKG contri-
butions to the one they are currently browsing in a single page without the need to
search for them. This feature is akin to a ‘most related pages’ feature in regular web
pages. The difference in the ORKG is that the similarity is computed over structured
information in contrast to web pages that has unstructured text; and the informa-
tion focus is unique, i.e. scholarly contributions data. This offers two main benefits:
1) ease of browsing the ORKG; and 2) rapid survey creation process by selecting
all the similar contributions bundled within a single view via the ORKG contribu-
tions comparison creator feature. Thus, in terms of the Findable data aspect of the
FAIR Data Principles [75], the ORKG Simcomp service improves the findability of
its research contributions.

While the standard information retrieval practices in scholarly digital libraries
concern retrieving similar papers, slightly deviating from this norm, the ORKG Sim-
comp service computes similar research contributions. To this end, there are some
particularities that need to be clarified at the outset. The ORKG is conceptually
structured at the top-level w.r.t. an Ontology1 in which a research paper node is
a class that can contain one or more nodes about the research contributions of the
paper. The Simcomp similarity service then discussed in the subsequent chapter is
indeed based on the contribution nodes and not the paper nodes. As an example,
Figure 4.1 shows a paper structured in terms of its three different research contribu-
tions. Note also that two contributions from the same paper can be dissimilar from
each other.

1https://gitlab.com/TIBHannover/orkg/orkg-ontology
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4.1. Technical Description

The remainder of this section is organized as follows. Section 4.1 offers the techni-
cal details of Simcomp. Section 4.2 describes the novel gold-standard dataset created
as part of this work to quantitatively evaluate the performance of the similarity ser-
vice and enhancements also made in this work. Section 4.3 analyzes the pros and
cons of the existing service. Section 4.4 describes the enhancements of this work to
alleviate the service limitations. Section 4.5 presents evaluations showing the impact
of the enhancements made to Simcomp. Finally, we conclude this part of the thesis
with Section 4.6.

4.1 Technical Description

This section presents the technical details of ORKG’s original Simcomp service that
this thesis work aims to optimize.

Simcomp leverages an existing search engine viz. Elasticsearch. Elasticsearch [69]
is a full-text, highly scalable, free, and open source search engine based on the Apache
Lucene1 library. It can store large volumes of schema-free data optimally using a
NoSQL-Database [57] under the hood. Its IR-specific features are: it can compute
similarity rankings over a set of documents; and it can generate an inverted index
to keep track of documents enabling their lookup via keywords, which makes the
retrieval process faster, easier, and more accurate. In other words, this latter feature
called indexing is a data structure technique applied to optimize the performance of
a database by looking up an index (or indices) before accessing the whole collection.
This is akin to a lookup over the table of contents of a book to decide which chapter
to read first. Some natural questions about the details may arise. Such as i) what
method does Elasticsearch use to rank the documents and terms within an index?;
And ii) how can an ORKG contribution be expressed in terms of what is considered
an Elasticsearch document?

Elasticsearch uses the BM25 algorithm [64], one of the most common text-
retrieval algorithms, as its default ranking method. It’s based on the Probabilistic
Relevance Framework and state-of-the-art TF-IDF-like [60] retrieval ranking func-
tions. As the word probabilistic suggests, the point here is computing the relevance
score of a document (or set of documents) to a query. Equation 1 shows the BM25
scoring formula between a document D and a query Q pair:

score(D,Q) =
n∑

i=1

IDF (qi) ∗
f(qi, D) ∗ (k1 + 1)

f(qi, D) + ki ∗ (1− b+ b ∗ |D|
avgdl

)
(1)

1https://lucene.apache.org/
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Figure 4.1: Front-end view of the paper https://www.orkg.org/orkg/paper/R8186
structured in 3 contributions (shown in different tabs). Contribution Similarity,
Literature Comparison and ORKG-System. The research problems and data of the
contribution “Contribution Similarity” (highlighted in red) are shown; as well as 3
of its similar contributions (in gray boxes).

where qi is the i-th query term. f(qi, D) is the qi’s term frequency in the document D.
|D| is the length of D. avgdl is the average document length in the entire documents
collection. k1 and b are Hyperparameters that affect the term frequency saturation
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4.1. Technical Description

and document length to average document length ratio, respectively. IDF (qi) is
given by equation 2:

IDF (qi) = ln(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1) (2)

where N is the total number of documents in the collection and n(qi) is number of
documents containing qi. Knowing the scoring function, we now have an overview of
how everything is being calculated and could imagine how Elasticsearch’s indexing
process looks like. An index is like a bag-of-words of all documents’ terms, that are
counted for each single document (f(qi, D)) and over all documents (n(qi)). These
numbers are counted while indexing and should be updated when a new document
comes into a precomputed index.

Concerning the second question about how an ORKG contribution can be equiv-
alently seen as an Elasticsearch document, this can be explained as follows. Recall
that a contribution is structured in the ORKG as a set of triple statements (S, P,
O). The default process of making a document from these statements is simple. The
labels of the subject, predicate, object triple are concatenated, then each triple is con-
catenated to the next triple expressed as its labels, and finally they are concatenated
with the paper’s title. In the ORKG context, search queries are also constructed in
the same way since they are in fact contributions to which other similar contributions
are to be computed. Reserved characters1 when encountered need to be escaped at
query time for Elasticsearch.

The components described should allow one to intuit how Elasticsearch works as
a standalone service and its applicational relevance over ORKG contributions. Its
ORKG-specific operational workflow as Simcomp is presented in Figure 4.2. First,
the application is launched which then calls the initialization service. This service
creates a document for every contribution in the ORKG and indexes it. At query
time, the contribution viewed in the Front-end by an ORKG user is set as the query
to the Elasticsearch index. Its document is looked up in the precreated index where
BM25 relevance scores [64] per query indexed document pair and ranked results can
be returned. The Elasticsearch index is periodically updated to incorporate new
contributions added to the ORKG or edits made to existing contributions.

Simcomp [51] offers RESTful Web APIs [63] using the Flask2 Framework based
on Python. The source code is hosted at the TIB-Hannover GitLab Repository.3

1https://www.elastic.co/guide/en/elasticsearch/reference/current/

query-dsl-query-string-query.html#_reserved_characters
2https://flask.palletsprojects.com/en/2.0.x/
3https://gitlab.com/TIBHannover/orkg/orkg-similarity
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Figure 4.2: Similarity service operational workflow. Arrows show the data flow

4.2 ORKG Similarity Service Evaluation Corpus

In Computer Science, it is an established practice to create benchmarks, i.e. a
predefined set of objects containing the parameters tackled in a problem over which
performances are measured. In the context of the Simcomp service, a benchmark
should thus be established. By measuring the service or its enhancements against the
benchmark its effectiveness can be quantitatively gauged. Thus as the benchmark
for Simcomp evaluations, in this work, a gold-standard evaluation corpus is created
where the query contribution documents are manually assigned a set of contribution
documents that are its true similar candidates. To create this evaluation corpus, a
criteria put in place was that it needed to cover diverse scientific fields encompassing
those that the Elasticsearch index is based on to ensure fair evaluation of the service.
In this section, more about constructing this corpus is discussed.

Creating the evaluation corpus was not straightforward. Pairs of query con-
tributions and their corresponding similar contributions had to be manually anno-
tated. But which set of contributions should be selected as queries? The ORKG
contains, at the time of this writing, a daily growing collection of 8866 contribu-
tions. It was not practical to look up all of the ORKG’s contributions to select
the best candidates as queries. Instead, we restricted the search space to just the
ORKG featured-comparisons1 originally created by Oelen et al. [51]. Note that

1https://www.orkg.org/orkg/featured-comparisons
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the featured-comparisons are those that are specifically selected since they com-
bine several comparable and, importantly, well-structured semantic representations
of research contributions. For creating our evaluation corpus of contributions, the
individual contributions were isolated from these featured-comparisons. Specifically,
a SPARQL1 query (shown in listing 4.1) was implemented on the ORKG’s RDF-
Dump2 for the IDs of the featured-comparisons together with their contributions’
IDs and research fields as a response.

PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>

PREFIX orkgp: <http :// orkg.org/orkg/predicate/>

PREFIX orkgc: <http :// orkg.org/orkg/class/>

SELECT ?comp ?contr ?paper ?field

WHERE {

?comp a orkgc:Comparison , orkgc:FeaturedComparison ;

orkgp:compareContribution ?contr .

?paper orkgp:P31 ?contr ;

orkgp:P30 ?field.

}

Listing 4.1: SPARQL query to retrieve featured-comparisons and their respective
contributions and research fields.

In all, 26 featured-comparisons were obtained consisting of 292 contributions.
From the 292, 100 were randomly chosen as the evaluation corpus. Because there
were already a known problem by the baseline similarity service, that is, for some
contributions it does not respond with any similar candidates, we decided to have
the 100 instances with the property that 50 of them have similarities in the response,
where the other 50 do not. Further, to satisfy the corpus creation criteria, we ensured
that the contributions were distributed over various research fields. Figure 4.3 shows
the distribution of the “with response” 50 contributions in the evaluation corpus
over 6 research fields. The statistics of the “without response” 50 contributions are
summarized in Table 4.1.

By now the test instances and their actual values (by default the top-5 similarities
are retrieved) were constructed and the next step will be manually annotating the
instances. It is important to annotate in a systematic way, so one can assume the
reliability in the annotations. As discussed earlier, instead of looking for similar
candidates in the entire ORKG by the manual annotator, we bound the search space

1https://www.w3.org/TR/rdf-sparql-query/
2https://orkg.org/orkg/api/rdf/dump
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for each test instance by leveraging the featured-comparisons. The search space S of
test set’s instance I is defined by Equation 3:

S(I) = C(I) ∪ Simk=10(I) (3)

where C(I) are the compared candidates of I and Simk=10(I) are the top-10 similar
candidates returned by the similarity service. An appropriate number of service’s
results were used to not only restrict the search space to the featured-comparisons,
but to some other contributions in the ORKG. Note that the default number of re-
sults is k=5. The number was increased to k=10 on the local machine in order to
enlarge the search space and evaluate the service properly (see Section 4.5). In the
meanwhile, we differentiated between homogeneous and heterogeneous instances. A
homogeneous case is, for instance, a test contribution1 is very similar to its compared
contributions2 and they only differ by one or very few number of properties. In this
case all homogeneous candidates were considered as annotations for this test contri-
bution. The heterogeneous case is self-explaining the opposite, therefore, only the
top-1 candidate was considered as an annotation. Overall there are 62 homogeneous
and 38 heterogeneous instances.

To sum up, the test set consists of 100 instances divided in two partitions, namely,
“with response” and “without response” with 50 instances for each. We also distin-
guish the annotation type of one instance between homogeneous instances with sev-
eral annotations and heterogenous instances with exactly one annotation, i.e. each
instance of the test set is manually annotated with 1-n annotations as expected
similarities, where n is the number of all homogeneous candidates of a test instance.

Research Field # Test Set Instances

Environmental Sciences 7
Climate 27
Virology 11

Artificial Intelligence 5

Table 4.1: Test set’s “without response”-part distribution over research fields.

1https://www.orkg.org/orkg/resource/R39049
2https://www.orkg.org/orkg/comparison/R39082
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Figure 4.3: The “with response” evaluation corpus contributions distribution over
research fields. Each subplot is a research field, the x-axis is the query contribution
instances, and the y-axis is the number of similar contributions returned by the sim-
ilarity service sharing the same research field as the query. The query contributions
with lower number of similar contributions sharing the same research field either got
only that set of contributions in the response (e.g. R6387) or got contributions from
research fields similar to its own (Biochemistry and Virology e.g. R38266).

