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Abstract 
The apple replant disease (ARD) is a complex phenomenon, which affects apple orchards and 

nurseries worldwide. It occurs when apple is repeatedly planted at the same site, leading to 

growth depressions and reductions in fruit yield and quality. Despite decades of research, the 

etiology is poorly understood. However, since soil disinfection leads to improved plant growth, 

soil (micro)biota are known to be involved. Microbes can colonize roots from the rhizosphere, 

become so called endophytes, and can have a huge impact on plant growth, which may be 

negative or positive. But up to date, little is known about the role of endophytes in  

relation to ARD. In this study we hypothesized that the bacterial endophytic microbiome differs in 

roots of plants growing in replant affected soil from that in roots growing in  

non-affected soil.  

Therefore, a greenhouse biotest was conducted in three years, in which M26 apple plants were 

planted either into untreated ARD soils or gamma irradiated ARD soils from three different sites. 

Results showed an increased plant growth in irradiated soil variants. To analyze the endophytic 

bacterial community structure in roots, surface disinfected roots from these plants were used for 

a culture independent 16S rRNA amplicon sequencing approach. Results showed that 

Proteobacteria were the dominant phylum in all variants. Interestingly, the genus Streptomyces 

was shown to be associated with ARD. Several amplicon sequence variants (ASVs) linked to this 

genus were highly abundant in roots grown in ARD soil from different sites and were negatively 

correlated to shoot length and shoot fresh mass. The same ASVs were also found in roots of plants 

growing in ARD soil in the field and were further found to be increasing in their abundance over 

time after planting in virgin soil. However, whether these members of the genus Streptomyces are 

causal part of the ARD complex or just opportunists remains unanswered. 

Moreover, in a culture dependent approach, 150 different isolates were obtained, belonging to 

29 different genera with 69 different bacterial species. With 25 different species, Pseudomonas 

was the dominant and most diverse genus. These isolates serve as future inocula to find not only 

possible ARD causal agents, but also plant growth promoting endophytes, which might help to 

overcome ARD.  

Understanding the role of the endophytic bacterial community in the roots in the context of ARD 

will help to unravel the etiology of ARD and to develop possible countermeasures. 
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Zusammenfassung 

Die Apfelnachbaukrankheit (ARD) ist ein komplexes Phänomen, das Apfelplantagen und Baumschulen 

weltweit betrifft. Sie tritt auf, wenn Apfel wiederholt am gleichen Standort gepflanzt wird, was zu einer 

Reduzierung des Wachstums sowie des Ertrags und der Fruchtqualität führt. Trotz jahrzehntelanger 

Forschung ist die Ätiologie nur unzureichend verstanden. Da jedoch die Desinfektion des Bodens zu einem 

verbesserten Pflanzenwachstum führt, wird von einer Beteiligung des Boden(mikro)bioms ausgegangen. 

Organismen können Wurzeln von der Rhizosphäre aus besiedeln, werden dann zu so genannten 

Endophyten und können einen großen Einfluss auf das Pflanzenwachstum haben, sowohl negativ als auch 

positiv. Allerdings ist bis heute wenig über die Rolle der Endophyten in Bezug auf ARD bekannt. In dieser 

Arbeit wird die Hypothese geprüft, dass sich das bakterielle endophytische Mikrobiom in den Wurzeln von 

Pflanzen, die in von der Nachbaukrankheit betroffenen Böden wachsen, ivon dem in nicht betroffenen 

Böden unterscheidet.  

Daher wurde in drei Jahren ein Gewächshaus-Biotest durchgeführt, in dem M26-Apfelpflanzen entweder in 

unbehandelten ARD-Boden oder in gammabestrahlten ARD-Boden von drei verschiedenen Standorten 

gepflanzt wurden. Die Ergebnisse zeigten ein besseres Pflanzenwachstum in den bestrahlten 

Bodenvarianten. Um die Struktur der endophytischen bakteriellen Gemeinschaft in den Wurzeln zu 

analysieren, wurden oberflächendesinfizierte Wurzeln dieser Pflanzen für einen kulturunabhängigen 16S 

rRNA-Amplikon-Sequenzierungsansatz verwendet. Es zeigte sich, dass Proteobakterien das dominierende 

Phylum in allen Varianten waren. Interessanterweise konnte gezeigt werden, dass die Gattung 

Streptomyces mit ARD assoziiert war. Mehrere „Amplicon Sequence Variants“ (ASVs), die zu dieser Gattung 

gehören, waren in Wurzeln, die in ARD-Boden von verschiedenen Standorten wuchsen, sehr abundant und 

negativ mit der Sprosslänge und der Sprossfrischmasse korreliert. Die gleichen ASVs wurden auch in 

Wurzeln von Pflanzen gefunden, die im Feld in ARD-Boden wuchsen. Weiterhin wurde festgestellt, dass 

diese ASVs im Laufe der Zeit nach der Pflanzung in gesundem Boden in ihrer Abundanz zunahmen. Ob 

jedoch diese ASVs der Gattung Streptomyces ursächlicher Teil des ARD-Komplexes sind oder nur 

Opportunisten, bleibt unbeantwortet. 

Zusätzlich wurden in einem kulturabhängigen Ansatz 150 verschiedene bakterielle Isolate gewonnen, die 

29 verschiedenen Gattungen und 69 verschiedenen Arten zugeordnet werden konnten. Mit 25 

verschiedenen Arten war Pseudomonas die dominante und diverseste Gattung. Diese  

Isolate dienen als zukünftige Inokula, um nicht nur mögliche ARD-Verursacher, sondern auch 

pflanzenwachstumsfördernde Endophyten zu finden, die bei der Überwindung von ARD helfen könnten.  

Das Verständnis der Bedeutung der endophytischen Bakteriengemeinschaft in den Wurzeln im 

Zusammenhang mit ARD wird helfen, die Ätiologie von ARD zu entschlüsseln und mögliche 

Gegenmaßnahmen zu entwickeln. 

 
Schlagwörter: Apfelnachbaukrankheit, Biotest, Endophyten, Streptomyces 
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ACC  1-aminocyclopropane-1-carboxylate  
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ASV  amplicon sequence variant 
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Fig.  figure 
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1.   General introduction 

 

1.1   The economic importance of apple 

Apple (Malus x domestica Borkh. (Korban and Skirvin, 1984)) is the most important temperate 

tree crop worldwide (Brown, 2012). It is widely cultivated on all continents (except Antarctica) 

in temperate latitudes and even in high altitudes in the tropics (Luby, 2003). But due to late 

blooming and cold hardiness, apple has a broad northern range and is best adapted for the 

cool temperate zone (Kellerhals, 2009). In the year 2019, the worldwide harvested area was 

4,717,384 ha (FAOSTAT, www.fao.org/faostat). Since more than 40 years, this total area has 

only changed marginally. However, in that time the amount of harvested apples has more 

than doubled, increasing by 127 % and reached 87,236,221 t in 2019. Reasons for this increase 

are intensified production methods, like dwarfing rootstocks, high planting densities, renewal 

pruning and the use of growth regulators, resulting in fewer and larger orchards (Luby., 2003; 

Robinson, 2011). However, the main reason is the increased production area in China, which 

increased 10-fold in that time period and accounted for around half of the global production 

in 2019, while the production areas in Europe and USA declined (FAOSTAT). With approx. 40 

million t annually, China is also by far the largest apple consuming country.  

After bananas and watermelons, apples are the third most produced fruit worldwide 

(FAOSTAT). The global apple market reached 78.8 billion dollars in 2019 (World - Apple - 

Market Analysis, Forecast, Size, Trends and Insights, https://fruitgrowersnews.com (Accessed: 

27.01.2021)) which represents 16 % of the total fresh fruit revenue worldwide (Statista.com). 

