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Abstract 

Increasingly fast development cycles and individualized products pose major challenges for today's smart 
production systems in times of industry 4.0. The systems must be flexible and continuously adapt to changing 
conditions while still guaranteeing high throughputs and robustness against external disruptions. Deep rein-
forcement learning (RL) algorithms, which already reached impressive success with Google DeepMind's 
AlphaGo, are increasingly transferred to production systems to meet related requirements. Unlike supervised 
and unsupervised machine learning techniques, deep RL algorithms learn based on recently collected sensor- 
and process-data in direct interaction with the environment and are able to perform decisions in real-time. 
As such, deep RL algorithms seem promising given their potential to provide decision support in complex 
environments, as production systems, and simultaneously adapt to changing circumstances. 

While different use-cases for deep RL emerged, a structured overview and integration of findings on their 
application are missing. To address this gap, this contribution provides a systematic literature review of 
existing deep RL applications in the field of production planning and control as well as production logistics. 
From a performance perspective, it became evident that deep RL can beat heuristics significantly in their 
overall performance and provides superior solutions to various industrial use-cases. Nevertheless, safety and 
reliability concerns must be overcome before the widespread use of deep RL is possible which presumes 
more intensive testing of deep RL in real world applications besides the already ongoing intensive simula-
tions. 
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1. Introduction 

Today's production has to cope with significantly increased complexities due to accelerating innovation cy-
cles and increasingly individualized customer demands. Fully customized products and on-demand produc-
tion impose high challenges on the associated production systems. In particular, production planning and 
control must be able to deal with uncertainties and constantly changing production environments [1]. Fail-
ures must be compensated quickly to enable on-time deliveries and optimize the production performance. 
Besides, production logistics must be able to perform the planned actions and meet the same requirements 
to ensure high robustness and reduce downtimes [2]. 

One opportunity to fulfill the demanding requirements and to keep up with product development is the ap-
plication of machine learning in production systems such as (semi-)supervised, unsupervised, or reinforce-
ment learning (RL). In contrast to (semi-)supervised and unsupervised learning, RL does not require a pre-
labeled set of data and any human supervision. It is characterized in particular by its trial-and-error learning 
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approach in direct interaction with the environment [3] and enables real-time online decision-making and an 
adaptive system design [4]. Especially with the success of DeepMind´s AlphaZero [5], neural network based 
RL received special attention which has resulted in a large number of publications in various fields and 
emphasized its capabilities in complex systems. However, even though [6] already emphasized the potential 
of general machine learning in production to improve quality and increase performances and availabilities, 
no focused review on research outcomes was conducted for the deployment of deep RL in production in 
recent years. In contrast, the fields of CPS [7] or general economics [8] among others have outlined research 
findings in a bundled manner and elaborated the advantages as well as major issues yet to be solved. 

We intend to provide a systematic literature review of ongoing deep RL research in production planning, 
control, and logistics. This includes the identification of simulated and real-world implementations as well 
as current implementation challenges. We also want to derive possible future research directions and provide 
incentives to leverage the deployment of deep RL in applications that can benefit from its flexibility and 
adaptability. For this purpose, we intend to answer the following research questions in production planning, 
control and logistics:  

− RQ1: What deep RL applications exist in the field of production planning, control and logistics? 
− RQ2: What are existing implementation challenges of deep RL? 
− RQ3: What are future research fields that need to be addressed to overcome these challenges and 

          support implementations of deep RL in production systems? 

To answer these research questions, we first give a short introduction to deep RL in Section 2, followed by 
the applied review methodology in Section 3. Section 4 presents the results of our review analysis (RQ1). 
Section 5 addresses RQ2 by outlining existing challenges and RQ3 by giving incentives for potential future 
research. Finally, a conclusion is given in Section 6. 

2. State-of-the-art 

RL is based on the agent-environment interaction loop as illustrated in Figure 1 and can be described as a 
sequential decision-making process. The agent performs an action and receives in turn a reward for this 
action and the current environmental state. With each loop and the gathered experience, the agent can adapt 
its behavior policy accordingly [3].  