4.3 Analysis of the Default ORKG Contributions

Similarity Service

In this section, the default ORKG similarity service is reviewed. Conducting such
a review enables one to identify the precise engineering enhancements to improve
the service effectiveness. For this, each step of the operational workflow shown in
Figure 4.2 was analyzed and tested for possible failures. The service was analyzed
for unexpected results against a set of randomly selected contributions as queries
and their expected results. This was considered the service development set and was
not part of the evaluation corpus created in this work.
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4.3.1 The DocumentCreator Module

In this step, the expected outcome, as described earlier in Section 4.1, is a concate-
nation of the labels of the contribution’s triples and the respective paper’s title. The
statements and the paper’s title are fetched directly from the ORKG’s data stored
in the Neo4j1 database using two Cypher2 queries. The first query should have the
contribution’s statements as response after expanding all connected nodes to the
contribution’s node recursively until the label nodes are reached. At this point, the
question arose whether the query could be cyclic in the case an object in the sub-
graph references the same contribution subject’s node. The answer was no, since the
used procedure3 in the query discards such cycles and prevents infinite loops. The
second query should have the paper’s title as response, but it does not because of a
source code bug and instead returns “None” as response. An example document is
shown in Listing 4.2. There was also redundancy noted in the generated document
as subjects and predicates were repeated if there is, for example, a list of objects
for a specific predicate. These repetitions could misleadingly bias the score of one
document over another in the querying process, since the BM25 [64] ranking function
counts the occurrences of terms in a document. Another observation was that the
objects’ labels could be long text descriptions containing relevant as well as noisy
irrelevant terms for the contribution itself. Including such texts made it hard to con-
trol the semantic score for that contribution as a meaningful number of similarity to
other contributions. Thus such descriptive labels were undesirable in the document.

None Contribution 1 Evidence Abstract Contribution 1 Evidence

Author name Contribution 1 has research problem Author name

disambiguation Contribution 1 uses similarity Cosine

Contribution 1 Uncertainty F Contribution 1 Performance

metric F1 Contribution 1 deals with Homonyms problem

Contribution 1 Limitations If relationship information is

not available then this method would not perform well

Contribution 1 Performance metric Pairwise accuracy

Contribution 1 Performance metric Precision Contribution 1

Evidence References Contribution 1 dataset Self designed

Contribution 1 Evidence Title words Contribution 1 Method

Unified Probabilistic framework with Markov random fields

Contribution 1 approach Unsupervised Learning Contribution

1 Evidence Year Contribution 1 Evidence venue

1https://neo4j.com/
2https://neo4j.com/developer/cypher/
3https://neo4j.com/labs/apoc/4.0/graph-querying/expand-subgraph/
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Listing 4.2: The document representation of the contribution R6088 in the default
Contributions Similarity Service.

4.3.2 The Elasticsearch Module

In this step, the NLP pre-processing of the labels text applied by Elasticsearch
was examined. It makes use of the Standard Analyzer,1 consisting of a Standard
Tokenizer2 which is grammar-based and a Lowercase Token Filter3 that lowercases
the given text. Listing 4.3 gives an example of applying the standard tokenizer on
a synthesized example text. Some observations are i) stop words are not filtered
and ii) hyphenated words are not compounded. For instance, “Co-authors” should
be considered as “Coauthors”, while “linked-data” can be considered as “linked”
“data”.

Further, in the default service querying step, after retrieving the similar contri-
butions, all contributions with a similarity percentage greater than 80% are being
discarded. This threshold was chosen empirically, assuming that very similar con-
tributions are identical and identical ones cannot be similar. This is actually a
strict assumption, since each contribution has a unique identifier in the ORKG and
therefore, there are in principle no identical contributions. Note that the similarity
percentage is computed by:

SimilarityPercentage(D,Q) =
score(D,Q)

score(Q,Q)
(4)

where the score function is given by equation 1.

text: The author and his co -authors wrote a paper about linked

-data

tokens: "The", "author", "and", "his", "co", "authors", "wrote

", "a", "paper", "about", "linked", "data"

Listing 4.3: A tokenization example using the Elasticsearch’s standard tokenizer.

1https://www.elastic.co/guide/en/elasticsearch/reference/current/

analysis-standard-analyzer.html#_definition_4
2https://www.elastic.co/guide/en/elasticsearch/reference/current/

analysis-standard-tokenizer.html
3https://www.elastic.co/guide/en/elasticsearch/reference/current/

analysis-lowercase-tokenfilter.html
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When noting the Elasticsearch responses to queries, it returns all indexed docu-
ments sorted by the BM25 score. The question then is, should there be a lower-bound
threshold? Consider that the ORKG’s Front-end displays the similarity percentage
between the browsed and each of the retrieved contributions. This places the decision
in the hands of the end-user to include a returned contribution in a comparison. The
resulting conclusion to this end is that discarding less similar contributions limits
the user’s choices so it is preferred to display them anyway, as opposed to no results,
despite low similarity.

4.3.3 The Default ORKG Contributions Similarity Service
Response Analysis

Apart from investigating the technical details of the individual default Simcomp
modules, there is also a need to analyze the responses for meaningfulness from the
service to randomly selected ORKG contribution queries. This is discussed next
w.r.t. the top-ranked query response:

1. Survey contribution returned as top-ranked response to query con-
tribution system surveyed. The top-ranked result for contribution R6402
(with paper’s title “Natural language questions for the web of data” and re-
search problem “Question answering systems”) is R9469 (with paper’s title
“Survey on Challenges of Question Answering in the Semantic Web” and re-
search problem “Ambiguity in QA”). R9469 surveys various systems including
the contribution R6402. The systems surveyed share similar structures, there-
fore, the query terms occur multiple times in the R9469 structured contribution
description, which explains its high rank.

2. Elasticsearch supports only surface term similarity matches with-
out semantic reasoning capacity. The responses to R112273 (with paper’s
title “Klimaschutzszenario 95 (KS95)” and research problem “Future energy
and emission scenario predictions”) have almost nothing semantically in com-
mon with it. The term “Assumptions” in R112273 is repeated many times in
the query and it is included in the first result R31051. Having a frequent term
in the query increases its importance in turn positing it as a similar candidate.
Note then that this highlights the term-based dependency of Elasticsearch over
deeper semantics which it does not possess.

3. Different user-specified structuring of two contributions with nearly
the same contribution information. The common terms of R6466 (with
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paper’s title “Visualizing Populated Ontologies with OntoTrix” and research
problem “Graph-based visualization systems”) to the query contribution R25719
(with the same paper’s title and research problem “Data Visualization”) were
structured one level deeper in the hierarchy by the user.1 Whereas R25719
contains exactly the same terms one-level higher as structured by a different
user. In principle, both are two different contributions, since there is a unique
identifier for each, but they are semantically identical thus they wouldn’t be
good candidates to compare in an ORKG comparison. Nevertheless the default
service response in this query context is sound.

4. Loss of valid similar contribution candidates due to the upper-
bound 0.8 threshold of the default Simcomp service. The paper of
the contribution R41020 consist of 6 contributions that are similar to each
other and mainly differ by the city location, where the COVID-19 cases are be-
ing reported. R41020 reports the cases in “Hubei, China” and the response of
the baseline R41025 reports the cases in “International (46 countries)”. While
R41025 is a valid similar contribution result to R41020, there are other valid
candidates that should be higher ranked since they share a greater similarity
with the query. For instance, R41019 reports the cases in “Rest of Hubei,
China”, which indeed shares a greater similarity with the query. The reason
this result is not returned in the default service is because its similarity mea-
sures over 0.8 which in the default service is set as the discarding upper-bound.
Note that the 3 mentioned contributions belongs to the same paper with title
“Unique epidemiological and clinical features of the emerging 2019 novel coro-
navirus pneumonia (COVID-19) implicate special control measures” and have
the same research problem “COVID-19 case fatality rate”.

4.4 Thesis Implementation of Simcomp Enhanced

After analyzing the default service workflow, a summary of the service limitations
addressed in this thesis are as follows. 1) The DocumentCreator Module output will
be re-engineered such that repetition of terms in the existing method of traversing
contributions will not occur, thus the side-effect of biasing similarity scores of the
contribution document will be averted; 2) the paper title no response will be fixed; 3)
the upper-bound 80% threshold will be dropped; 4) objects with lengthy descriptive
labels will be dropped; and 5) the default Elasticsearch NLP pre-processing w.r.t.
hyphenation and stop words filtering will be addressed.

1The graph hierarchy of the contribution
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First, the new DocumentCreator module implemented as part of this thesis is
described. Figure 4.4 shows an illustration with a contribution’s snippet from the
ORKG. It works in the following steps.

1. The statements (S, P, O) of the contribution are fetched from the Neo4j
database and joined with slash characters to compose triples as raw paths.

2. Considering the contribution’s title - “Contribution 2” in the example - the
root and as long as there are still paths that do not start with the root, the
DocumentCreator iterates over all paths, takes the object of the current path,
looks for paths starting with that object, replaces the object with those paths
and finally removes them. This step is prone to cyclic contribution graphs,
therefore, the implementation of this work discards such cycles and ensures
not getting stuck in an infinite loop.

3. The composed paths have in principle the same structure as a file system, if one
considered the contribution’s title as root directory, the intermediate resources
as subdirectories and the labels as files. The document creator removes the
repetitions properly and forms a YAML-structured document.

4. All whitespace characters are trimmed to form a document similar to the one
of the baseline.

5. Both the paper’s title as well as the paper’s research field are set as prefix to
the document. Listing 4.4 shows the simplified YAML-structured document of
the R6088 contribution, which can be compared with Listing 4.2.

A Unified Probabilistic Framework for Name Disambiguation in

Digital Library Databases/Information Systems Contribution

1 Evidence Year Author name Title words Abstract References

venue Limitations If relationship information is not

available then this method would not perform well Method

Unified Probabilistic framework with Markov random fields

Performance metric F1 Pairwise accuracy Precision

Uncertainty F approach Unsupervised Learning dataset Self

designed deals with Homonyms problem has research problem

Author name disambiguation uses similarity Cosine

Listing 4.4: The document representation of the contribution R6088 using the
YAML-structured document creator

28



4.4. Thesis Implementation of Simcomp Enhanced

Figure 4.4: YAML-structured improved document creation process with example
statements of the R9469 contribution. The red circled numbers are the order of the steps.

Next, w.r.t. dropping descriptive object labels from the document created for
Elasticsearch as a representation of contributions. This is done by setting an upper-
bound permissible phrase length threshold. [43] reports that 90% of information is
when sentences averaged 14 words in English. Since the DocumentCreator targets
phrases and not sentences, half the length i.e. 8 words is fixed as an upper-bound
for valid phrases. Thus any phrases longer than 8 words are not included in the
contribution resulting document.

Finally, the NLP pre-processing modules are addressed. Hyphenated words are
handled with the Whitespace Tokenizer1 by defining a custom analyzer for Elastic-
search, to make the hyphen handling take effect. Table 4.2 shows occurrence cases
of hyphens in a text and how they are handled. Further, a custom stop word filter is
added to the Elasticsearch’s analyzer. This work used the English stop words2 from
NLTK3.

Last and as a technical modification to speed up searching the index, the indexing
process now indexes contributions are by their research field, i.e. one index is created
for each research field, as opposed to indexing all contributions in a single index.

1https://www.elastic.co/guide/en/elasticsearch/reference/current/

analysis-whitespace-tokenizer.html
2https://gist.github.com/sebleier/55428#gistcomment-2596130
3https://www.nltk.org/
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Case Before Handling After Handling

alphanumeric-alphanumeric
Linked-data Linked data
IPSL-CM5 IPSL CM5

alphanumeric*-alphanumeric
U-Velocity UVelocity
Co-author Coauthor

12-December 12December

alphanumeric-alphanumeric*
QALD-5 QALD5

C-Mn CMn
numeric-numeric 1990-1995 1990-1995

Table 4.2: Hyphen occurrence cases in a text with examples before and after han-
dling. alphanumeric* is any alphanumeric text with a maximum length of 2.

4.5 Evaluations and Discussions

With the enhancements in place, this section discusses evaluations in depth. The
following list shows the enhancements applied per implementation version, where
each1 version was called on the ORKG’s Neo4j-Dump from 23.06.2021 and returned
10 responses:

• v0: The default Simcomp service as the baseline system.