 

For Germany, the apple cultivated area reached 33,905 ha in 2020 (Destatis.de) and was 

almost constant compared to the last 17 years (FAOSTAT). This area yielded approximately 

one million t (1,023,316 t) apple fruits in 2020 (Destatis.de). The most important apple 

production sites in Germany are “Altes Land” and the region of “Lake Constance”. In 

consequence, the highest number of apples was recorded in the federal state of Baden-

Württemberg (403,235 t; 12106 ha), followed by Lower-Saxony (279,691 t; 8064 ha). With 

around 25.5 kg consumed per capita and year, apples are the most popular fruit in Germany 

(Statista.com). In 2018, 67 % of apples for consumption originated from national production. 

Regarding apple imports, Italy as the most important country accounted for 31% of all German 

apple imports of 2018 (Destatis.de).  



1.   General introduction 

2 
 

Moreover, apple is also very important in German nurseries. Of the total fruit tree area of  

974 ha (Destatis.de; Baumschulerhebung 2017), apple accounts for two thirds (A. Wrede, 

personal communication). 

 

 

1.2   Symptoms and etiology of ARD 

Apple replant disease (ARD) is a complex phenomenon affecting apple orchards and apple tree 

nurseries worldwide, leading to growth reductions and losses in fruit yield and quality 

(Mazzola and Manici, 2012; Manici et al., 2013; Winkelmann et al., 2019). Roots of affected 

plants show cell necrosis, blackening, impaired root hair development, and low cell vitality 

(Grunewaldt-Stöcker et al., 2019). Due to delayed precocity, reduced fruit yield and quality, 

orchards face severe economic losses during their lifetime (Mazzola, 1998; Van Schoor et al., 

2009). Next to apple orchards, apple tree nurseries are highly affected as apple plants are 

replanted more frequently, leading to a rapid induction of ARD (Winkelmann et al., 2019). 

Recently, ARD was described as a “harmfully disturbed physiological and morphological 

reaction of apple plants to soils that faced alterations in their (micro-)biome due to previous 

apple cultures” (Winkelmann et al., 2019). This disease is species-specific and can persist for 

decades (Savory, 1966). It occurs, when apple or a closely related species is repeatedly planted 

at the same site. However, despite decades of research, the etiology of ARD is still not fully 

understood. It is known that soil disinfection leads to better growth indicating that biotic 

factors are the primary cause (Mai and Abawi, 1981; Yim et al., 2013; Spath et al., 2015; 

Mahnkopp et al., 2018). In addition to fungi belonging to the genera Cylindrocarpon, Fusarium, 

Rhizoctonia and Cylindrocarpon-like fungi (Nectriaceae) Dactylonectria, Ilyonectria and 

Rugonectria, a number of other taxa including various bacterial species such as members of 

Actinobacteria and the genera Bacillus and Pseudomonas, but also Oomycetes, such as 

Phytophthora and Pythium and even nematodes have been reported to contribute to ARD 

(Čatská et al., 1982; Utkhede and Li, 1988; Otto et al., 1993; Mazzola, 1998; Tewoldemedhin 

et al., 2011b; Manici et al., 2017; Kanfra et al., 2018; Popp et al., 2020; Popp, 2020). All these 

different potential causal organisms in these different studies suggest a disease complex 

rather than a single pathogen.  

Based on molecular barcoding approaches, several studies confirmed not only changes in the 

abundance of specific pathogens in ARD-affected soils, but significant shifts in the microbiome 
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community structure of the bulk soil and the rhizosphere (Winkelmann et al., 2019). One of 

the earliest studies investigating the role of microorganisms in the rhizosphere of ARD-

affected plants was conducted by Čatská et al. in 1982. They found an increased number of 

micromycetes and actinomycetes, whereas the overall number of bacteria, including 

fluorescent pseudomonads, decreased in the rhizosphere of ARD-affected plants compared to 

non-affected plants. A decrease of bacterial diversity when replanting apple was also 

confirmed by Sun et al. (2014). Further, several studies revealed a significant difference of the 

bacterial community structure in the rhizosphere between ARD-affected and  

non-affected apple plants (Rumberger et al., 2007; Yim et al., 2013; Sun et al., 2014; Jiang et 

al., 2017).  This dysbiosis, the alteration of diversity and structure of the microbiome of ARD-

affected plants compared to healthy plants, was also shown in split-root approaches, 

especially for the rhizosphere and rhizoplane (Lucas et al., 2018; Balbín-Suárez et al., 2020, 

2021). Members of the genera Streptomyces and Variovorax were especially enriched in the 

rhizosphere and rhizoplane in ARD-affected roots (Lucas et al., 2018; Balbín-Suárez et al., 

2020, 2021). These significant shifts in the microbial diversity indicate an altered microbe 

“recruitment” of ARD-affected roots from ARD-affected bulk soil (Balbín-Suárez et al., 2020). 

Rumberger et al. (2007) showed that these (bacterial) rhizosphere communities were still 

significantly different from those of non-affected roots even three years after replanting. One 

reason for these shifted community structures are differences in root exudation patterns of 

ARD-affected plants. It was shown that under replant conditions the expression of genes 

responsible for phytoalexin biosynthesis are upregulated in roots (Weiß et al., 2017a; Reim et 

al., 2020; Rohr et al., 2020; submitted). This upregulation was shown to occur specifically and 

locally for roots grown in ARD soil (Rohr et al., 2020, submitted), and to be consistent with the 

phytoalexin content in the roots (Weiß et al., 2017b; Reim et al., 2020). Further, phloridzin 

was shown to be exuded by roots of apple seedlings at the onset of  ARD symptoms (Hofmann 

et al., 2009) and was released by apple root debris (Nicola et al., 2017b). 

Since it is known that plants can actively shape their microbiome, primarily through plant 

exudates (Hardoim et al., 2008; Bulgarelli et al., 2013; Philippot et al., 2013; Sasse et al., 2018), 

these apple-specific exudation patterns in the root rhizosphere of ARD-affected plants are 

responsible for microbe attraction, and consequently, for a different rhizo- and endosphere 

assembly. 
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1.3   Apple replant disease: Mitigation strategies and countermeasures 

The most obvious strategy to circumvent ARD is simply to avoid replanting of apple in ARD-

affected soil, e.g., using crop rotation (Mazzola and Gu, 2000). However, due to high orchard 

investments (e.g. hail nets, irrigation systems) and lack of areas (Winkelmann et al., 2019; 

Hanschen and Winkelmann, 2020), other strategies have to be developed.  

Steaming of affected soils and exchange of soils are a possible solution, but highly laborious 

and costly. Planting trees in the inter-row (driving lane) is another way used in apple orchards 

to overcome ARD. It was shown to significantly increase plant growth (Rumberger et al., 2004; 

Kelderer et al., 2012). The influence of inter-row-planting on the rhizosphere microbial 

community structure was discussed controversy. While Kelderer et al. (2012) found no 

significant effect on rhizosphere bacteria, Rumberger et al. (2004) reported a significant 

difference of general rhizosphere bacteria and Actinobacteria between row replanted and 

inter-row-planted apple trees. Although this mitigation strategy is feasible, it can only be done 

once. 

Another approach to overcome ARD is the use of the biocide Basamid ® containing the active 

ingredient Dazomet which, when getting in contact with water, is hydrolised to 

methylisothiocyanat. Plants grown in Basamid treated ARD soil showed better growth 

compared to untreated ARD soil under greenhouse and field conditions (Yim et al., 2013, 2016, 

2017). However, since Basamid is toxic for organisms that get into contact with it, and its low 

degradation rate, its application is only permitted under strict conditions and the registration 

in Germany will end in May 2024.  

Natural isothiocyanates are produced when incorporating Brassicaceae crops or seed meal 

into the soil. This so called biofumigation was shown to be a promising alternative 

countermeasure against ARD, recently reviewed by Hanschen and Winkelmann (2020). 