Figure 1: Agent-environment interaction loop [3] 

Conventional RL methods often employ a Q-table for mapping the policy, in which recommendations for 
given states and the resulting actions can be retrieved. However, in high dimensional problem spaces, this 
leads to the curse of dimensionality and declining performances [9]. To circumvent this limitation, a neural 
network can be employed to map the policy. First demonstrated in 2013, such a deep RL algorithm outper-
formed human benchmarks in performances within the Atari environment [10]. Apart from the neural net-
work, it is essential to distinguish between model-free and model-based algorithms. Model-based algorithms 
learn a general model of their environment and can make predictions about the next possible state. Model-
free algorithms, on the other hand, do not learn a model of their environment, but iteratively gather experi-
ence and exploit their policy to evaluate executable actions [3].  Model-free algorithms can further be clas-
sified into value-based algorithms that require a discretization of the action space but have a better sample 
efficiency like the DQN, policy-based algorithms like a PPO that learn the policy directly and don´t need to 
evaluate actions based on Q-values like the DQN, and hybrid algorithms that try to combine both previously 
mentioned methods benefits [11].   
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A further characteristic of deep RL is its suitability for an application in decentralized and distributed multi-
agent systems. Especially in the field of smart manufacturing and Industry 4.0, distributed systems can lev-
erage the adaptability of a system and enable more robust responses against uncertainties and unforeseen 
events [12]. This makes RL being a promising technique to improve the performance of modern production 
systems. 

3. Research methology 

Before conducting the analysis, it is essential to establish a systematic review procedure to ensure a repre-
sentative coverage of results for deep RL applications in production systems. In the further course, we follow 
the guidelines proposed by [13] and [14] and focus on the taxonomy as outlined in Table 1.  

Table 1: Taxonomy framework 

 Characteristic  Categories 
    Focus  Research outcomes Research methods Theories Applications 
 Goal  Integration Criticism Central issues 
 Perspective  Neutral representation Espousal of position 
 Coverage  Exhaustive Ex. and selective Representative Central/pivotal 
 Organization  Historical Conceptual Methodological 
 Audience  Specialized scholars General scholars Practitioners General public 
 

During the review process, we focus on research outcomes and applications of deep RL in production sys-
tems. Thereby we try to give integrative insights but also maintain a neutral position to highlight central 
issues that may block an implementation but also serve as research opportunities. Within our review scope, 
we provide a representative coverage of our chosen topic that addresses practitioners and general scholars.  

For further refinement, we defined the keywords as listed in Table 2. Besides an artificial intelligence subset, 
a second subset describes the production domain, and a third the respective discipline. 

Table 2: Defined keyword combinations  

Deep RL subset  Domain subset  Discipline subset 
     Deep reinforcement learning OR 

AND 

 Production OR 

AND 

 Planning OR 
 Manufacturing OR  Control OR 

Reinforcement 
learning AND 

Artificial intelligence OR  Assembly OR   Scheduling OR 
Deep learning OR  Automation   Dispatching OR 
Machine learning   Logistics 

 

During the review, we screened the retrieved literature from Web of Science, IEEE Xplore, and ScienceDi-
rect (Title, abstracts and keywords, similar to [15]) according to pre-defined inclusion and exclusion criteria. 
We only considered English-language papers published after 2010, as deep RL and particular achievements 
in this field were achieved after the publication of [10] in 2013. In addition, only papers that received a peer 
review were included to ensure a high review quality. We included papers that focus on the impact of deep 
RL in production planning, control, and logistics. Purely technical papers or papers that focus on the devel-
opment of algorithms were excluded. A summary of the review process is given in Figure 2. Remarkably, a 
large number of publications was excluded after the full-text review, since RL was considered as a machine 
learning technique, but did not utilize a neural network for the task completion. 
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Figure 2: Review process 

The distribution of publications over the years is illustrated in Figure 3. It is noticeable that no papers were 
published until 2017, but since 2018 there has been a significant increase, which underlines the ongoing 
focus on deep RL applications in current production research. On the other hand, the distribution among 
journals with more than one publication in Figure 4 indicates the high quality and relevance of published 
papers that appeared in highly recognized outlets. 