• v1: v0 is fixed. For instance, the discarding threshold is suppressed and other
error-prone places in the source code that could lead to a program crash while
calling the initialization service are fixed.

• v2: v1 + paper’s title and research field are attached to the created document.

• v3: v1 + discarding of long literals and escaping the reserved special characters.

• v4: v1 + YAML-structured document instead of the baseline’s document (rep-
etitions reduction). The document creation process includes escaping the re-
served special characters.

• v5: v4 + paper’s title and research field are attached to the created document.

• v6: v5 + discarding of long literals.

• v7: v6 + hyphen handling in combination with configuring the Elasticsearch’s
tokenizer as well as filtering the NLTK stopwords.

1Except v0, which returned no results in the “without response” part.
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• v8: v4 + creating an Elasticsearch’s index for each research field.

Recall that our test set described in Section 4.2 has specific categorical groupings
which themselves are leveraged in different evaluation scenarios. Consider that they
are in four categories: the homogeneous set, the heterogeneous set, the “with re-
sponse” contribution query set, and the “without response” contribution query set.
In addition, a qualitative analysis over a small blind set similar to Subsection 4.3.3
will be discussed.

4.5.1 The “with response” and “without response” Results

The first idea was to evaluate the two 50 query instances sets created regardless of
the homogeneity criteria between the query and their annotated paired contributions
as valid responses. The evaluation formula is shown in Equation 5. It is a simple
counting formula inspired after the standard recall metric that adds 1 whenever the
top-10 responses to a query include at least one of the annotated valid response con-
tributions. Note that while loosely inspired after recall, it does not adhere strictly to
the definition of recall as we custom define the numerator to measure the percent-
age of test queries that get a valid response in their top-10 automatically returned
responses from Simcomp.

Valid Response Approximation =
1

|Q|

|Q|∑
q=1

f(q, k) (5)

where k is the response set from Simcomp, Q is the test set of queries, and f(q, k) is
a function that evaluates to 1 if top-k retrieved results includes at least one relevant
document illustrated in Equation 6:

f(q, k) =

{
1, if V alid(q) ∩Response(q, k) 6= ∅
0, otherwise

(6)

where V alid(q) is the set of valid response contributions as defined in the gold-
standard set for query q and Response(q, k) is the set of top-k contribution responses
from Simcomp for query q.

The results of applying the “Valid Response Approximation” metric on the test
set are shown in figures 4.5 and 4.6 for the “with response” and “without response”
sets, respectively. In the “with response” set, all the enhanced Simcomp versions (all
bars except the first blue bar) clearly outperform the default Simcomp service in all
result groups. Between the enhancements themselves, one sees similar performances
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between the Simcomp versions for the top-5 to top-10 result groups. In the top-1
block, however, v4 clearly stands out outperforming the other versions followed by v8.
This implies that indeed our intuitions for removing the threshold and implementing
a new method for creating documents is empirically verified are worthy enhancement
contributions to the service (v4). In the “without response” set each top-k block has
a different version that outperforms the others. This we ascribe to the crude nature of
our “Valid Response Approximation” metric as offering only an approximate idea of
performance. Note that since no information about response ranks are incorporated
in it, it is only an approximate measure of performance. A precise measure should
consider the ranks of relevant document in the results list. Thus subsequently for the
heterogeneous and homogeneous sets’ evaluations the MRR and the MAP metrics in
Subsection 4.5.2 and Subsection 4.5.3 are respectively leveraged.

Figure 4.5: Applying the “Valid Response Approximation” metric over the “with
response” part of the test set. The colors indicate the implementation version. Bar
blocks indicate top-k results.

4.5.2 Heterogeneous Set Results with Mean Reciprocal Rank

The Reciprocal Rank (RR) measure [19] calculates the reciprocal of the rank at which
the first relevant document was retrieved. Equation 7 shows the MRR metric which
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Figure 4.6: Applying the “Valid Response Approximation” metric over the “without
response” part of the test set. The colors indicate the implementation version. Bar
blocks indicate top-k results. The blue bars of v0 are not to be seen, since the
baseline returns no results in this part of test set, hence the name.

sums the reciprocal ranks of queries and normalizes them by the number of queries:

MRR =
1

|Q|

|Q|∑
q=1

1

rankq
(7)

where Q is the set of the heterogeneous queries and rankq is the rank position of the
first relevant document for the q-th query.

To justify how MRR is a better choice than the “Valid Response Approximation”
metric, both metrics were applied to evaluate the heterogeneous set consisting of 38
queries. The results are shown in Figures 4.7 and 4.8 for the two metrics, respectively.
To offer an intuition, MRR accounts for the rank as well as the number of true
results and performs a tradeoff between the two. On the other hand, the crude
metric we devised only accounts for the true results returned in the top-k set which
is its limitation since it has no notion of ranks. Consider the case when 4 results
are returned in the top-10 and 5 results are returned in the top-10 but ranked low,
the MRR metric can account for the difference in the results, but the crude metric
cannot. Further, it will simply evaluates the two cases which may not be the best
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desired outcome for an information retrieval where it is important that the relevant
results are top-ranked. Note from our exemplars contrasting the two metric results
in Figures 4.7 and 4.8, the MRR metric clearly indicates the best version in any
scenario of the top-k groups.

Per MRR results depicted in Figure 4.8, v4 outperforms all other versions with a
score around 80 % followed by v8. Versions 6 and 7 have no difference regardless the
number of results retrieved implying that handling the hyphens and filtering the stop
words do not affect the performance of the contributions similarity service. Adding
the paper’s title and research field is a noisy input for YAML-structured documents
on the one hand when versions 4 and 5 are compared, but on the other hand it
does slightly enhance the performance for the baseline’s structured documents when
versions 1 and 2 are compared.

Figure 4.7: Applying the “Valid Response Approximation” metric over the hetero-
geneous instances of the test set. The colors indicate the implementation version. Bar block
groups indicate top-k results.

4.5.3 Homogeneous Set Results with Mean Average Preci-
sion

While MRR accounts for rank position of the relevant document in the retrieved
results, the Mean Average Precision (MAP) [44] not only accounts for the rank
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Figure 4.8: Applying the MRR metric over the heterogeneous evaluation set. The
colors indicate the implementation version. Bar block groups indicate top-k results.

position but also for the number of relevant documents that have been retrieved in the
top-k results. Thus for the 62 homogeneous test set queries, the MAP metric is better
suited than MRR. Recall that in the homogeneous set there are multiple equally valid
contribution responses in the gold-standard to a query. This is in contrast to the
heterogenous set where there is clearly just one most similar contribution response
candidate. Thus evaluating with MAP which offers an idea of how many of the true
responses are returned in the response set rather than just whether the one most
similar response is high ranked is more meaningful for the homogeneous set. The
MAP metric is given by Equation 8.

MAP =
1

|Q|

|Q|∑
q=1

AveP (q) (8)

where Q is the set of queries and AveP (q) is the Average Precision of query q and
is given by Equation 9:

AveP (q) =
1

|Relevant(q)|

N∑
k=1

P (q, k) ∗ rel(k) (9)
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where Relevant(q) is the set of relevant documents for query q, N is number of
retrieved results, P (q, k) is Precision at k for query q and rel(k) is an indicator
function that evaluates to 1 if the item at rank k is a relevant document, zero
otherwise. The Precision at k for query q is given by Equation 10

P (q, k) =
|Relevant(q) ∩Retrieved(q, k)|

|Retrieved(q, k)|
(10)

where Retrieved(q, k) is the set of k retrieved documents for query q.

The results of applying the MAP metric over the different versions is shown in
Figure 4.9. It is again evident that version 4 outperforms the others in the top-3
results and has a slight lower MAP score than versions 1 and 3 in the top-10 case. But
since users are mostly interested in the top-3 similar contributions, version 4 remains
justified. Similar to the heterogenous case, v6 and v7 do not have any difference.
Paper’s title and research field are noisy input for both YAML and baseline structured
documents and discarding the long literals enhances the performance a little further
but still has a better performance than that by version 1 and 4.

Figure 4.9: Applying the MAP metric on the homogeneous instances of the evaluation
set. The colors indicate the implementation version. Bar blocks indicate top-k
results. The v0 bar is not visible since the baseline returns no results in most of the homogeneous
instances of the test set.
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4.5.4 Qualitative Analysis

Random ORKG Contributions

In addition to the test set discussed in Section 4.2, this work discusses 4 additional
random chosen contributions from the ORKG, their similar results have been queried
by all implemented versions, in order to acquire a qualitative understanding after
having different modifications. Note that the end-to-end response analysis conducted
in Subsection 4.3.3 was done before the modifications to gain an intuition of the
existing problems in the default Simcomp. Each version was called on the ORKG’s
Neo4j-Dump dated 21.07.2021. The queries and top-1 results are shown in Table 4.3
and discussed next. We recommend the reader to read each of the following points
side by side with the respective column of the mentioned table:

1. R135270 (with paper’s title “On nonlinear forced vibration of nano cantilever-
based biosensor via couple stress theory” and research problem “Theoretical
considerations on the performance of nanocantilevers as biosensors”): For this
query v0 returns no results and other versions return either R135263 (with
paper’s title “Modeling the material structure and couple stress effects of
nanocrystalline silicon beams for pull-in and bio-mass sensing applications”)
or R135267 (with paper’s title “Optimization of a nano-cantilever biosensor for
reduced self-heating effects and improved performance metrics”). Both contri-
butions have the same research problem as the query and are structurally and
semantically similar to the query and are included in the top-3 results of all
versions. The difference is how each version counts the terms in its point of
view. For instance, v6 and v7 ignores long literals, which form the majority of
the query in this case.

2. R135171 (with paper’s title “Domain Adaptive Transfer Learning on Visual
Attention Aware Data Augmentation for Fine-grained Visual Categorization”
and research problem “Image Classification”): Versions 0, 1 and 2 return an
error when queried that a special reserved character is not handled and need
to be escaped to be included in the query. This issue is solved by the special
character handling and the new DocumentCreator. All other versions respond
with R134925 (with paper’s title “Sharpness-Aware Minimization for Efficiently
Improving Generalization” and the same research problem as the query) as
most similar instance, which is reasonable, since both contributions are about
image classification models.

3. R135183 (with paper’s title “Domain Adaptive Transfer Learning on Visual
Attention Aware Data Augmentation for Fine-grained Visual Categorization”
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and research problem “Fine-Grained Image Classification”): Versions 0, 1 and
2 have the same previous problem. Both top-1 responses R135098 (with paper’s
title “Sequential Random Network for Fine-grained Image Classification” and
research problem “Image Classification”) and R135180 (that comes from same
paper as the query but has the research problem “Image Classification”) are
semantically reasonable, and therefore, similar to the query. Version 4 includes
both contributions in its results. Versions 5, 6 and 7 prefer R135180 because
it belongs the same paper.

4. R135476 (with paper’s title “An Ontology-Based Approach for Curriculum
Mapping in Higher Education” and research problem “Ontology Learning”):
Structurally, both R135479 (with paper’s title “A learning object ontology
repository to support annotation and discovery of educational resources using
semantic thesauri” and research problem “ontology creation”) and R136012
(with paper’s title “Ontology-Based Personalized Course Recommendation Frame-
work” and research problem “Ontology mapping”) are similar to the query, but
only R135479 is semantically similar to the query, since they are about edu-
cational topics. R136012 was as usual chosen because of the similarity in the
paper’s title. The contribution R8466 is a very good example showing that re-
stricting the search space to one research field could be a bad limitation. Since
the BM25 scoring function only considers terms and documents frequency with-
out checking any semantic meanings and version 8 restricts the search space,
R8466 was highly scored. Whereas the more similar ones are not assigned to
the same research field. Furthermore, browsing the top-10 results produced
by v4 shows that all results are (partially) meaningful to this query since all
results are in one way or another about ontology-based approaches in the ed-
ucation field and their similarity percentages are in the range between 17.2%
and 55.8%.