Several studies could demonstrate significant improvements in apple tree growth using 

biofumigation treatments (Mazzola and Mullinix, 2005; Mazzola et al., 2007; Mazzola and 

Brown, 2010; Mazzola et al., 2015; Yim et al., 2016; Yim et al., 2017; Wang and Mazzola, 2019a; 

Wang and Mazzola, 2019b). Biofumigation further results in a shift of the microbial community 

structure of the rhizosphere of apple plants (Mazzola et al., 2015; Yim et al., 2016; Wang and 

Mazzola, 2019a; Wang and Mazzola, 2019b). Mazzola et al. (2015) and Wang and Mazzola 

(2019a) could show that biofumigation treatments enrich bacterial and fungal taxa associated 

with pathogen suppression. However, despite promising results, the efficacy is highly site and 
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soil-dependent and varies depending on the starting material used (Brassicaceae plant 

species, fresh plant material or seeds, extent of tissue disruption, and amount incorporated 

into the soil (Hanschen and Winkelmann, 2020)). A similar effect can be observed when 

growing and incorporating Tagetes into the soil prior to apple planting (Yim et al., 2017). This 

method is commonly used in tree nurseries, but competes with the available area and growth 

period usually used for producing apple rootstocks and graftings. 

Flooding is reported to reduce the ARD effect. The anaerobic conditions are thought to cause 

shifts in the soil microbiome. These anaerobic conditions were induced by Hewitharana et al. 

(2014) and Mazzola et al. (2020) by adding different carbon amendments, e.g. rice bran or 

grass, to the soil, which resulted in a reduced ARD effect. In growth chamber experiments, 

anaerobic soil disinfection was shown to retard the growth of the potential ARD causing 

organisms Rhizoctonia solani AG–5, Pythium ultimum and Fusarium oxysporum and reduce 

the densities of Pratylenchus penetrans at apple roots (Hewitharana et al., 2014). In  

sequence with biofumigation, anaerobic soil disinfection led to an altered fungal but not  

bacterial rhizosphere community in comparison to roots grown in untreated soils  

(Mazzola et al. 2020). 

Similar effects were observed by Wang et al. (2019) by adding different amounts of biochar to 

replant diseased soil. Apple seedlings showed improved growth, which was attributed to 

increased diversity of the fungal community and suppression of the pathogen Fusarium solani. 

A similar approach to improve plant growth and alter the microbial community structure is to 

add compost to the soil prior planting. While Yao et al. (2006) and Rumberger et al. (2004) 

detected no increase in plant growth, Franke-Whittle et al. (2019) showed increased apple 

plant growth in 20 out of 26 evaluated compost variants. Compost amendments prior planting 

only had little effect on the bacterial community composition (Rumberger et al., 2004) or the 

effects were diminished in the second year after replanting (Yao et al., 2006) in comparison to 

control treatments. Changes in the bacterial rhizosphere community composition were rather 

attributed to different genotypes than to compost treatment in these studies (Rumberger et 

al., 2004; Yao et al., 2006). In contrast, Franke-Whittle et al. (2019) concluded that differences 

in plant growth were mainly attributed to changes in the microbial community composition 

introduced into the soil through the compost. However, the effect appeared to be compost- 

and soil-specific (Franke-Whittle et al., 2019). 
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A shift in the microbial community towards more diversity and a higher ratio of beneficial 

microorganisms was also aimed in various inoculation approaches. Via drench application, 

Utkhede and Smith (1982) inoculated the plant growth promoting bacterium Bacillus subtilis 

strain EBW-4 to the rootstock M26 grown in ARD-affected soil, which resulted in increased 

cross-sectional trunk area, total shoot growth, and fruit yield. Increased ARD-affected plant 

growth was also achieved by Čatská (1994), who inoculated the arbuscular mycorrhizal fungi 

Glomus fasciculatum and Glomus macrocarpum to apple seeds directly after sowing. 

Inoculation with Glomus fasciculatum resulted in increased shoot length, and shoot and root 

dry mass. Further, significant changes in the rhizosphere microbiome (regarding phytotoxic 

micromycetes and diazotrophic bacteria) in comparison to uninoculated controls were 

observed. Mehta and Bharat (2013) could confirm the growth promoting effect of Glomus 

fasciculatum on ARD-affected apple plants which, when inoculated, resulted in increased 

shoot length, and shoot and root dry mass in comparison to unioculated controls. Despite 

these examples of promising results, inoculants often do not have the expected rhizosphere 

competence, leading to poor establishing (Winkelmann et al., 2019). 

In the long term, breeding of tolerant rootstocks might help to overcome ARD. Up to now, 

only a few genotypes are described to be less susceptible to ARD (Leinfelder and Merwin, 

2006; St. Laurent et al., 2010; Robinson et al., 2012; Kviklys et al., 2016; Reim et al., 2019). 

New data suggest that this tolerance is soil specific. Further, several possible marker genes for 

ARD were already detected and can help in the breeding process (Reim et al., 2020; Rohr et 

al., 2020). However, conventional breeding of a tolerant rootstock will take decades, since the 

trait ARD tolerance has to be combined with other desired traits like dwarfing, pest resistance, 

drought tolerance, and the ability to compete with weeds for water and nutrients (Webster 

et al., 2000). In addition, tolerance test systems are difficult because of the mentioned soil 

specificity and the problem of proper controls. 

Despite several promising approaches to mitigate ARD, none of the mentioned strategies 

showed consistent results while being both feasible and environmental friendly. Therefore, 

more research to unravel the etiology of ARD and to overcome ARD is needed. 
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1.4   The joint project ORDIAmur 

This thesis is part of the project ORDIAmur (latin: Let's get started). ORDIAmur (Overcoming 

the Replant Disease by an Integrated Approach) is a project funded by the BMBF in the 

framework of BonaRes (soil as a sustainable resource) with the aim to unravel the etiology of 

ARD and to be able to develop and test environmentally friendly and practically feasible 

solutions for the challenging problem of ARD. This project started with a first phase in the end 

of 2015, is currently in the second phase until end of 2021 and will eventually be extended for 

further three years. In phase I, 16 project partners (plus project coordination) from all over 

Germany were involved. The ORDIAmur project is structured into five work packages (WPs, 

Fig. 1.): (WP1) Induction and etiology of ARD, (WP2) changes in rhizosphere and soil, (WP3) 

plant responses on replant diseased soils, (WP4) management and (WP5) socio-economic 

studies, which are all linked to each other. These include projects investigating root exudates, 

soil parameters, plant stress responses, breeding for ARD tolerance, bacterial and fungal 

endophytes, soil microbiome, nematodes, mesofauna organisms, phytoalexins, and socio-

economic parameters. The heart of ORDIAmur are its central experiments. These large 

experiments are often conducted in cooperation of several different projects and enable 

sharing of samples among all partners. This gives the advantage of analyzing the same plants 

or samples by different partners.  

This thesis is part of the project P9 which aims to characterize and quantify bacterial root 

endophytes in rootstocks grown in replant and non-replant soils. To do so, central 

experiments (biotests) in the greenhouse were conducted (Mahnkopp et al., 2018) from which 

samples were taken for histological analyses (Grunewaldt-Stöcker et al., 2019) and for culture 

independent analyses of the endophytic community structure (Mahnkopp-Dirks et al., 2020). 