 

 

 

Figures 3/4: Yearly publications and outlet contributions (2021 up to February) 

4. Review analysis 

During the in-depth analysis of the reviewed papers, production planning, as the discipline with the most 
publications (21), is considered first. Afterwards, due to the high overlap, production control (11) and logis-
tics (6) are addressed in detail.  

4.1 Production planning 

In the field of production planning and especially scheduling, most of the reviewed papers were driven by 
the need to find more robust solutions that can deal with planning uncertainties and unforeseen incidents. 
Conventional algorithms have difficulties to cope with the dynamic production environment and often rely 
on human intervention or experience [16]. 

To deal with uncertainties, [17] increased a chemical plant's profitability by applying a policy-based algo-
rithm for chemical production scheduling, outperforming the otherwise commonly employed MILP algo-
rithm. Similarly, conventional algorithms in this field often have difficulties in dealing with down-times, 
delays, and rush orders, whereas deep RL algorithms demonstrate increased robustness. This is also evident 
in [18], who leveraged production scheduling to cope with highly spontaneous orders in the medical mask 
production during times of Covid-19. Additionally, fitted with a long-short term network, the algorithm 
responded more flexibly to inputs and operated faster with a reduced tardiness. Another set of papers focused 
on job-shop scheduling and reduced the makespan compared to FIFO, LPT/SPT, or other heuristics 
[19][20][16] or optimized tardiness levels, profits, and utilization rates [21]. To be more adaptive to differing 
problem granularities, [22] decomposed the general objective into a local and a global optimization and 
training problem.  

In general, it is noticeable that 70% of the papers in the field of production scheduling utilized value-based 
algorithms that require a discretization of the action space. However, this is often feasible and can correspond 
to the selection of defined operations to reduce process time [23], or the selection to allocate a product to a 
specific machine [24]. On the other hand, a variety of inputs can be processed as demonstrated in [25] and 
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[26], who take Gantt diagrams for rescheduling processes as inputs. This not only led to a reduced tardiness, 
but also increased the flexibility of the system in handling diminishing shop-floor predictabilities.  

Due to the great flexibility of the algorithm's reward function, it can be flexibly adapted and trained for other 
production optimization problems. To provide a brief application overview, the following Table 3 consoli-
dates the reviewed papers within the scope of production scheduling. Even though it becomes evident that 
almost all of the proposed solutions outperformed conventional algorithms, they were all evaluated in sim-
ulations. 

Table 3: Deep RL applications in production scheduling 

Schedulings process 
Superiority to  
conv. methods Objective Source 

Chemical prod. scheduling Superior Maximize profits [17] 
Cloud manufacturing Superior Maximize utilization [27] 

Dynamic scheduling - Minimize completion time [28] 
Superior Minimize makespan [29] 

Flow shop scheduling Superior Reduce tardiness [18] 

Job-shop scheduling  
Superior Minimize makespan [30] 
Superior Minimize makespan [19] 

Job-shop scheduling 

- Minimize makespan [22] 
- Minimize processing time [31] 

Superior Minimize utilization and profits [21] 
Superior Minimize makespan [20] 
Superior Minimize makespan [16] 

Lot scheduling Superior Min. waiting, impr. cost-rates [24] 
Mold scheduling Superior Minimize processing time [23] 
Multichip production Superior Minimize makespan [32] 
Packaging line scheduling Superior Min. comp. time, energy cons. [33] 
Paint job scheduling Superior Minimize change-over costs [34] 
Parallel, re-entrant prod. Comparable High short-term return [35]  

Rescheduling Lower tardiness Reduce tardiness [25] 
Lower tardiness Reduce tardiness [26] 