Thus, one can conclude that versions 3 and 4 could always return the best top-1
result. But, version 4 still has the advantage, that it includes both similar results
that other versions have in the case of the query R135183.

Revisiting the Response Analysis

In general, the results of both MRR and MAP metrics show that version 4 outper-
forms its competitors, but there is a need to investigate further whether its results
are interpretable. Revisiting the response analysis Subsection 4.3.3 is a good com-
parison for that matter. Table 4.4 shows a comparison between versions 0, 1 and 4
w.r.t. the top-1 result and it’s interpreted as follows:
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Version
Query

R135270 R135171 R135183 R135476

v0 None Error Error R135479
v1 R135263 Error Error R135479
v2 R135263 Error Error R136012
v3 R135263 R134925 R135098 R135479
v4 R135263 R134925 R135098 R135479
v5 R135263 R134925 R135180 R136012
v6 R135267 R134925 R135180 R136012
v7 R135267 R134925 R135180 R136012
v8 R135263 R134925 R135098 R8466

Table 4.3: Top-1 results of the different implementation versions over the blind set’s
queries.

1. R6402: v4 returns R6320 as a first result which is a contribution that have the
same structure as R6402. The survey is not being returned, since the number
of repetitions have been plainly reduced.

2. R112273: v1 has improved the performance by fixing the software failures, since
R112367 is very similar to the query. But v4 chose R112384 as the most similar
candidate, because of the term “power”, which occurs in both R112273 and
R112384 exactly 2 times whereas it occurs only 1 time in R112367. Having this
term as a literal for the predicate “Includes technologies” is more important
than counting the repetitions.

3. R6466: v4 returns in this case a contribution that has the same hierarchy as
the query and is semantically not identical yet similar to the query.

4. R41020: Both v1 and v4 return the same result, since the problem in this
case was obviously because of discarding similar candidates with similarity
percentage greater than 80%.

Versions Responses Discussion

By comparing versions 4 and 5 one notices that the paper’s information is a noisy
input. On one hand v5 performs well in case that the top-1 similar contribution has
by accident a similar paper’s title as the query itself. On the other hand it prefers
sibling contributions from the same paper. In the case of contribution R6466, v5
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responds as v1 with contribution R25719, which comes from the same paper (recall
the hierarchy problem described above).

For version 6 the results have also shown that discarding the long literals makes
the performance even worse in comparison with version 5 meaning that long literals
are generally informative and should still be included. Query R6101 is a good exam-
ple of how both v5 and v6 seek contributions with similar paper’s title and research
field, but v6 ignores the long literals and wins in this case. V5 and v6 respond with
R6140 and R6070, respectively.

Another point is handling the hyphen in combination with customizing the Elas-
ticsearch’s tokenizer and filtering the stop words. Those ideas do not add any further
modification in the results.

The last method applied is having indices per research field which is implemented
in version 8. The results show a slight difference in comparison with v4, which could
be due the limited test set size, and with a potential data growth in the ORKG it
might perform better than v4. But in fact, it restricts the search space by excluding
contributions assigned to another research field than the query’s, which can be in
some cases unreasonable, since users are human beings and could incorrectly classify
one paper to a another similar research field. For instance, papers on “Covid-19”
could be classified to “Immunology of Infectious Disease”, “Biochemistry” or even
to “Virology” research fields.

In addition to the analysis and evaluation, this work measures how confident is
each version by its returned results, with the help of the similarity percentage derived
from the BM25 score. The average similarity percentage for a version is given by
Equation 11 and the results shown in Figure 4.10 points out that v4 outperforms its
competitors.

AvgSimilarity =
1

|Q|
∑
q∈Q

∑
d∈D SimilarityPercentage(d, q)

|D|
(11)

whereQ is the set of queries, D is the set of retrieved results and SimilarityPercentage(d, q)
is defined in equation 4.

4.6 Conclusion

Evaluating IR systems quantitatively is deemed an important step to concretely de-
termine system performance. To this end, one of the contributions of this thesis
chapter is constructing an evaluation corpus as a human-annotated gold-standard to
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Query
Version

v0 v1 v4

R6402 R9469 R9469 R6320
R112273 R31051 R112367 R112384
R6466 R25719 R25719 R6458
R41020 R41025 R41019 R41019

Table 4.4: Revisiting the response analysis. Comparison between v0, v1 and v4 w.r.t.
the top-1 result.

Figure 4.10: Comparison between simcomp versions w.r.t. average similarity per-
centage.

evaluate the ORKG contribution similarity service Simcomp. The corpus was created
after insights were gleaned on the various characteristics of the ORKG contribution
data. To this end the corpus was compartmentalized in four parts: 1) a homoge-
neous evaluation set - consisted of query contributions that had other contributions
very similar to it and therefore were equally matched similar to the query; 2) a het-
erogeneous evaluation set - consisted of query contributions which clearly another
winner similar contribution response standing out from other candidates; 3) a “with
response” set - consisted of query contributions having similarities in the response
of the default Simcomp service; and 4) a “without response” set - consisted of the
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query contributions not having similarities in the response of the default Simcomp;
Where sets 1 and 2 overlap with sets 3 and 4 having 100 test instances in total.

A detailed service response analysis was performed on the default Simcomp ser-
vice. Its working was analyzed and technical shortcomings were noted. Based on
the observations made, various enhancements were implemented to Simcomp. In
all, eight different versions were created that included one or more combinations of
the enhancements. E.g., a new DocumentCreator module to represent the contribu-
tions was implemented, the NLP preprocessing steps were tailored to better suit the
ORKG labels, etc.

Finally, detailed evaluations were conducted. In this step, the evaluation cor-
pus described at the beginning of the thesis chapter was leveraged. With it, the
default Simcomp service could be evaluated w.r.t. the various enhancements made
in this thesis. At least three different evaluation metrics were leveraged, viz. an
approximate evaluation measure, MRR, and MAP each suited to the specific evalu-
ation scenario. Furthermore, a qualitative analysis has been applied on a different
small set to ensure the performance after applying the different implementation ver-
sions. The evaluations’ results have shown that version 4 outperforms by having a
YAML-structured documents its competitors numerically and qualitatively as well.
It seeks for similar contributions in the entire ORKG’s dataset and tries to conserve
the same document structure of the query. Additionally, by considering the BM25
scoring function as similarity measure, the scores of the average similarity percentage
show that version v4 is the most confident implementation by its retrieved results in
comparison with the others.
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Templates Recommendation

The next information retrieval service of the Open Research Knowledge Graph
(ORKG) implemented in this thesis is the Templates Recommendation service. As
described earlier in chapter 3, templates are form-based semantic graph patterns that
enable authors to structure their contribution data in a standardized manner. They
are implemented based on repeated contribution pattern observations made across
papers often focusing on a single research problem. E.g., Basic reproduction number
estimate template https://www.orkg.org/orkg/template/R40006. As such the
Templates Recommendation Service tackles the following information retrieval sce-
nario. For a new incoming paper, based on the paper title and abstract content, it
recommends a template to structured the paper’s contributions if one exists in the
ORKG templates knowledge base.

As briefly introduced in chapter 3, a template is a structured object representing
domain-specific entities, their properties and relationships. Generally, a template
represents something in the real world, and specifically, in the context of the ORKG,
it represents a research contribution for a research problem. It may or may not
relate directly to a specific span of text in an article. For example, the Covid 19
case fatality rate estimates reported as numbers in the Abstract of a paper as the
paper’s main findings could lead to a Case Fatality Rate template (e.g., https://
www.orkg.org/orkg/template/R46273) being created. Templates must be defined
by a domain expert who fully understands the problem scope and therefore has a
wholesome conceptual mental image of the properties it entails from direct exposure
to the research study. Other users then either with growing or no awareness of a
research problem are cautioned away from creating templates since they may not be
able to specify all the problem properties and their chances of specifying incorrect
or an incomplete set of problem properties are higher.
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To create a new Template or to view the existing templates, a user must visit
the https://www.orkg.org/orkg/templates page on the ORKG Front-end. See
Figure 5.1. On this page, they can search among existing templates. Four filter-
ing functions are offered: 1) Filter by research field - a template can be optionally
assigned to a specific ORKG research field, thus, this feature when used lists all
templates if they exist from particular user-specified research field(s); 2) Filter by
research problem - a template can also be optionally assigned to a specific research
problem, thus, akin to the earlier filtering function, by enlisting this feature tem-
plates assigned the same research problem can be listed; 3) Filter by label - allows
filtering based on substring matches of the template name; and 4) Filer by class -
allows filtering based on the specified class name. Next, to create a new template, the
ORKG Front-end offers a user-friendly interface to specify a template: 1) Description
(Figure 5.2); 2) Properties (Figures 5.3 and 5.4); and 3) Format.

Figure 5.1: The ORKG Templates page with functionality to create a new template
(“Create template” button) or search for existing templates with the option of four
Filters to narrow search results. The four available search filtering methods are by 1)
research field, 2) research problem, 3) label, and 4) class.
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Figure 5.2: The ORKG Templates Creation page, “Description” tab. On this page,
users must specify “Name of template” and “Target class” field values. The “Prop-
erty”, “Research fields”, and “Research problems” fields are optional. Specifying
them indexes the template per the specified property which systematizes template
search and in the backend generates a hierarchy of templates.

Having offered a background of ORKG templates, this chapter describes the
information retrieval service called Templates Recommendation engineered into the
ORKG codebase. As a first step to building a full-fledged recommendation service,
the thesis conducts a feasibility analysis on the current ORKG data snapshot to
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Figure 5.3: The ORKG Templates Creation page, “Properties” tab. On this page,
users can add new properties via that “Add property” button. An example instance
is show in Figure 5.4.

ensure that the service can be based on sound empirical parameter tuning methods
and will report reliable evaluation results. The next section reports how the proposed
Templates Recommendation Service was tested for its implementation feasibility.

5.1 Service Feasibility Analysis

Following the standard practice in empirical machine learning, the task is first defined
as a dataset. This dataset would then serve an information retrieval objective. Based
on whether the information retrieval objective is defined as an unsupervised (e.g.,
Elasticsearch) or a supervised (e.g., neural transformer models) method, the dataset
can be used only to test a model (relevant in both unsupervised and supervised
settings) or to train a model as well (relevant only in supervised setting).

First and foremost, a feasibility analysis was needed to check for two conditions:
1) the number of used templates in the ORKG, and 2) whether a sizeable proportion
of the the ORKG papers were structured using the templates. If both conditions were
satisfied, a diverse dataset representative of Science with adequate number of papers
could be built for an information retrieval system. The feasibility analysis described
next will discuss the characteristics of the dataset suited for service development.
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Figure 5.4: The ORKG Templates Creation page, “Properties” tab. An exam-
ple instance of adding a new Property called “Algorithm.” For each property,
a type as an ORKG class or a predefined ontology class (e.g., SKOS https:

//www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html, BFO https:

//basic-formal-ontology.org/ ontologies) can be specified. The list of ontologies
are supplied by TIB’s Ontology Lookup Service (OLS) https://service.tib.eu/

ts4tib/index. The cardinality constraints for the minimum and maximum occur-
rences of a property within the contribution template can also be custom defined.

5.1.1 Task Dataset

First, a dataset must be compiled. To this end, a technical challenge was encountered.
There is no relation between a paper p and the template t used by p, therefore,
whether a paper was structured using a template had to be determined indirectly by
means of heuristics. For this, a corpus pre-processing script was written to perform
data matching from the ORKG’s RDF-Dump1. The script found used templates as

1Dump version: 13.08.2021.
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follows. Create a dataset of contributions by retrieving contributions’ properties up
to the 2nd depth level. Drop all papers not written in English or whose abstracts
could not be retrieved. For each ORKG template t:

1. Retrieve templates t’s properties.

2. Compare t with all contributions in the pre-created dataset and consider a
contribution c as templated, if the 1st or the 2nd depth level of the contribution
graph fulfills one of the following conditions:

(a) If all t’s properties are of optional cardinality, at least 3 properties are
used by c.