Finally, bacterial root endophytes were investigated in roots grown in the field using culture 

independent and dependent approaches (Mahnkopp-Dirks et al., submitted). 
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Figure 1: ORDIAmur work package structure 

 

 

1.5   Bacterial endophytes 

Today it is believed that every plant is colonized by at least one type of endophyte (Strobel 

and Daisy, 2003; Johnston-Monje and Raizada, 2011; Afzal et al., 2019). So far, endophytes 

have been found in every plant analyzed (Santoyo et al., 2016). Up to now, 16 phyla or more 

than 200 genera of bacteria have been reported as endophytes in numerous plant species 

(Kumar et al., 2020). In the last decade, endophytes gained much interest. However, many 

questions remain unanswered regarding natural history, biogeography, ecology, biodiversity 

and evolution (Harrison and Griffin, 2020). To date, only 1 – 2 % of all known (ca.) 300.000 

plant species have been studied for their endophytic community (Strobel, 2018). A survey of 

600 studies revealed that hosts from only 10.5 % of plant families were examined for bacterial 

endophytes (Harrison and Griffin, 2020). 

 

 

1.5.1   Definition and ways of plant colonization 

Since the term was first mentioned by Heinrich Friedrich Link in 1809 and Anton de Bary in 

1866 the definition of endophytes has repeatedly been debated throughout the years. 

Classically they are defined as microorganisms, which can be isolated from surface disinfected 
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plant tissue and are not pathogenic (Hallmann et al., 1997; Santoyo et al., 2016). However, it 

was shown that some endophytes can live as latent pathogens inside the plant and become 

pathogenic under some circumstances (Kloepper et al., 2013; see chapter: “1.5.3 Effects of 

endophytes on plants”). Further, with the upcoming of new culture independent approaches 

employing next generation sequencing methods, isolations are not necessarily needed and 

pathogenicity assays not performed. This classical definition is therefore more suited for 

cultivated endophytes (Hardoim et al., 2015). Hardoim et al. (2015) claimed that the term 

“endophyte” should refer to their habitat, not function, and therefore proposed a more 

general definition that includes all microorganisms, which for all or part of their lifetime 

colonize internal plant tissue.  

There are several ways how endophytes can colonize internal plant tissues. One way is to 

enter through the phyllosphere, e.g. through the stomata, but also via herbivorous insect 

vectors (Frank et al., 2017). But not only horizontal ways are known. Endophytes can also be 

transmitted vertically via seeds and pollen (Frank et al., 2017). However, soil is the main 

reservoir of microorganisms for the plant microbiome (Berg and Smalla 2009; Bonito et al. 

2014; Lareen et al. 2016; Hartman and Tringe 2019). Most endophytes enter the plant through 

the rhizosphere, attracted by the presence of root exudates and rhizodeposits (Hardoim et al., 

2008; Philippot et al., 2013). This chemotaxis-mediated response towards root exudates is an 

important factor for successful colonization of the rhizosphere and rhizoplane (Hardoim et al., 

2008; Lugtenberg and Kamilova, 2009; Feng et al., 2018). According to Compant et al. (2010), 

endophytic bacteria represent “a class of specialized rhizobacteria that have acquired the 

ability to invade plant roots after establishing a rhizospheric population”. The interior of roots 

can be colonized mostly through cracks formed during lateral root emergence and at root tips 

(Hardoim et al., 2008; Bulgarelli et al. 2013), but also through wounds caused by 

phytopathogens and soil herbivores (Hallmann et al., 1997). Endophytes entering the plant 

this way are often referred to as passive endophytes, which do not actively colonize the plant 

tissue, but do so as a result of stochastic events (Gaiero et al., 2013). But also more active 

ways of entering the plant interior, e.g. using cell wall degrading enzymes, are known 

(Hardoim et al., 2008). These facultative endophytes can multiply rapidly inside the plant and 

may colonize intercellular spaces locally (Hardoim et al., 2015) or reach the cortical zone with 

the endodermis which represents a barrier for a lot of bacteria (Compant et al., 2010). 

However, several bacteria were shown to be able to penetrate this barrier either passively, 
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when secondary root growth disrupts the endodermis, or actively using cell wall degrading 

enzymes (Compant et al., 2010). Systemic colonization can then take place using the xylem 

vascular system (James et al., 2002). However, distribution through plants can take several 

weeks, the reason for this slowly spread is unknown (Compant et al., 2005; Hardoim et al., 

2015).  

Next to intercellular colonization, endophytes are also known for intracellular colonization of 

plant cells (Kandel et al., 2017). However, this research area is still poorly understood (Kandel 

et al., 2017). Intracellular bacterial colonization of plant cells has been observed in roots of 

Arabidopsis (Van der Meij et al., 2018) and switch grass (White et al., 2014), shoot tips of 

banana (Thomas and Reddy, 2013), Scot pine buds (Pirttilä et al., 2000), and in 

micropropagated peach palms (De Almeida et al., 2009). Recently, Thomas and Franco (2021) 

revealed intracellular bacteria as a common phenomenon in different plant species by 

investigating healthy in vitro cell and callus cultures using fluorescent and confocal microscopy 

and 16S amplicon sequencing. However, the colonization pathway of intracellular endophytes 

is mostly unknown, but secreted cell wall degrading enzymes are thought to be involved 

(Kandel et al., 2017). 

 

 

1.5.2   Effects of endophytes on plants 

Endophytes can have various effects on plants ranging from neutral to positive and even 

negative effects. Quantitatively, most endophytes belong to the group of commensals 

(Hallman et al., 1997), which live on metabolites produced by the plant, but cause no effect 

regarding plant growth (Hardoim et al., 2015). It is expected to find so far unknown functions 

within this group (Hardoim et al., 2015). 

But most importantly, endophytes can have positive effects on plant growth. Basically these 

effects can be classified into three main mechanisms: phytostimulation, biofertilization and 

biocontrol (Bloemberg and Lugtenberg, 2001). Phytostimulation is the production of 

phytohormones by endophytes which is probably the best studied plant growth promotion 

mechanism (Hardoim et al., 2015). Endophytes that promote plant growth by producing 

phytohormones like auxins and gibberellins are commonly found (Bastián et al., 1998; Long et 

al., 2008; Shi et al., 2009; Merzaeva and Shirokikh, 2010; Khan et al., 2012). But also, jasmonic 

and salicylic acid (Forchetti et al., 2007) and cytokinin producing endophytes are known. 



1.   General introduction 

11 
 

However, although numerous bacteria known as endophytes were found to produce cytokinin 

in culture (Glick et al., 2012), limited evidence has been reported definitively linking bacterial 

cytokinin production to plant growth promotion (Ali et al., 2017). Next to the direct production 

of phytohormones, several endophytes were also shown to manipulate the endogenous plant 

phytohormone level by, for example, degradation of IAA (Spaepen et al., 2007), metabolizing 

abscisic acid (Belimov et al., 2014) or induction of salicylic acid and abscisic acid production 

(Wang et al., 2015). Further, various endophytes producing the enzyme ACC deaminase were 

described in literature (Ali et al., 2017). This enzyme cleaves the ethylene precursor  

1-aminocyclopropane-1-carboxylate (ACC), thus lowering the plant ethylene level. The 

phytohormone ethylene is involved in the germination of seeds, acts in response to various 

stresses and elevated levels can inhibit cell division, DNA synthesis and meristem growth in 

roots, shoots and axillary buds (Burg, 1973). When inoculating 25 different endophytes with 

ACC deaminase activity originally isolated from tomato seedlings, all of them showed canola 

seedling growth promotion compared to uninoculated seedlings (Rashid et al., 2012). Despite 

these effects, ethylene was found to be a key regulator in endophytic colonization (Iniguez et 

al., 2005). Ethylene insensitive Medicago truncatula mutants were shown to be 

hypercolonized by endophytic bacteria, while the addition of ethylene decreased the 

colonization (Iniguez et al., 2005). This suggest that the ACC deaminase supports the 

colonization of endophytes (Hardoim et al., 2015).  