Single machine scheduling Superior Minimize makespan, lateness [36] 
 

4.2 Production control 

In production control, a key challenge is to compensate for sharp fluctuations in demand and breakdowns 
that occur at short notice to dispatch products to their respective target machines. Depending on the current 
state of production, orders have to be allocated to eligible machines according to their capacity, buffer levels, 
and further factors, while optimizing both local and global objectives [37]. To cope with the existing uncer-
tainties, conventional methods require high computational efforts to adapt to process variations [38] or rely 
on single methods that do not operate optimally in each situation [39]. The static sequencing rule problem 
was addressed by [40] and [39], based on a situational sequencing rule selection. According to the current 
occupancies, machine status and others, the deep RL algorithm selected the best dispatching heuristic for the 
current production (such as FIFO) and significantly improved tardiness in most cases. Further approaches of 
adaptive job-shop scheduling were particularly investigated within the highly volatile and technically de-
manding wafer fabrication. By implementing deep RL driven dispatching rules, superior performances were 
reached compared to a variety of conventional methods, resulting in minimized time constraint violations 
and maintained WIP levels [41], increased machine utilization and reduced lead times [42], as well as sim-
ultaneously minimized utilization, throughput and waiting times [43]. Another approach to reduce WIP lev-
els was proposed by [44] in production flow control. Compared to a maximum throughput method, the av-
erage WIP level could thereby be reduced by 43% with a minimal decrease in throughput (-0.2%). Further 
applications are listed in Table 4 and include a short-term decision-making process in mineral processing [4] 
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which increased cumulative cash flow by 15%, a multi-agent dispatching to optimize delivery performance 
within the semi-conductor industry [45], and a general transfer learning supported deep RL approach in job 
shop processes [46]. As in scheduling, most approaches (7 out of 11) outperformed conventional algorithms, 
but were again solely implemented in simulations. 

Table 4: Deep RL applications in production dispatching 

Dispatching process 
Superiority to  
conv. methods Objective Source 

General job-shop disp. 

Comparable Global and local optimization [38] 
Comparable Minimize mean tardiness [39] 

Superior Minimize total tardiness [40] 
Superior Minimize mean lateness/tardiness [46] 

Short-term mineral flow Superior Optimize profits, min. target deviations [4] 

Semiconductor Comparable Optimize delivery performance [45] 
Comparable Global and local optimization [37] 

Wafer fabrication 
Superior Optimize util., TH/waiting times [43] 
Superior Optimize util., lead times [42] 
Superior Min. time constr. violations, WIP [41] 

WIP bounding Reduces WIP Opt. through-put and WIP trade-off [44] 
 

4.3 Production logistics 

In [47], a real-time intralogistics solution was proposed to handle uncertainties with autonomous mobile 
robots (AMR). Based on the states of the individual agents, they could negotiate orders and virtually raised 
bids which outperformed conventional methods in terms of logistics efficiency. In a similar scenario the 
deep RL algorithm determined optimal target machines for the automated guided vehicles (AGV) based on 
job information, queue sizes, and station status which reduced lead times compared to conventional methods 
[48]. For the orchestration of AGVs [49] implemented a mixed rule approach. Compared to single heuristics, 
the makespan and delay ratio were thus reduced by approximately 10%. Besides automated vehicles, [50] 
proposed a deep RL algorithm for the 3-grid sorting system control to fasten up product dispatching and 
enable multiple sorting objectives. Other applications were a collaborative robot conveyor belt processing 
to fill surrounding trays [51] and a syringe filling or virtual commissioning process, among others, which 
outperformed human benchmarks [52].  While all compared approaches were again able to improve bench-
mark performances, 5 out of 6 were evaluated in simulated environments. 