(b) If set A of t’s properties is mandatory, A has to be used by c and |A| ≥ 2.

3. Drop templates used by more than 100 contributions. With this all generic
templates that apply in almost all ORKG contributions are dropped as can-
didates for automated probabilistic recommendation and instead are incorpo-
rated in deterministic rules for template suggestions. E.g., the generic ‘Re-
search Problem’ template which holds true in almost all ORKG contributions.

4. Finally, drop templates that are used by less than 2 papers as they would
not be good prediction candidates since they are not represent by a sizeable
number of papers.

Note that thresholds used in the script were defined empirically. The threshold
of 2 defined in step 4 ensures that at least 1 paper will be included in training and
test partitions, respectively, within supervised empirical evaluations. The papers’
abstracts were fetched with the help of secondary external service APIs, viz. Cross-
ref 1 and Semantic Scholar 2 using the papers’ DOI and/or their titles. This will be
used subsequently as the query string to the Templates Recommendation Service.
This was implemented in a service wrapper called MetaService that is responsible for
fetching a paper’s abstract from the mentioned external services. The abstract lan-
guage was determined with the help of the pre-trained text classifier fastText3 [37].
Table 5.1 roughly shows the distribution of the papers over the templates. A total
of 264 template structured papers could be identified across 23 different templates.
A minimum of 2 papers and a maximum of 56 papers were structured with a single
template. A detailed explanation of this dataset is discussed subsequently.

1https://www.crossref.org/
2https://www.semanticscholar.org/
3https://github.com/facebookresearch/fastText
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Template’s ID Template’s Title # Papers

R138668 Psychiatric Disorders AI Overview 56
R35087 Time interval 33
R76795 Crowd Intelligence 28
R70247 BioAssay 28
R40006 Basic reproduction number estimate 20
R77101 Standard’s template 20
R48214 Global Mean Sea Level Rise Projections 13
R76209 Team Subtask Contribution Description 10
R108239 KM-Oriented Enterprise Modeling Approaches 9
R107684 Health Persuasion 8
R38248 Task Dataset Metric Score 8
R38147 Comparisons with Existing Machine Learning (ML) Models 5
R108008 Business architecture 4
R46273 Case fatality rate estimate 4
R74758 Experiment 2
R69198 Scientific Concept Extraction Dataset 2
R54009 Climate sensitivity 2
R46269 Case fatality rate estimate value specification 2
R108555 Machine Learning Experiment 2
R54875 Climate response 2
R49194 Occupant’s perception and behaviour 2
R51438 Common Template 2
R48000 Problem 2

Total - 264

Table 5.1: Distribution of templated papers over 23 templates.

5.1.2 Dataset Analysis

Further analysis was performed in order to gain more insights about the dataset
distribution over the templates’ research fields, the papers, and templates and papers
combined. Figures 5.5 and 5.6 show the independent distribution of templates and
papers over their labeled research fields, respectively. Figure 5.7, on the other hand,
depicts how papers are distributed over templates’ research fields and vice versa.
Note that a template can have zero, one, or more research fields, which can be
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Figure 5.5: Distribution of templates over research fields.

Figure 5.6: Distribution of papers over research fields.

identified in the raw ORKG data by tracing the predicate TemplateOfResearchField1.

1https://www.orkg.org/orkg/property/TemplateOfResearchField
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(a) (b)

(c)

Figure 5.7: (a) Distribution of papers that belong the same template’s research field
over the templates’ research fields. (b) Complementary of (a): papers that do not
belong the same research template’s research field (c) Distribution of papers using
templates over the papers’ research fields.

Further, the ORKG data needed to be realistically and comprehensively repre-
sented in our empirical evaluations. This means that not just templated papers but
also papers untemplated ones had to be included. Thus, 264 new untemplated pa-
pers were, in addition, randomly selected from the ORKG data dump. The neutral
papers were retrieved from the same research fields as the templated papers to ensure
a similar thematic representation, however as a counter untemplated paper example.
Additionally, a few papers were selected from other research fields that did not have
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Figure 5.8: Distribution of neutral papers over research fields.

a templated counterparts. Figure 5.8 shows the neutral papers distribution.

Finally, given 264 templated papers over 23 templates and 264 untemplated pa-
pers overall across 43 unique research fields gave us a sizeable enough corpus over
which to test and train an IR service. Thus our conclusion was an affirmative feasi-
bility indication for IR service development.

5.2 Service Implementation

In this work, two approaches were proposed to recommend a template given a pa-
per in the ORKG, namely, retrieving relevant templates by using Elasticsearch or
inferring the correct template using Natural Language Inference (NLI) based on
SciBERT [13] embeddings. There are a few important information items relevant
around IR services. One of the foremost ones being a query. A query, the phrase
posed to the IR service that the service is designed to satisfy. For the Templates Rec-
ommendation Service, a query is the title and abstract of a paper combined and the
service itself should return the best semantically matched template for structuring
the paper’s contribution. Next, pertaining to the service implementation, technical
details of the corresponding service implementation are provided and the method for
creating the dataset folds or partitioning for service development is described.
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5.2.1 Unsupervised Approach with Elasticsearch

Ranking Function. For the unsupervised approach, Elasticsearch is used to re-
trieve the most relevant templates given a query. The implementation is engineered
in a similar fashion to the Contributions Similarity Service presented in chapter 4,
Section 4.1. As a quick recap, Elasticsearch ranks responses w.r.t. a query by lever-
aging the BM25 relevance scoring function which is a term-frequency based metric.

Service Setup. The implemented service behaves as a wrapper to the builtin
Elasticsearch engine. In contrast to the workflow shown in Figure 4.2, the Docu-
mentCreator module is replaced with a MetaService for fetching the paper’s abstract;
The input contribution ID is replaced with a paper title and its corresponding DOI;
The similar contributions in the output are replaced with recommended templates.
A relevant question here is how does the Elasticsearch index for Template Recom-
mendation differ than that for similar Contributions retrieval? Technically, each
document in the index is a concatenation of template t and the paper p structured
by t with the document ID “ID(t); ID(p)” (e.g. “R77101;R74026”) in case of a
templated paper, and only the paper in case of a neutral paper (not used by any
template) with the document ID “ID(p)” (e.g. “R74026”). In inference time, the
service recommends those templates that are included in Elasticsearch’s retrieved re-
sults and having the document ID format “ID(t); ID(p)”. Saying papers are queries
indeed implies that a paper represented by its title and abstract text, whereas in
the terminology of templates, a template is represented by its title and properties’
labels. The described workflow is illustrated in Figure 5.9 and it mostly corresponds
to the workflow discussed earlier in chapter 4.

Building the Index. Since we are currently not able to retrieve the templated
papers automatically because of the missing relation between a paper and a tem-
plate in the ORKG, we have to build the index using the dataset we created. For
new incoming templated papers we shall consider indexing them together with their
templates. For now and as long as the relation is absent, the templated papers can
be retrieved based on the heuristics and the index can only be built and updated
manually. Building the index with 400 papers takes almost 30 seconds.

5.2.2 Supervised Approach with SciBERT

Machine Learner. Our machine learning system is the state-of-the-art, bidirec-
tional transformer-based SciBERT [13] that is a variant of BERT [22] pre-trained on

53



Chapter 5. Templates Recommendation

Figure 5.9: Unsupervised Approach - Templates Recommendation Service opera-
tional workflow. Arrows represent the data flow.

millions of scientific articles. We use the SciBERT inference architecture. For this,
each data instance (t, p; c) corresponds to a paired template t with a paper p and the
pair is assigned an inference class c ∈ {entailment, neutral, contradiction}. Each
(t, p) are treated as sentence pairs separated by the special [SEP] token; the special
classification token ([CLS]) remains the first token of every instance. Its final hidden
state is used as the aggregate sequence representation for inference and is fed into
a linear classification layer. Therewith, we define an NLI (Natural Language Infer-
ence) problem, where each (t, p) is the (premise, hypothesis) tuple and the outcome
is defined as one of the three classes in c.

Service Setup. The implemented service behaves as a wrapper for the trained
classifier. We introduce the service workflow by means of Figure 5.10. The service
wrapper expects a paper represented by its title and optionally its DOI, and produces
a list of similar templates to the given paper. The first step in the wrapper is to fetch
the paper’s abstract using the MetaService. After that, N + 1 sequences are created
and fed into the trained classifier for inference, where N represents the number of
templates the classifier has been already trained on, i.e. each known template is
concatenated with the given paper and fed together as a sequence into the classifier.
The classifier predicts the most likely class c. The additional premise is the empty
template that represents the neutral case. The service then filters the N + 1 outputs
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and only returns the entailed templates. The best expected result for a given paper is
to be contradicted by the classifier with N templates and entailed with the respective
template, if it is a relevant one, or to be predicted as a neutral paper with the empty
template, if there is no template for the paper to be described with.

Training the Service. For training the classifier we use a TPU runtime environ-
ment on Google Colab1 [14] and fine-tune the pre-trained AllenNLP SciBERT [13]
uncased model2 with the PyTorch [52] implementation. We train the model for 10
epochs with batch size of 16 and max sequence length of 512 tokens. As an optimizer
we utilize Adam [47] with initial learning rate of 2∗10−5 and ε = 10−6. We also apply
a step decay learning rate scheduler [28]. The cross entropy loss function is applied
as criterion. We also applied early stopping on the validation loss. The training
stopped with the mentioned settings at the 4th epoch after around 3.5 minutes and
was done with training and validation accuracies of 95 % and 93 %, and with train-
ing and validation losses of 13 % and 15 %, respectively. The corresponding diagrams
are shown in Figure 5.11. The mentioned numbers produced the best model as we
performed multiple trainings on different data splits described in the next section.

Figure 5.10: Supervised Approach - Templates Recommendation Service architec-
ture. Arrows represent the data flow

1https://colab.research.google.com
2https://github.com/allenai/scibert
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Figure 5.11: Supervised Approach - Corresponding training (left) and validation
(right) accuracy (top) and loss (bottom) values over the training epochs.

5.3 Service Evaluation

5.3.1 Experimental Setup

In this subsection, the method for creating the training and test dataset partitions
together with the evaluation metrics for the experiments are discussed.

Training Dataset. The training data partition consists of paired instances of tem-
plates and papers. This set combines randomly a total number of 23 valid templates
and the empty template with 400 papers. For data instances representing templated
papers (entailments), we have an average of 9 papers per template with a minimum
of 1 and a maximum of 32 papers. We selected the training instances as follows:

1. A training instance is a text sequence tuple represented by

(a) a premise = template = template’s title and properties’ labels, and

(b) a hypothesis = paper = paper’s title and abstract.

2. We decide to select 75 % of the entailments and 75 % of the neutrals for the
training portion of the dataset. (t, p) pairs were randomly selected from the
dataset, so that all instances are unique and all templates were included. Note
that t is the empty template for a neutral instance.

3. The training contradictions are synthesized by concatenating papers with tem-
plates borrowed from other structured papers. In order to preserve the classes
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balance in the training set, we choose the following two thresholds for synthe-
sizing the contradictions. Note that contradictions are not part of the Elastic-
search index.

(a) #Entailed contradictions for a template t = d#papers using t ∗ 1
ec
e.

(b) #Neutral contradictions for each neutral paper p = nc.

Where ec ∈ {3, 4, 5, 6} and nc ∈ {2, 4, 5} are different synthesizing sets of
thresholds that were combined by applying the Cartesian Product [67]. Each
combination produced in principle a different dataset used for model training.

4. For each class, we select 10% of the instances for the validation set. Note that
there is no validation set splitting in case of the unsupervised approach.

Test Dataset. For creating the test set we select the remaining data instances
as test entailments and neutrals. We ensure there is no test dataset leakage within
the training dataset, in particular w.r.t. the contradiction training instances where
templates are randomly paired with other papers that they do not structure. Thus
note that none of the neutral or entailment papers in the test dataset have appeared
in the training dataset. Further, and conversely, none of the papers used in the
training dataset appear in the test data. The test dataset has 52 entailments and 64
neutral instances, respectively.