Another way endophytes promote plant growth is through biofertilization, which is the 

increased availability and accessibility of major nutrients to the plant (Bashan, 1998). A well-

studied mechanism is nitrogen-fixation. This ability was found for several endophytic bacteria 

of the genera Pseudomonas, Bacillus, Burkholderia, Sphingomonas, Microbacterium etc. in 

different plant species (reviewed by Puri et al., 2018). Plant growth promoting endophytes are 

also known to increase the phosphorous availability through phosphorous solubilization 

(Gaiero et al., 2013). Forchetti et al. (2007) isolated and characterized endophytes of 

sunflower (Helianthus annuus L.) and found five strains that were, next to nitrogen-fixation, 

able to solubilize phosphates. By the use of plant growth promoting bacteria in plant nutrition 

experiments, Yazdani and Bahmanyar (2009) could reduce the need for phosphorous 

application for Zea mays by 50 % without significant grain yield loss. Moreover, endophytes 

are attributed to supply the plant with essential vitamins (Basile et al. 1985). 
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A further plant growth promoting mechanism by endophytes is the protection from 

phytopathogens, known as biocontrol (Gaiero et al., 2013). Biocontrol includes mechanisms 

similar as described for rhizosphere bacteria (Sturz et al., 2000; Ryan et al., 2008). These 

comprise competition for niches and nutrients, production of siderophores, antimicrobial 

substances and lytic enzymes, detoxification and degradation of virulence factors and 

induction of systemic resistance (Compant et al., 2005). It was shown in different studies that 

after endophyte inoculation, fungal, bacterial and viral diseases as well as nematode and 

insect damages were reduced compared to uninoculated plants (Kerry, 2000; Berg and 

Hallmann, 2006; Ardanov et al., 2011; Muvea et al., 2018). One important mechanism involved 

is the induced systemic resistance (ISR) which leads to a higher tolerance against pathogens 

(Kloepper and Ryu, 2006; Zamioudis and Pieterse, 2012). It is assumed that the plant growth 

promoting endophytes are at first recognized as potential pathogens, which trigger the plant 

immune response and at later stages are able to circumvent the plant defense response 

enabling successful colonization (Kloepper and Ryu, 2006; Zamioudis and Pieterse, 2012). This 

is well documented especially for members of the genus Pseudomonas and Bacillus 

(Zamioudis and Pieterse, 2012). 

However, several endophytes are also known for their negative effects on plant health. Some 

of these facultative pathogens can shift their lifestyle depending on different factors such as 

environmental conditions, host and endophyte developmental stage or plant defense 

reactions (Schulz and Boyle 2005; Rosenblueth and Martínez, 2006). Rosenblueth and 

Martínez (2006) put forward the hypothesis of an equilibrium between plants and endophytes 

that under certain conditions gets unbalanced to the detriment of one of the partners. Schulz 

and Boyle (2005) termed this “endophytic continuum” and hypothesized that there are no 

neutral interactions between endophyte and plant host, but rather a balance of antagonism. 

Further, they hypothesized that endophytes, in contrast to known pathogens, have in general 

a higher phenotypic variability, leading to different stages like colonization, latency, 

pathogenicity and/or saprophytism. The disturbance of the endophyte plant equilibrium was 

demonstrated by Junker et al. (2012). Out of eight chosen endophytic isolates originally 

obtained from healthy Arabidopsis thaliana leaves, stems, and roots, five isolates showed 

pathogenic symptoms when colonizing the plant after reinoculation (under favorable 

conditions for the endophytes and stressful for the host plants). Kloepper et al. (2013) showed 

that the Fern Distortion Syndrome of the Leatherleaf fern (Rumohra adiantiformis) is caused 
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by latent infections of opportunistic endophytic fluorescent Pseudomonas spp., which contain 

virulence genes that are expressed when a minimum population is reached inside the plant. 

The importance of abiotic environmental conditions on this plant endophyte equilibrium was 

shown by Álvarez-Loayza et al. (2011) in the common palm tree Iriartea deltoidea. When 

seedlings grow under shady conditions, the endophytic fungi Diplodia mutila caused no 

symptoms. However, grown in direct sun light, the endophyte caused necroses in the palm 

tissue, probably by light-induced H2O2 production. This sensitive endophyte plant equilibrium 

is moreover thought to be an evolutionary driver (Schulz and Boyle 2005; Rosenblueth and 

Martínez, 2006). For example, Wheeler et al. (2019) reconstructed the evolutionary history of 

non-pathogenic endophytic populations of Verticillium dahliae in mint, mustard and grasses 

genetically and phenotypically and found that they evolved from pathogenic populations 

known in potato. Non-pathogenic endophytic populations differed genetically only marginally 

from the pathogenic populations. Another example is the fungal endophyte Hymenoscyphus 

fraxineus, which causes the European ash dieback. Interestingly, this fungal endophyte shows 

no pathogenicity to indigenous Fraxinus species in Asia (Cleary et al., 2016). However, after 

introduction of this endophyte in northern and central Europe, common ash trees (Fraxinus 

excelsior) show severe dieback symptoms (Cleary et al., 2016). Genetic diversity analyses of 

Asian and European H. fraxineus populations revealed a strong bottleneck in the European 

population (Cleary et al., 2016; McMullan et al., 2018), which was founded by just two 

divergent haploid individuals, resulting in reduced selection efficacy (McMullan et al., 2018). 

 

In summary, endophytes can have various effects on plants. The results of Gorischek et al. 

(2013), who showed that the maternally inherited fungal endophyte Epichloë elymi can cause 

a shift of the sex ratio (more seeds, less pollen) in the grass Elymus virginicus, indicates that 

there are many more effects of endophytes in plants that wait to be uncovered. 

 

 

1.5.3   Factors influencing the plant endophytic community 

It is often described that the endophytic community is a subset of the rhizoplane community, 

which in turn is a subset of the rhizosphere community (Edwards et al., 2015; Sasse et al., 

2018). One major factor influencing this community is the plant genotype. Different plant 

species and even cultivars grown in the same soil harbor different endophytic communities 
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(Granér et al., 2003; Aleklett et al., 2015; Afzal et al., 2019). Plants can actively shape their 

microbiome and selectively influence, which endophytes are favored before and after root 

colonization (Rosenblueth and Martínez, 2006; Hardoim et al., 2008; Gaiero et al., 2013). The 

root microbiome is shaped by the root physiology, root border cells and mucilage, as well as 

root exudates like sugars, amino acids, organic acids, fatty acids, and secondary metabolites 

(Bulgarelli et al., 2013; Sasse et al., 2018). These root exudates are diverse and dynamic and 

in turn are influenced by several factors. Mönchgesang et al. (2016) showed that plant 

exudation is defined by the genotype by comparing the exudation patterns of 19 Arabidopsis 

thaliana accessions. Further, plant exudation is influenced by the developmental stage of the 

plant suggesting that the plant can recruit microbes at different development stages for 

specific functions (Chaparro et al., 2014). Moreover, plant exudation is shaped depending on 

stressors. For example, plants show different exudation patterns in response to nutritional 

limitations (Carvalheis et al., 2013; Ziegler et al., 2016). Furthermore, different exudation 

patterns not only influence the microbiome but also the transcriptome of microbes as shown 

for the interaction between maize and the plant growth promoting bacteria (PGPB) Bacillus 

amyloliquefaciens FZB42 (Carvalheis et al., 2013). 

Next to the plant genotype, the soil is described as the most important factor influencing the 

endophytic community (Berg and Smalla 2009; Bonito et al. 2014; Lareen et al. 2016; Hartman 

and Tringe 2019). Several soil environmental factors are of high importance for the structuring 

of soil bacterial communities (Fierer et al., 2017). These factors, which may be very 

heterogeneous, include salinity, soil texture and structure, nutrient availability, soil moisture, 

organic carbon quality and quantity, soil pH, soil O2 and redox status (Fierer et al., 2017; 

Compant et al., 2019; Papik et al., 2020). The last three factors mentioned showed the highest 

relative importance in structuring the soil bacterial communities (Fierer et al., 2017). Because 

of this high soil dependent microbial diversity, plants of the same species grown in different 

soils contained different endophytic communities. Bulgarelli et al. (2012) and Lundberg et al. 