Table 5: Deep RL applications in production logistics 

Dispatching process 
Superiority to  
conv. methods Objective Source 

AGV control Superior Min. makespan and delay ratios [49] 
Superior Optimize lead-times [48] 

AMR control Superior On-time order completion [47] 
Robot batching - Reach target weights and opt. filling [51] 
Syringe filling process Above human Min. interruptions and bad decisions [52] 
Three-grid sorting system - Optimize in-/outflow control [50] 

5. Implementation challenges and potential research opportunities 

Despite the superior performance of deep RL, we identified the algorithm and parameter selection and opti-
mization as well as the simulation to reality transfer as major challenges that have to be overcome to fully 
leverage its potential in production systems.  
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Beginning with the optimization, there is no guarantee for an optimal solution [17] and it is necessary to 
consider local as well as global optimization measures, to prevent sub-optimal solutions and decreased per-
formances [37, 38, 45]. Besides, the choice of the algorithm, the network parameters, and further adjustment 
possibilities must be clarified before implementation. Regarding the algorithm selection, 22 out of 26 value-
based implementations utilized a DQN, which was often inferior to enhanced versions such as a dueling or 
double DQN [53] and may negatively impact the performance in the particular use-case.  Further challenges 
arise from obtaining the desired reliability and safety of the proposed solution. In production, seamless op-
eration without incidents and maximum predictability of the system must be constantly ensured. This can 
only be realized by transferring the results from the simulations to reality and through subsequent intensive 
in-process validations. However, such a transfer to a real production system was often considered critical or 
required great efforts, resulting in only a few conducted real-world testings and appropriate conclusions for 
reality are rather hard to derive. 

One way to address the above mentioned challenges in future research is, first, to test and optimize similar 
algorithms in parallel, which can be implemented without much efforts and contribute to a more based per-
formance testimonial. Second, the choice of the neural network parameters can be intensively adjusted be-
forehand to exploit the algorithm's potential and increase its overall performance as in [22]. Further exten-
sions such as long-short term memory or prioritized experience replay can be implemented and provide 
enhanced attributes for the proposed solution. Furthermore, future research should focus on an increased 
simulation to reality transfer. This can be accelerated significantly by multi-variable simulations which con-
sider real-world uncertainties to minimize the existing implementation barriers. This also concerns the for-
mulation of realistic objectives and reward functions, which do not only consider closed systems, but rather 
the interaction of the different actors.  

To reduce general task complexities, further research can focus on a hierarchical RL frameworks, similar to 
the proposed rule selection framework in [39]. This circumvents the need for a single solution and distributes 
the varying objectives on distributed agents which are selected scenario-dependent according to pre-defined 
process criteria. Moreover, advanced edge functionalities can be implemented through cooperative learning 
and multi-agent architectures as discussed by [42] and [47]. Thus, the policy would not depend on the expe-
rience of a single agent, but would benefit from the totality of accumulated experience. The generation of a 
fleet intelligence would raise additional efficiencies and synergies in large and complex production systems 
and reduce the drawbacks of single-agent systems. 

6. Conclusion 

The purpose of this paper was to review existing applications of deep RL in production systems and to 
outline challenges and potential fields of future research. Based on a taxonomy framework, aggregated pa-
pers from three databases were narrowed to a final set of 38 papers and classified according to pre-defined 
criteria. It became apparent that deep RL has a broad application base in production scheduling, dispatching, 
and logistics, outperforming conventional algorithms in most cases and proving its ability to adapt to a wide 
variety of scenarios and handling production uncertainties. This not only optimized lead times, tardiness or 
WIP levels, but also reduced existing drawbacks of conventional methods such as high computation costs, 
limited adaptation capabilities, or high dependencies on human-based decisions. Nevertheless, only a few 
applications were assessed in reality, which makes further validation mandatory. More complex simulations 
that incorporate further uncertainties need to be conducted to reduce existing transfer barriers. Besides, ad-
ditional consideration of optimization alternatives, such as more performant deep RL algorithms and exten-
sions, should be considered to assess the full potential. Further research in collaborative and hierarchical 
multi-agent architectures and fleet intelligence approaches might also accelerate the deployment of deep RL 
and make it a reliable and robust optimization method for future distributed production systems. 
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