The corresponding split dataset statistics are shown in Table 5.2.

Evaluation Metrics. Each approach was evaluated with the standard accuracy,
precision, recall and f-measure metrics, which are defined in equations 12, 13, 14 and
15, respectively. Consider that this differs from the MRR and MAP metrics used in
chapter 4. In this setting, note that each paper is assigned only one true template.
Therefore, the accuracy and f-measure metrics were better suited. Note that for
extended evaluations, the MRR metric can also be applied. For clarity, we offer our
definitions for TP (True Positives), FP (False Positives), TN (True Negatives) and
FN (False Negatives) used in the calculations.

• TP: total instances correctly classified as entailments or neutrals.

• FP: total instances incorrectly classified as entailments or neutrals.

• TN: total instances correctly classified as contradictions.

• FN: total instances incorrectly classified as contradictions.
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Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

(15)

-
Training

(supervised)
Validation

(supervised)
Training

(unsupervised)
Test

Entailment 180 20 200 52

Neutral 180 20 200 64
Contradiction 736 84 0 0

Total 1096 124 400 116

Table 5.2: Templates Recommendation - Dataset splits using Entailed Contradic-
tions ec = 0.4 and Neutral Contradictions nc = 4 thresholds for synthesizing the
contradicted training instances.

Two further remaining questions must be clarified w.r.t. the experimental setup.
i) How does one differentiate between contradictions and neutrals when the super-
vised service returns only entailments ? And ii) how does the concept of contradic-
tion instances apply in the experimental setup for the unsupervised approach, when
Elasticsearch is not indexed for contradictions ?

Answering both questions requires considering the evaluation from a user per-
spective, who interacts with a service, neither with a classifier nor with a term-based
index and expects either an appropriate template or nothing. Recall that both REST
API services respond with a list of recommended templates, which is the only ma-
terial that we can rely on in our experiments and answers our first question. We
elaborate the different cases of a service response with examples. Case 1 - Nothing
to recommend : An empty list in the response indicates a neutral classification, which
means the ORKG has no template that can be recommended for the given inquiry.
This also means the service has implicitly classified all templates as contradictions
(TN) and the empty template as neutral (TP). Case 2 - Templates to recommend : A
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list with different templates in the response indicates an entailment classifications for
those templates (could be TP or FP) and contradiction classifications for all other
not returned templates (could be TN or FN). Having the expected template at rank
1 of the list results in 1 TP and l − 1 FP, where l is the length of the returned list.
To particularly answer the second question, which actually only affects computing
the standard accuracy while it considers TN, we can assume that the unsupervised
service also does filter the results and return only entailments. With this assumption
we could calculate TN and consequently the standard accuracy exactly as we do
for the supervised service. Equation 16 shows the exact definition of the standard
accuracy in our terminology.

Accuracy =

∑
q∈QN − l + k

Q ∗N
(16)

Where Q is the number of test queries, N is the number of templates, l is the length
of the results list and k is a constant with value 1 if there is a hit at rank 1 of the
response, otherwise 0. Note that k, N − l and Q ∗N are equivalent to TP, FP and
TP + TN + FP + FN shown in Equation 12, respectively.

To apply a fair comparison one last assumption is yet needed, since that the
unsupervised service cannot control the number of returned results (recall the BM25
score in chapter 4), whereas the supervised service can, which gives it an advantage
in terms of its interpretability. Basically we assume that both services return a
result list with a maximum length of 1. Thus, the variable l in Equation 16 can be
either 0 or 1 that implies an equivalent behavior in both services. Not applying the
latter assumption would increase the FP in the unsupervised case and consequently
penalize that approach.

5.3.2 Results and Discussion

The threshold combinations of ec = 0.4 and nc = 4 results in the optimal supervised
system. This optimal system results juxtaposed with the unsupervised approach’s
results are shown in Figure 5.12. Further, a comparison of training/inference per-
formance times are also shown in Table 5.3. A detailed evaluation of the supervised
model selection can be found in Table 5.4. Comparing the supervised and unsuper-
vised approaches, the supervised approach outperforms Elasticsearch in all measures
with a slight difference in terms of accuracy and by 10% in terms of f-measure. Hav-
ing an equal recall and precision in Elasticsearch’s results means that the service
incorrectly classifies contradictions as it incorrectly classifies neutrals or entailments.
This relates again to the problem that Elasticsearch always returns results. This
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issue does not happen by the supervised approach, since it can distinguish between
the classes, which makes it easier to interpret.

Figure 5.12: Evaluation comparison between supervised (blue) and unsupervised
(orange) approaches using different evaluation metrics.

- Supervised Unsupervised

Training 8m (on TPU) 3.6s

Inference 32s 1.5s

Table 5.3: Comparison between the performance of the supervised and unsupervised
approaches on a CPU. The abstract’s fetching time is not considered.

5.4 Conclusion

In this chapter, a novel Information Retrieval (IR) task is discussed in the context
of the ORKG Digital Library. The IR service handles recommending the seman-
tically relevant templates for structuring research contributions given a paper title
and abstract as query for which the templating patterns exist. For the unrepre-
sented semantic types, i.e. for those paper domains without a defined structuring
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ec/en Accuracy Recall Precision F-measure

0.3/2 0.968 0.250 0.250 0.250
0.4/2 0.986 0.663 0.669 0.666
0.5/2 0.990 0.741 0.761 0.751
0.6/2 0.986 0.681 0.681 0.681
0.3/4 0.992 0.732 0.809 0.769
0.4/4 0.996 0.810 0.895 0.850
0.5/4 0.984 0.568 0.605 0.586
0.6/4 0.988 0.836 0.757 0.795
0.3/5 0.986 0.655 0.672 0.663
0.4/5 0.993 0.793 0.844 0.817
0.5/5 0.995 0.818 0.879 0.848
0.6/5 0.991 0.767 0.787 0.777

Table 5.4: Supervised Approach - Model selection w.r.t. entailed contradictions (ec)
and neutral contradictions (nc).

template, the service is expected to return no templates as a result. Several concep-
tual and definitional considerations had to be made to put in place such a service
implementation.

The first consideration was a detailed analysis of the ORKG data dump to iden-
tify the number of templated papers and based on size it was determined that service
developments and experimental evaluations were feasible. For the service itself, i.e.
to recommend an existing ORKG template to a user at the point of adding a new
paper, two different approaches were experimented within this thesis. An unsu-
pervised approach which utilized Elasticsearch and a supervised approach based on
SciBERT [13], the state-of-the-art transformer-based machine learning system. The
second consideration was conceptualization of a suitable evaluation task dataset.
This involved introducing “entailment”, “neutral” and “contradiction” instances.
Neutrals were a specific class introduced that covered all papers not structured by
an ORKG template. Finally, our evaluation dataset consisted of 528 papers struc-
tured by 23 templates and distributed over 41 research fields. The third consideration
was service development itself which entailed building a new Elasticsearch index for
untemplated papers and training an NLI model. The training instances of the su-
pervised classifier was the same as those used to build the Elasticsearch index. The
test corpus is also shared for both the proposed approaches and we ensured that its
instances were unseen during the learning step. Furthermore, we defined an NLI
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problem with a classifier built upon the pre-trained SciBERT model. To this end,
we synthesized the training data for the supervised approach to cover all classes re-
lated to the NLI problem. Finally, for each of the approaches a Back-end service was
implemented, described and evaluated on accuracy, precision, recall and f-measure.
We showed that the supervised approach outperforms the unsupervised one in all
measures and fails in respect of timing performance perspectives.

In all, despite the interpretability advantage of the supervised approach, we be-
lieve that Elasticsearch is simpler (the index can be dynamically updated) and more
efficient (recall Table 5.3) to be maintained and integrated in the current ORKG
assuming the existence of a relation between a paper and its template. As future
work, we suggest the same proposed classifier to be trained and evaluated on a larger
corpus of templated papers, since that as the ORKG evolving, more semantic inter-
pretations might be required in order to recommend a more accurate result.
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Chapter 6

ORKG Grouped Predicates
Recommendation

6.1 Introduction

Scholarly Knowledge Graphs (SKGs) represent the contents of research literature
as subject-predicate-object triples [8], thereby enabling comprehensive analyses that
identify e.g. benchmark performance rankings with machine-interpretable system
scores triples in automatically computed Leaderboards https://www.orkg.org/orkg/
benchmarks. The Open Research Knowledge Graph (ORKG) with its specific fo-
cus on capturing scholarly contributions [9] falls within the wide SKG construction
context [1, 42, 48] that include various other aims such as capturing bibliographic
metadata or research data as structured knowledge. In an SKG, generally, a research
knowledge aspect is formalized as (S, P, O) triples, where pairs of entities are related
to each other by predicates [26]. By integrating triples from a variety of sources,
knowledge graphs can be used to perform computational analysis on the comprehen-
sive body of knowledge. E.g., SKG of biomedical knowledge contributions enable
tracking disease-disease or disease-drug relations [18].

This chapter discusses an IR service over the semantic construct of predicates
in ORKG triples. This semantic construct was visited already in chapter 5, as
the building blocks of the aggregated graph patterns of templates. But isolated as
individual items within the formalism of triples in KG, “a predicate is seen as a
property that a subject has or is characterized by.”1 E.g., every ORKG contribution
resource as a subject has the property “has research problem” as a predicate. The

1https://en.wikipedia.org/wiki/Predicate_(grammar)
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object of this predicate is then specific instances of one or more research problems
tackled in the contribution.

Figure 6.1: The comparison feature of the ORKG as a survey of Bioassays

The question we ask in this chapter is how can an ORKG user benefit from the
vast store of predicates information when structuring their paper for those predicates
that are not part of any predefined templates? This is a necessary service to prevent
users from reframing their contributions from scratch in the scenarios where this can
be avoided. Essentially, the ORKG relies on the wisdom of the crowd [68] w.r.t. the
collective intelligence that arises when imperfect judgments are aggregated. Specif-
ically, w.r.t. the ORKG this would mean tapping into collective intelligence where
systematic patterns were observed when structuring paper contributions. A natural
question here is how can these systematic patterns be observed other than within
templates? Recall the Comparisons feature discussed in chapter 3. Within Com-
parisons, several research contributions sharing similar properties as aggregated as
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a survey. E.g., as depicted in the Figure 6.1 comparison survey over three differ-
ent Bioassays based on their similar properties. This serves as a distinct example
of aggregated crowd intelligence. While such comparisons are good candidates for
the creation of templates, there is no strict one-to-one mapping between predicates
in comparisons made into templates. In other words, templates are not necessarily
defined from comparisons although they are worthwhile candidates for templates de-
sign. Furthermore, even the converse case does not hold, i.e. not all contributions
structured with templates are part of comparisons. This is because a template can
be used to structure just one contribution whereas the comparison feature necessarily
requires at least two contributions to be applicable.

This thesis in its three contributing chapters has developed IR services involv-
ing the ORKG predicates in some capacity or another. For instance, in chapter 4,
similar contributions were suggested where an Elasticsearch engine indexed contri-
butions and ranked them w.r.t. a query contribution. In chapter 5, an Elasticsearch
engine was indexed on predicate groups within templates minus the values of the
predicates. The predicate groups were then ranked w.r.t. incoming queries as pa-
pers to be structured for their contributions. Finally, this concluding chapter, in a
similar vein to the previous chapter, reconsiders predicate groups as an IR service,
except the predicate groups were not strictly defined as valid semantic patterns by
a semantic modeling domain expert. Instead the predicate groups arise from ORKG
comparisons. The subsequent sections provide details of this service including the
service feasibility analysis to final implementation.

6.2 Service Feasibility Analysis

As done in the previous chapter, the task is first defined as a dataset. This dataset
would then serve an information retrieval objective. First and foremost, system-
atic observations are offered over the ORKG RDF triples dump1 w.r.t. two main
organizational characteristics of its predicates : 1) when treated as individual data
items, and 2) when grouped within thematic constructs of comparisons in a similar
aggregating vein to templates albeit informally. Note that for some parts of the data
construction in the following subsections we use the same modules used in chapter 5,
namely the MetaService and fastText2 [37].