(2012) concluded after growing different Arabidopsis thaliana accessions in different soils 

under controlled environmental conditions that the effect of the soil on the plant root 

microbiome is more pronounced than that of the plant genotype indicating that the soil 

provides the initial inocula. 
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Besides the plant genotype and soil environmental factors, several other factors like climate, 

season, plant health, pathogen presence and human cultivation are also involved in shaping 

the plant endophytic microbiome (Bulgarelli et al., 2015; Compant et al., 2019). 

 

 

1.5.4   Endophytes in apple 

Several studies investigated the endophytic microbiome of apple, examining different organs, 

like leafs and stems (Afandhi et al., 2018: Liu et al, 2018, Liu et al., 2020), roots (Bulgari et al., 

2012; Dos Passos et al., 2014), flowers (Shade et al., 2013) and fruits (Wassermann et al., 

2019). 16S amplicon sequencing revealed that Proteobacteria are the dominant phylum in all 

organs (Bulgari et al., 2012; Liu et al, 2018; Wassermann et al., 2019). An exception are 

flowers, which are surprisingly dominated by the largely unknown phyla TM7 and 

Deinococcus-Thermus. Interestingly, fruits contain approximately 100 million bacterial cells 

consisting out of Proteobacteria (80%), Bacteroidetes (9%), Actinobacteria (5%), and 

Firmicutes (3%), which were strongly reduced in diversity and evenness under conventional 

farm management compared to organic management. Via DGGE, Liu et al. (2020) could show 

that the factors tissue type (2nd leaf, 3rd leaf, green stem and woody stem), cultivar and site 

had the strongest influence on the endophytic microbiome, whereas the season (spring or 

autumn) had no significant effect. The influence of the rootstock on the scion endophytic 

microbiome was shown to be not significant (Liu et al, 2018). In addition, the more vigorously 

growing rootstock M.M. 111 harbored more plant growth promoting bacterial taxa compared 

to the dwarfing rootstock M.9 (Liu et al, 2018), indicating that, next to the plant genotype, the 

lack of plant growth promoting endophytes may contribute to the rootstock growth reduction 

effect. 

In several studies, endophytic isolates were obtained from apple organs in culture dependent 

approaches (Bulgari et al. 2012; Dos Passos et al., 2014; Afandhi et al., 2018; Liu et al., 2020). 

Liu et al. (2020) isolated in total 783 bacterial (and 87 fungal) isolates from leaves and stems 

of which 19, belonging to the genera Bacillus and Pseudomonas, showed antagonism against 

the European Canker causing fungal pathogen Neonectria ditissima. Members of these two 

bacterial genera were also mainly identified by Bulgari et al. (2012) in 'Candidatus 

Phytoplasma mali' infected and uninfected apple plants. By identifying 60 isolates each, from 

roots growing in conventional orchards and organic orchards, Dos Passos et al. (2014) found 
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more isolates capable of producing siderophores and indolic compounds, solubilizing 

phosphates, and having antagonistic activity against the bitter rot and leaf spot disease 

causing fungus Colletotrichum gloeosporioides in plants growing in organic orchards. 

In relation to ARD, only a few studies have investigating the role of the endophytic community. 

Rhizoctonia spp. and Cylindrocarpon spp. were identified as endophytic root pathogens by 

Kelderer et al. (2012) in row (ARD-affected) and inter-row (control) planted apple trees. 

Cylindrocarpon-like fungi (Ilyonectria spp. and Thelonectria sp.) were also identified by Manici 

et al. (2013), next to Pythium spp. to be main causal agents of growth reduction in the 

rootstock M9 growing in ARD-affected soil. Numerous fungal root endophytes were isolated 

from ARD-affected apple roots and re-inoculated in a soil free biotest (Popp et al, 2019; Popp, 

2020). Isolates of the genera Dactylonectria, Ilyonectria, Cadophora, Calonectria, and 

Leptosphaeria were described to have negative effects on plant growth. So far, only two 

studies considering the role of bacterial endophytes in relation to ARD were conducted 

(Tewoldemedhin et al., 2011a; Van Horn et al., 2021). In an approach to isolate and inoculate 

Actinomycetes, Tewoldemedhin et al. (2011a) identified 92 isolates from ARD-affected roots 

belonging to the genus Streptomyces and 4 to Nocardiopsis. Inoculation of selected isolates 

showed no effect on plant growth. Van Horn et al. (2021) characterized the endophytic 

community structure of rootstock genotypes reported to be tolerant (G210, G41, G890, and 

G935) and susceptible to ARD (M26 and M9) and found the strongest community differences 

between tolerant and susceptible ones. The most abundant endophytic bacteria were 

members of the genera Arthrobacter, Halospirulina, Streptomyces, and Burkholderia. 
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1.6   Objectives and hypotheses 

As stated above, endophytes can have various effects (positive or negative) on plants. 

However, there is still a lack of knowledge of how endophytic communities, especially 

bacterial ones, are affected by ARD and how they can influence the plants grown in  

ARD-affected soils. Therefore, this thesis is focussed on bacterial endophytes. We hypothesize 

that  

• the root endophytic microbiome of plants grown in ARD-affected soils differs from that 

of plants grown in non-affected soils. 

• ARD causal agents are present in roots of different apple genotypes grown in different 

ARD soils from different sites. 

• roots grown in ARD-unaffected control soil harbor plant growth promoting bacteria, 

which may help to overcome ARD. 

• a possible causal agent will accumulate over time in roots after (re)planting. 

 

Therefore, the aim of this work was to characterize and quantify the bacterial endophytes in 

apple roots growing in ARD-affected and non-affected soils. For that purpose, two main 

experiments were conducted to provide the basis for these analyses. In the first one, central 

experiment 1 (CE1), root samples were taken from apple plants from three different sites 

grown in (i) field plots where ARD was successfully induced by replanting apple every two 

years and (ii) plants grown in control plots where grass served as a cover. In the second 

experiment, central experiment 2 (CE2), conducted in three years each, control soil and ARD 

soil was taken from these sites and used either untreated or gamma irradiated. In vitro 

propagated plants of ARD susceptible rootstock genotypes were potted in these soil variants 

and grown for 8 weeks. Plant growth parameters were measured and root samples taken.  

Based on these central experiments, for the first time, molecular barcoding approaches were 

used to characterize the bacterial endophytic community structure of apple roots grown in  

ARD-affected soils in comparison to non-affected soils. Furthermore, culture dependent 

methods were used in order to obtain a broad spectrum of bacterial apple root endophyte 

Isolates which will lay the basis for future inoculation experiments. 
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Abstract 

Apple replant disease (ARD) is a worldwide problem for nurseries and orchards leading to 

reduced plant growth and fruit quality. The etiology of this complex phenomenon is poorly 

understood, but shifts of the bulk soil and rhizosphere microbiome seem to play an important 

role. Since roots are colonized by microbes from the rhizosphere, studies of the endophytic 

microbiome in relation to ARD are meaningful. In this study, culture independent and culture 

dependent approaches were used in order to unravel the endophytic root microbiome of 

apple plants 3, 7 and 12 months after planting in ARD soil and grass control soil at two different 

field sites. The relative abundance of Actinobacteria increased over time in ARD and grass 

control plots. Furthermore, several ASVs linked to Streptomyces, which were shown in a 

previous greenhouse study to be negatively correlated to shoot length and fresh mass, were 

also detected in roots from both field sites. Especially in apples planted in grass control soil 

these ASVs increased in their relative abundance in roots over time. The isolation of 150 

bacterial strains in the culture dependent approach confirmed the high diversity of members 

of the genus Pseudomonas, also detected by the molecular barcoding approach.  only partial 

overlaps between the two approaches underline the importance of combining these methods 

in order to better understand this complex disease and develop possible counter measures. 