1dated 10.11.2021.
2https://github.com/facebookresearch/fastText
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6.2.1 Dataset of Single Predicates

Dataset Construction. A list of all ORKG predicates was constructed. This list
was prefiltered for predicates that applied in every contribution by default, e.g. “has
research problem”, and for predicates that did not obviously satisfy the role of defin-
ing an ORKG contribution triple. E.g., predicates relating to the paper bibliographic
metadata. Note that predicate paths were maintained as is and no path substrings
were included in this group. For instance, one possible predicate in the contribution
shown in Figure 6.2 is “has benchmark;has evaluation;has metric”. The paths were
fetched by leveraging a similar implementation discussed in Section 4.4 and were
filtered across different phases: i) Content-nonspecific predicates were manually se-
lected and dropped e.g. “see also”, “description”; ii) Predicates with different IDs
and similar labels serving the same semantical purpose were manually selected and
merged e.g “F-measure” and “F1”; iii) Non-English predicates and papers as well
as those papers whose abstracts could not be retrieved were dropped. The resulting
list had 2011 predicates. Some insights of this data are provided next.

Figure 6.2: The ORKG Front-end graphical visualization for a scholarly contribution
showing one path starting from the contribution node “Contribution” to the last
resource node “Micro Recall”. All other paths are hidden.

Dataset Analysis. We provide visualizations of the predicates distributions over
papers, research fields and research problems in figures 6.3, 6.4 and 6.5, respectively.
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Table 6.1 provides insights of the distributions statistics. In total the data analysis
shows that the 2011 retrieved predicates are diversely distributed over 140 and 752
research fields and problems, respectively. Having an average of 1.36 and 2.55 for
research fields and problems per predicate indicates that the predicates are content-
specific and cannot be generically used for structuring any paper. We deemed that a
total of 5579 papers with 15.62 papers on average per predicate was a representative
enough size of data that would suffice to train an automated learner.

- Papers Research Fields Research Problems

Min/Predicate 2 1 0

Max/Predicate 931 29 57
Average/Predicate 15.62 1.36 2.55

Total 5579 140 752

Table 6.1: Dataset of Single Predicates - Statistics.

Figure 6.3: Dataset of Single Predicates - Predicates distribution over papers.

6.2.2 Dataset of Clustered Predicates

Task Dataset Construction. At the outset, we defined a criteria for predicates
selection. This informed the dataset construction. First, we were interested in se-
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Figure 6.4: Dataset of Single Predicates - Predicates distribution over research fields.

Figure 6.5: Dataset of Single Predicates - Predicates distribution over research prob-
lems.

mantic groups of predicates, i.e. predicates used to structure a paper. Second, the
grouped predicates needed to show a repeated usage pattern to structure different
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contributions at least a minimum number of times to be considered loosely as an
evolving template pattern or as part of a valid semantic group. The ORKG com-
parisons provided a reference starting dataset to identify such predicate groups. All
ORKG comparisons https://www.orkg.org/orkg/comparisons with 10 or more
contributions were selected.1 10 was empirically selected as the threshold for the
minimum number of contributions to be structured by a group of predicates for
them to be considered as a valid semantic unit. Only those predicate groups were
chosen for clustering that structured over 10 contributions. As in Subsection 6.2.1,
the paths of the predicates were maintained. The paths were fetched by calling the
scholarly contributions comparison service2 provided by Simcomp, which compares
based on the paths of the spanning tree of each contribution. For the data filtering
we dropped those comparisons which have less than 2 papers and also dropped non-
English and non-abstract papers as in the previous dataset. Next we provide some
dataset analysis insights.

Task Dataset Analysis. In this part, we demonstrate the analysis of the dataset
of clustered predicates in two respects, viz. data grouped by comparisons and data
grouped by predicates. For each, we show the respective distribution over papers,
research fields, and research problems in Figs. 6.6, 6.7 and 6.8, respectively. Fur-
thermore, we show the distribution of comparisons over predicates and vice versa in
Figure 6.9. Data statistics are summarized in Tables 6.2 and 6.3. The data analysis
for the clustered predicates shows again a diverse distribution over different research
fields and problems in total and a field-related distribution in average by considering
both statistics groups. Thus comparisons can be seen as groups of clusters contain-
ing papers that share similar predicate candidates. 4060 total number of papers is
for this dataset as well a proper number of data instances, on which a clustering
algorithm can rely.

6.3 Service Implementation

The methodology will be inspired from related work on the Semantification of Biolog-
ical Assays data in the ORKG [6]. A bioassay is, by definition, a standard biochemical

1While the following comparison https://www.orkg.org/orkg/comparison/R142085 called
“Smart city governance research categories analysis by references articles ver.2” has over 60 contri-
butions, it is excluded from our data since its predicates were not meaningful standalone semantic
relational data items. Same with https://www.orkg.org/orkg/comparison/R156112.

2https://gitlab.com/TIBHannover/orkg/orkg-similarity/-/blob/master/comparison/

compare_paths.py
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Figure 6.6: Dataset of Clustered Predicates - Comparisons distribution over papers
(left) and predicates distribution over papers (right).

Figure 6.7: Dataset of Clustered Predicates - Comparisons distribution over research
fields (left) and predicates distribution over research fields (right).

Figure 6.8: Dataset of Clustered Predicates - Comparisons distribution over research
problems (left) and predicates distribution over research problems (right).
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Figure 6.9: Dataset of Clustered Predicates - Comparisons distribution over predi-
cates (left) and predicates distribution over comparisons (right).

- Papers Predicates Research Fields Research Problems

Min/Comparison 2 2 1 0

Max/Comparison 202 112 5 23
Average/Comparison 21.54 12.79 1.20 1.09

Total 4060 1816 46 178

Table 6.2: Dataset of Clustered Predicates - Statistics grouped by comparisons.

- Papers Comparisons Research Fields Research Problems

Min/Predicate 3 1 1 0

Max/Predicate 1059 30 8 28
Average/Predicate 55.92 1.50 2.20 5.27

Total 4060 214 46 178

Table 6.3: Dataset of Clustered Predicates - Statistics grouped by predicates.

test procedure used to determine the concentration or potency of a stimulus (physi-
cal, chemical, or biological) by its effect on living cells or tissues [32, 33]. Semantic
description of assays are represented as logical annotations consisting of property and
value pairs based on the BioAssay Ontology (BAO) [73, 2]. The set of the predefined
property-value pairs annotated with the BAO as reference are indeed intended as
the semantic equivalent of the unstructured bioassay text although this is not guar-
anteed without some information loss. Obtaining semantified bioassays enables their
large-scale analysis in diverse systems since they are machine-interpretable. Similar
in principle to the bioassays are then the ORKG structured contributions the seman-
tic equivalents the information found in the unstructured text. Over bioassays, we
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observed those with similar descriptions also had similar semantic representations.
And semantification based on labels assigned to similar assays clusters showed per-
formances above 80% in F-score [6]. This score showed that K-means over vectorized
representations of the assays was effective in producing homogeneous clusters. Thus
the idea of semantification based on clustering works in practice and remains to be
tested on a different underlying dataset, e.g., a dataset of scholarly contributions
which is the aim of this chapter.

6.3.1 K-means Clustering of Contribution Vectors

Scholarly Contribution Vectorization Functions.

a. TF-IDF embeddings - We use the scikit-learn [53, 16] implementation1 to con-
vert the data corpus into TF-IDF [65] vectors depending on the text corpus.
TF-IDF vectors are n-dimensional real-valued vectors representing a given text
with the TF-IDF value for each possible term from the corpus, where n is the
number of unique terms contained in the corpus.

b. SciBERT embeddings - We feed forward the pre-trained AllenNLP SciBERT [13]
uncased model2 with the text corpus to output its final hidden state, which is
then averaged by the tokens of each text sentence resulting in a vectorized text
representation.

Clustering Function. In this thesis chapter we leverage the centroid-based clus-
tering algorithm K-Means [35] to group equivalent scholarly contributions repre-
sented by their papers. K-Means is known as an effective and simple clustering algo-
rithm with a space complexity of O(N(D + K)) and time complexity of O(NDK),
where N is the number of data instances, D is the number of features (dimensions)
and K is the number of centers or clusters. One limitation in K-Means is that K
is expected as input to the algorithm, so that the algorithm randomly initialize the
clusters’ centers in its first step. In the second step, K-Means updates the points as-
signment to the clusters depending on a distance function and keeps re-updating the
clusters until no more changes occur in the clusters or a predefined number of itera-
tions is reached. The output of the algorithm is the data points grouped by clusters.
For building the clusters we use in this thesis chapter the K-Means implementation3

1https://scikit-learn.org/stable/modules/feature_extraction.html#

tfidf-term-weighting
2https://github.com/allenai/scibert
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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provided by scikit-learn [53, 16] and train it on vectorized papers represented by their
titles and abstracts.

Service Setup. The idea of the predicates recommendation service is pretty sim-
ple. Since we have grouped similar papers into clusters, we can simply recommend
a user those predicates used by all papers in the predicted cluster for an new incom-
ing paper. Furthermore, by taking advantage of the dataset of clustered predicates
discussed in Subsection 6.2.2 we already apply a predicates grouping by comparisons
step, which allows us to recommend the predicates used by the comparisons included
in the predicted cluster instead of the pure papers. The workflow of the service is
illustrated in Figure 6.10. First, the service fetches the paper’s abstract using the
MetaService as in the previous chapter. Then, the paper’s title and abstract are con-
catenated and vectorized using a vectorization function. The vector representation
is then fed into the pre-trained clustering model, which outputs the predicted cluster
and its assigned papers. Finally, we map the predicted papers to their comparisons
and output the predicates used in the comparisons to the service caller.

Figure 6.10: Grouped Predicates Recommendation Service architecture. Arrows
indicate the data flow.

6.4 Service Evaluation

6.4.1 Experimental Setup

Training and Test Datasets. From each comparison group with more than 10
contributions, 70% of its papers were selected as the training dataset to build the
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clustering model and the remaining 30% of its papers were reserved as test dataset
to evaluate the predicate assignments. In other words the test dataset enabled eval-
uating whether homogeneous groups of papers could be generally obtained. In total
our training set consists of 2857 papers distributed over 214 comparisons, whereas
our test set consists of 1203 papers distributed over 180 comparisons. We ensured
the uniqueness in the test papers, so that no test paper occurs in the training set;
hence the leakage in the test comparisons.

Evaluation Metrics. The standard precision, recall and f-measure were computed
given in equations 13, 14 and 15, respectively. The metrics are macro- as well as
micro-averaged [7].

Selecting K. For selecting the best clustering model we rely on the results of
the evaluation metrics after applying them on the several trained models. Since we
already have our data grouped by comparisons and our training data consists of
2857 instances, so should k be in the range |C| ≤ k ≤ |P |, where C is the set of
comparisons and P is the set of training papers. Considering the complex time and
space limitations1 of K-Means [35] we train the models across the range from 200
to 2050 with a step size of 50 resulting in 38 models for each of the vectorization
methods.

Average Purity. In our cluster analysis we custom define the term purity as the
percentage of clusters that group papers only from the same comparison they were
distributed from. For instance, the purity function of comparison comp distributed
over a set of clusters C is defined in Equation 17 as:

Purity(comp) =
|{c ∈ C | c groups papers only from comp}|

|C|
(17)

and the average purity is the sum of comparisons’ purities normalized by the number
of comparisons.