Overall, this study confirmed greenhouse data and suggests a key role of Streptomyces in the 

etiology of ARD. 
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Introduction 

Apple replant disease (ARD) is a worldwide complex problem, which affects apple tree 

nurseries and orchards causing reductions in tree growth, fruit yield and quality (Mazzola und 

Manici, 2012; Manici et al., 2013; Winkelmann et al., 2019). It occurs when apple is repeatedly 

planted at the same site and is defined as a “harmfully disturbed physiological and 

morphological reaction of apple plants to soils that faced alterations in their (micro-)biome 

due to previous apple cultures” (Winkelmann et al., 2019). The exact etiology of ARD is still 

not known but there is increasing evidence that, next to changes in the abundance of specific 

pathogens, shifts of the bulk soil and rhizosphere microbiome are an important driver of ARD 

(Winkelmann et al., 2019).  

However, studies of the endophytic microbiome and its role in ARD are rare and most were 

focused on fungal pathogens in apple roots. Kelderer et al. (2012) identified Cylindrocarpon 

spp. and Rhizoctonia sp. as pathogenic root endophytes in row (ARD-affected) and inter-row 

(control) planted apple trees. Fusarium oxysporum and Fusarium solani were most abundant 

in roots in this study, but not considered as pathogens. Root endophytic Cylindrocarpon-like 

fungi (Thelonectria sp. and Ilyonectria spp.) were also found by Manici et al. (2013) next to 

Pythium spp. to be responsible for the growth reduction in the rootstock M9 growing in ARD-

affected soil. Different species of Nectriaceae were as well found in ARD-affected cortex cells 

extracted by laser microdissection (Popp et al., 2020). Several fungal endophytes from ARD-

affected apple roots were isolated and re-inoculated in a soil free biotest by Popp et. al. 

(2019). Negative effects on plant health were reported for Cadophora, Calonectria, 

Dactylonectria, Ilyonectria, and Leptosphaeria.  

On the contrary, studies focusing on bacterial endophytes are rare. Up to now, only in one 

study endophytes were isolated (mainly Streptomyces) from apple roots and tested for their 

biocontrol activities in co-inoculations with the pathogens Pythium irregulare and 

Cylindrocarpon macrodidymum, but showed no effect (Tewoldemedhin et al., 2011). In a 

previous study (Mahnkopp-Dirks et al., 2020) we conducted a greenhouse biotest with apple 

plants of the ARD sensitive rootstock genotype M26 grown in ARD soil or grass soil and 

investigated the bacterial root endophytic community using a molecular barcoding approach. 

Results showed several Amplicon Sequencing Variants (ASVs) linked to Streptomyces, which 

were uniquely found in plants grown in ARD soil. Moreover, these ASVs were negatively 

correlated to shoot length and shoot fresh mass. These results were achieved under controlled 
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greenhouse conditions with in vitro propagated plantlets, which helped to reduce variability, 

but do not represent field conditions. To validate these results under field conditions, the 

same approach was used with the aim to investigate the bacterial root endophytic community 

structure in plants grown in ARD or grass control plots using a different seed propagated 

rootstock (cv. ‘Bittenfelder Saemling’) in different soils over a one year period. In order to 

investigate the bacterial endophytes over time and to analyze seasonal changes in the 

endophytic community structure, samples were taken over one year. We addressed the 

question, whether the same ASVs linked to Streptomyces that were detected in our previous 

greenhouse biotest study are found under field conditions, which would support their 

associated role in ARD. We further hypothesize that apple roots are colonized by different 

bacteria when growing in ARD soil compared to non ARD-affected control soil.  

Moreover, we intended to obtain isolates to complement the culture independent data which 

couldserve as potential inoculants. Thus, we also used a culture dependent approach in order 

to isolate a broad spectrum of bacterial root endophytes, established pure cultures and 

identified them using Sanger sequencing of the 16S rRNA gene. This will enable us to study 

their effects on apple plants and finally to help and overcome the complex ARD phenomenon. 

Material and Methods 

Field sites and sampling 

The field experiments were carried out at two different sites in northern Germany: Heidgraben 

(x-coordinate 53.699199; y-coordinate 9.683171; WGS 84, Schleswig-Holstein) and Ellerhoop 

(x-coordinate 53.71435; y-coordinate 9.770143 WGS 84, Schleswig-Holstein) which differed in 

their soil properties (Mahnkopp et al., 2018). Based on World Reference Base for soil 

resources, the textures of the top soil (0 - 20 cm) of the two sites were classified as sand 

(Heidgraben) and loamy sand (Ellerhoop) (Mahnkopp et al., 2018). Both sites contained two 

different plot variants in four replicates each: (i) ARD plots, where ARD was successfully 

induced by repeatedly planting ´Bittenfelder´ apple seedling rootstocks since 2009 in a two-

year cycle and (ii) control plots which were only covered with grass since then. In spring 2016 

in Heidgraben and spring 2017 in Ellerhoop, one third of these grass control plots were planted 

with Bittenfelder plants representing the first apple planting generation (hereafter referred 

to as grass plots). ARD plots in Ellerhoop were replanted for the last time in spring 2015 and 

in Heidgraben in spring 2016 representing the fifth replant generation at the time of sampling 

(Tab. 1).  
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Table 1: Time schedule of apple planting generations (gen.) and sampling time points (1,2,3) 
at the two sites Heidgraben and Ellerhoop (1 = sampling in July, 2 = sampling in November, 3 
= sampling in April; planting: April, lifting: November) 

Year Plot 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Heid-

graben 

ARD 1. 

apple 

gen. 

2. apple gen. 3. apple gen. 4. apple gen. 5. apple gen. 6. 

apple 

gen. 

Con-

trol 

Grass  

1. apple gen. 

 

 Eller-

hoop 

ARD 1. apple gen. 2. apple gen. 3. apple gen. 4. apple gen. 5. apple gen. 

 

Con-

trol 

Grass  

1. apple gen. 

 

In Heidgraben, plants of both plots were planted on 05. + 06.04.16 and in Ellerhoop on 10. + 

11.04.17. At both sites, plants were sampled at three time points after planting: 3 months 

after planting (summer), 7 months after planting (late autumn) and one year after planting 

(spring). In Heidgraben sampling took place on 27.07.16 (1, summer), 16.11.16 (2, autumn) 

and 25.04.17 (3, spring) and in Ellerhoop on 25.07.17 (1, summer), 13.11.17 (2, autumn) and 

23.04.18 (3, spring). Three plants were sampled per plot (in total 24 per site and season). Root 

fresh weight of plants taken after 12 months (spring) was measured after getting rid of 

adhering soil. In addition, samples of the planting material (plants taken before the transfer 

into the soil) were taken in Ellerhoop in spring 2017 served as “time point zero” (T0) plants. 

These plants were obtained as one year old seedlings from a specialized nursery (sawn in 

spring 2016, uprooted in autumn, and stored over winter in a cooling chamber). 

 

Root surface disinfection 

The following surface disinfection was performed as described in Mahnkopp-Dirks et al. 

(2020): To get rid of the adhering soil roots were washed carefully. Afterwards they were 

rinsed for 30 s in EtOH (70 %), followed by stirring in 2 % NaOCl for 7.5 min and finally washing 

5 times in sterile deionized water. The final washing water was plated on 523 medium (Viss et 

al., 1991) and R2A Agar (Reasoner and Geldreich, 1985) and incubated for 1 week at room 

1

 

 

 

 

 

 

 

 

2 3 

1

 

 

 

 

 

 

 

 

2 3 



2.4   Time course of the bacterial root endophytic microbiome of Malus domestica plants in field soils affected 
by apple replant disease 

62 
 

temperature.  Plating resulted in < 10 CFU per plate in all cases. Roots were stored in sterile 2 

ml Eppendorf tubes at -80°C until DNA extraction for amplicon sequencing. 