1Due to the necessity of increased RAM sizes during the learning step of K-Means we sub-
scribed to Google Colab Pro+ https://colab.research.google.com/signup that offers a CPU
environment with ∼52GB RAM size.
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6.4.2 Results and Discussion

Quantitative Analysis

By applying the mentioned metrics on the different trained models with both vector-
ization methods we get the results shown in Table 6.4. The evaluation results clearly
point out that TF-IDF outperform the SciBERT vectorization method in all metrics
and over all models. Comparing the models trained on TF-IDF vectors results into
the models k = 1650 and k = 1850 with 0.706 macro-averaged F-measure and 0.665
micro-averaged F-measure as best models, respectively. While the macro-average is
used to know how the system performs in overall, the micro-average weighs each test
instance equally, i.e. it counts for accurate prediction on predicates level instead of
on comparisons level. The models were further analyzed and the results are sum-
marized in Table 6.5 that shows a higher average purity value 64.5% for the model
k = 1850. Thus, we select the latter model as the best performing one and compare
its time complexity with a SciBERT model having the same number of clusters in
Table 6.6. Note that one vector representation has a length of 260016 and 768 for
TF-IDF and SciBERT, respectively.

Qualitative Error Analysis

More investigations are yet needed to indicate the reasons behind the noisy clusters,
which can be done by observing the purity measure per comparison. A fact is, that
comparisons partially share same papers. Once we consider this fact in computing the
average purity by dropping duplicated papers from different comparisons we increase
the value to 84.6% and to 78.4% for both models with k = 1850 and k = 1650,
respectively (recall Table 6.5). Another fact is, that noisy clusters - which have lower
purity value or i.e. are distributed from multiple comparisons - semantically overlap.
For instance, the comparison R140131 with title “Smart cities and cultural heritage”
and purity value of 25% has 4 papers that have been distributed over 4 clusters (1
pure + 3 impure). These clusters are distributed from 6 comparisons in total that
compare research about “Smart Cities”. A detailed overview of these comparison IDs
and their titles is stated in Table 6.7. Thus, having impure comparisons does not
necessarily imply inaccurate predictions, it just could relate to the initial assumption
that the comparisons existing in the ORKG purely group relevant research papers
without semantic overlapping, which has led to the stated quantitative evaluation
results.
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- Macro-Average Micro-Average

- TF-IDF SciBERT TF-IDF SciBERT

Num. of
Clusters

P R F1 P R F1 P R F1 P R F1

200 0.344 0.957 0.445 0.128 0.678 0.187 0.057 0.953 0.108 0.055 0.634 0.101
250 0.384 0.917 0.478 0.148 0.675 0.213 0.075 0.926 0.138 0.066 0.628 0.119
300 0.433 0.906 0.530 0.171 0.652 0.241 0.144 0.896 0.248 0.079 0.613 0.139
350 0.453 0.917 0.557 0.183 0.655 0.249 0.272 0.906 0.419 0.080 0.623 0.142
400 0.472 0.902 0.570 0.184 0.652 0.254 0.237 0.909 0.377 0.090 0.616 0.158
450 0.509 0.913 0.603 0.203 0.648 0.273 0.285 0.920 0.435 0.097 0.605 0.167
500 0.566 0.909 0.662 0.203 0.647 0.273 0.418 0.901 0.571 0.099 0.599 0.170
550 0.541 0.901 0.630 0.213 0.639 0.282 0.345 0.897 0.498 0.102 0.592 0.175
600 0.557 0.899 0.645 0.236 0.634 0.306 0.375 0.904 0.531 0.117 0.583 0.195
650 0.567 0.890 0.651 0.236 0.635 0.307 0.382 0.894 0.536 0.118 0.574 0.196
700 0.572 0.882 0.653 0.256 0.622 0.325 0.379 0.885 0.531 0.133 0.584 0.217
750 0.585 0.879 0.663 0.257 0.630 0.324 0.388 0.875 0.538 0.133 0.579 0.216
800 0.598 0.882 0.678 0.265 0.619 0.331 0.428 0.872 0.574 0.135 0.570 0.218
850 0.605 0.884 0.683 0.276 0.621 0.342 0.424 0.886 0.573 0.143 0.572 0.229
900 0.592 0.887 0.672 0.283 0.618 0.348 0.410 0.873 0.558 0.148 0.565 0.235
950 0.608 0.870 0.683 0.293 0.623 0.359 0.423 0.864 0.568 0.148 0.580 0.236
1000 0.605 0.864 0.680 0.298 0.608 0.361 0.424 0.858 0.568 0.158 0.566 0.247
1050 0.624 0.868 0.695 0.307 0.615 0.370 0.428 0.860 0.572 0.166 0.566 0.257
1100 0.632 0.868 0.701 0.319 0.608 0.376 0.447 0.838 0.583 0.174 0.576 0.267
1150 0.628 0.856 0.695 0.315 0.607 0.375 0.445 0.828 0.579 0.171 0.571 0.263
1200 0.618 0.859 0.685 0.327 0.605 0.383 0.408 0.842 0.550 0.173 0.561 0.265
1250 0.613 0.833 0.677 0.329 0.588 0.385 0.433 0.799 0.562 0.189 0.539 0.280
1300 0.630 0.832 0.695 0.339 0.599 0.394 0.507 0.813 0.625 0.191 0.558 0.285
1350 0.607 0.826 0.668 0.347 0.590 0.400 0.406 0.803 0.539 0.197 0.550 0.290
1400 0.595 0.827 0.661 0.353 0.593 0.404 0.400 0.790 0.531 0.201 0.551 0.294
1450 0.599 0.827 0.663 0.357 0.588 0.408 0.410 0.793 0.541 0.207 0.549 0.301
1500 0.594 0.820 0.657 0.368 0.583 0.414 0.397 0.808 0.532 0.206 0.535 0.298
1550 0.639 0.813 0.694 0.374 0.580 0.421 0.511 0.757 0.610 0.229 0.532 0.320
1600 0.576 0.794 0.636 0.385 0.584 0.433 0.376 0.757 0.503 0.237 0.538 0.329
1650 0.650 0.821 0.706 0.382 0.583 0.428 0.535 0.799 0.641 0.230 0.545 0.324
1700 0.622 0.791 0.677 0.397 0.584 0.439 0.514 0.769 0.616 0.250 0.536 0.341
1750 0.627 0.794 0.680 0.409 0.585 0.452 0.489 0.770 0.598 0.267 0.545 0.358
1800 0.594 0.773 0.652 0.403 0.572 0.443 0.509 0.738 0.603 0.256 0.529 0.345
1850 0.649 0.779 0.694 0.417 0.585 0.458 0.593 0.732 0.655 0.272 0.548 0.364
1900 0.632 0.773 0.679 0.419 0.576 0.457 0.564 0.723 0.634 0.275 0.534 0.363
1950 0.628 0.763 0.675 0.428 0.571 0.465 0.584 0.713 0.642 0.290 0.527 0.375
2000 0.624 0.750 0.666 0.439 0.574 0.475 0.552 0.699 0.617 0.292 0.525 0.376
2050 0.609 0.748 0.654 0.447 0.572 0.479 0.486 0.696 0.572 0.319 0.534 0.399

Table 6.4: Evaluation results of predicates clustering.

6.5 Conclusion

In this chapter, another IR task in the context of the ORKG is discussed. The task
aims to retrieve semantically similar ORKG’s predicates to a user inquiry represented
by a new incoming paper to help the users while reframing their contributions from
scratch when possible. In contrary to the IR service tackled in chapter 3, this service’s
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- k=1650 k=1850

Min Papers/Cluster 1 1

Max Papers/Cluster 30 24
Average Papers/Cluster 1.901 1.696

Min Clusters/Comparison 1 1
Max Clusters/Comparison 106 110

Average Clusters/Comparison 10.004 10.700
Min Comparisons/Cluster 1 1
Max Comparisons/Cluster 6 7

Average Comparisons/Cluster 1.297 1.237
Average Purity 0.590 0.645

Table 6.5: Statistics for clustering models with 1650 and 1850 clusters.

- TF-IDF SciBERT

Training 886.14s 1876.83s

Inference 5.57s 0.12s

Table 6.6: Comparison between the performance of the clustering using TF-IDF
and SciBERT vectorization methods with k = 1850. The vectorization time is not
considered.

ID Title

R140131 Smart cities and cultural heritage

R141752 Smart city governance research categories analysis by references articles
R141782 Smart city governance research categories analysis by references articles
R146458 Enterprise architecture applications for managing digital transformation of smart cities
R145950 Ontology reuse in smart city ontologies
R27061 Overview of taxonomy of smart city definitions

Table 6.7: List of sample comparisons that overlap in clusters.

main database is the predicates stored in the ORKG as components of its (S, P, O)
triples as such and not the aggregated ones that form templates.

To this end, systematic observations over the ORKG data had do be conducted
to gain insights into the characteristics of the existing predicates and namely, i) when
treated as individual data items, and ii) when grouped within comparisons as aggre-
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gating components. For this we constructed and analyzed two datasets: the single
predicates dataset in Subsection 6.2.1 with 5579 papers and 2011 predicates; And
the clustered predicates dataset in Subsection 6.2.2 containing 4060 papers, 1816
predicates and 214 comparisons. In the process we ensured a diverse distribution
over different research fields and problems.

The methodology of the implemented IR service was inspired from related work
on the Semantification of Biological Assays data in the ORKG [6], which defined the
task as a clustering problem. In this chapter we leveraged the dataset of clustered
predicates grouped within comparisons to build clusters of comparisons’ papers that
can be mapped into comparisons’ predicates at inference time (see Figure 6.10 for
the service workflow) The dataset were divided in 2857 and 1203 training and test
papers, respectively. We applied TF-IDF [65] as well as SciBERT [13] embeddings
to represent a paper’s text represented by its title and abstract and then fed them
to the centroid-based clustering algorithm K-Means [35] to build the clusters.

For selecting the best number of clusters we trained different models across the
range from 200 to 2050 with a step size of 50 for both vectorization methods, result-
ing in 76 different models, and applied the evaluation metrics, precision, recall and
f-measure macro- and micro-averaged, on them. The results clearly show that the
models trained on TF-IDF vectors outperform the SciBERT ones. The results also
show that k = 1850 is the best number of clusters with F1-score of 0.655.

Considering the drawbacks of K-Means as clustering algorithm such as, e.g.
centroid-based and a spherical-data distribution assumption, as well as the imbalance
existing in our training set’s labels represented by comparisons, a better performance
can be achieved in future works by applying a better suited clustering algorithms,
such as hierarchical-based ones like the Agglomerative Clustering [78], where papers
of comparisons can be hierarchically distributed over clusters. Another way would
be considering a better suited algorithm to deal with the high dimensionality existed
in the TF-IDF vectors, as a vector representation in our training set has a length of
260016.
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[44] L. LIU and M. T. ÖZSU, editors. Mean Average Precision, pages 1703–1703. Springer US,
Boston, MA, 2009. ISBN 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9 3032. URL
https://doi.org/10.1007/978-0-387-39940-9_3032.

[45] X. Liu and H. Fang. Latent entity space: a novel retrieval approach for entity-bearing queries.
Information Retrieval Journal, 18:473–503, 2015.

[46] Z. Liu, C. Xiong, M. Sun, and Z. Liu. Entity-duet neural ranking: Understanding the role of
knowledge graph semantics in neural information retrieval, 2018.

[47] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

[48] P. Manghi, N. Manola, W. Horstmann, and D. Peters. An infrastructure for managing ec
funded research output: The openaire project. Grey Journal (TGJ), 6(1), 2010.

[49] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cam-
bridge University Press, USA, 2008. ISBN 0521865719.

[50] V. G. Meister. Towards a knowledge graph for a research group with focus on qualitative
analysis of scholarly papers. In SemSci@ ISWC, pages 71–76, 2017.

82

https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://eresearchau.files.wordpress.com/2016/03/eresau2016_paper_95.pdf
https://eresearchau.files.wordpress.com/2016/03/eresau2016_paper_95.pdf
https://techcomm.nz/Story?Action=View&Story_id=106
https://techcomm.nz/Story?Action=View&Story_id=106
https://doi.org/10.1007/978-0-387-39940-9_3032


Bibliography

[51] A. Oelen, M. Y. Jaradeh, M. Stocker, and S. Auer. Generate FAIR literature surveys with
scholarly knowledge graphs. CoRR, abs/2006.01747, 2020. URL https://arxiv.org/abs/

2006.01747.

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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