 

DNA extraction for amplicon sequencing 

For Illumina sequencing, DNA was extracted as mentioned in Mahnkopp-Dirks et al. (2020) 

using the Invisorb Spin Plant Mini Kit (Stratec, Berlin, Germany) according to the 

manufacturer’s instructions. 

 

Amplicon sequencing 

Amplicon sequencing was done using the primer combination 335F 

(CADACTCCTACGGGAGGC)/ 769R (ATCCTGTTTGMTMCCCVCRC) (Dorn-In et al. 2015) to 

amplify the V3 – V4 region of the 16S rRNA gene. Amplicon library preparation and 

bioinformatics analysis were described in detail in Mahnkopp-Dirks et al (2020). Briefly, PCR 

was performed using 2x Phusion High-Fidelity Master Mix (Thermo Fisher Scientific, Waltham, 

USA), 10 pmol of each primer and 5 ng DNA template in a final volume of 10 µL with PCR 

conditions: 98°C for 10 s, 30 cycles of 98°C for 1 s – 59°C for 5 s – 72°C for 45 s, 72°C for 1 min. 

After purification with Agencourt AMPure XP kit (Beckman Coulter, USA) indexing PCR (98°C 

for 30 s, 8 cycles of 98°C for 10 s - 55°C for 30 s – 72°C for 30 s, 72°C for 10 min) was performed 

using Nextera XT Index Kit v2 (Illumina, USA). Purified samples were equimolarly pooled to  

4 nM and sequenced on Illumina Miseq platform. FASTQ files were trimmed using 

AdapterRemoval (Schubert et al., 2016) and analyzed using the QIIME 2 software package 

release 2017.11 (Caporaso et al., 2010) with default parameters. Quality control as performed 

via QIIME 2 plugin DADA2 (Callahan et al., 2016) with removing 10 bp n-terminally, length 

truncation at position 300 (forward) and 260 (reverse) and expected error of 2. Taxonomic 

assignment of the resulting amplicon sequence variants (ASVs) was performed using primer-

specific pre-trained Naive Bayes classifiers of the SILVA_132_QIIME release 99% and the q2-

feature-classifier plugin.  

PCR negative control showed no ASVs, thus contamination during sample processing could be 

excluded. For further data analysis, unassigned reads, singletons, plastid sequences and 

sequences assigned to archaea and eukaryotes were removed (in sum 37 % of all reads), 

resulting in 4422 ASVs (over all samples), which were nearly all covered after rarefying at 4213 

reads (Fig. S1). The relative abundance was calculated by dividing the number of reads per 
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ASV in the samples by the sum of total reads per sample and finally multiplied by 100. To 

calculate the overall relative abundance of the corresponding phylum/genus, ASVs belonging 

to the same phylum/genus were merged. 

 

Isolation of bacteria from surface disinfected roots 

In order to isolate bacterial endophytes four random 1 cm-pieces of surface sterilized fine 

roots (Ø < 2 mm) of each plant were placed per Petri dish containing 523 medium (Viss et al., 

1991) and R2A Agar (Reasoner and Geldreich, 1985).  For each plant, three Petri dishes per 

medium were prepared as replicates. After approximately 7 days at room temperature, 

different colonies were picked based on different morphology and streaked separately. 

To avoid overgrowing of slow growing colonies, additionally 100 mg of surface disinfected 

roots were cut into small pieces and transferred into a 50 ml centrifuge tube containing 10 ml 

saline (0,85 % NaCl). Samples were shaken at 150 rpm and 4°C for 22 hours. 100 µl of the 

solution as well as dilutions up to 1:105 were transferred onto three Petri dishes containing 

523 medium and R2A medium respectively and evenly distributed. After 7 to 28 days, colonies 

were picked and streaked out. Selection of different colonies was based on different 

appearance and morphology with the aim of obtaining a broad spectrum of different bacterial 

root endophytes. 

 

DNA extraction of bacterial isolates 

Single colonies were transferred to liquid medium 523 (Viss et al., 1991) and incubated for 1 

to 7 days at room temperature on a shaker at 150 rpm until growth was visible. 1 ml of this 

suspension was used for DNA extraction based on the protocol of Quambusch et al. (2014). 

 

PCR amplification and sequencing of 16S rRNA gene 

Partial sequences of the 16S rRNA gene of 140 isolates were obtained using the primers 27f 

(AGAGTTTGATCCTGGCTCAG) and 1492r (GGYTACCTTGTTACGACTT) (Weisburg et al, 1991). 

Each PCR reaction (25 µl) contained 10 ng DNA, 1 x Williams Buffer (100 mM Tris-HCl, pH 8.3 

at 25°C; 500 mM KCl; 20 mM MgCl2; 0.01% gelatin), 200 µM dNTPs, 10 pmol of each primer 

and 1 U Biotaq DNA polymerase (Bioline, London, UK). The thermal cycler protocol started 

with an initial denaturation of 94°C for 5 min, followed by 35 cycles of denaturation at 94°C 



2.4   Time course of the bacterial root endophytic microbiome of Malus domestica plants in field soils affected 
by apple replant disease 

64 
 

for 30 s, annealing of the primers at 52°C for 40 s and elongation at 72°C for 60 s and ended 

with a final elongation at 72°C for 5 min. 

Fragments were separated via gel electrophoresis (1 x Tris-acetate-EDTA (TAE) buffer, Aaij and 

Borst, 1972; Hayward and Smith, 1972) and the 16S PCR products of about 1500 bp were 

excised from 1% agarose gels and purified using the NucleoSpin Gel and PCR Clean-up Kit 

(Macherey & Nagel, Düren, Germany).  The 16S rRNA gene fragments were sequenced with 

the Sanger method (Sanger et al., 1977) by Microsynth Seqlab (Göttingen, Germany) using the 

primers 27f and 1492r. 

Out of the obtained sequences of the primers 27f and 1492r (reverse complement) a 

consensus sequence was created using the program BioEdit (version 7.2.5, Hall 1999). 

Sequences were blasted (Blastn) against the NCBI database (https://www.ncbi.nlm.nih.gov/). 

Identities and origins of the different isolates can be seen in Table S1. To detect identical 

sequences, alignments of the sequences belonging to the same species were done. Sequences 

were brought to the same length and compared in a sequence identity matrix (BioEdit, version 

7.2.5, Hall 1999).  

 

Data analysis 

Phylogentic analyses based on 16S rRNA sequences of isolated strains  

For phylogenetic analysis, an alignment of 16S nucleotide sequences of the isolates was done 

in BioEdit (version 7.2.5, Hall 1999). Out of 150 16S rRNA gene sequences those with at least 

1300 bp were selected. Sequences with the same hit in the NCBI database were excluded, 

resulting in a total of 62 different sequences. Flavobacterium oryzae strain Jyi-05 (Accession 

no: NR_134036) was used as an outgroup to root the tree. All sequences were cut at 1320 bp 

before ClustalW multiple alignment (Thompson et al., 1994) was done with the number of 

bootstraps set to 1000. This alignment was used for phylogenetic tree construction with the 

program MEGA X (Kumar et al., 2018) using the Maximum Likelihood method and Tamura-Nei 

model (Tamura and Nei, 1993).  

 

Amplicon data analyses   

Determination of species diversity (Shannon, Simpson) and richness (Chao1) indices of the  

amplicon data was done using the “Phyloseq” (McMurdie and Holmes 2013) and “Vegan” 

(Oksanen et al. 2019) packages of R v3.6.1 (R Development Core Team (2008), http://www.R-

https://www.ncbi.nlm.nih.gov/
http://www.r-project.org/
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project.org). Normal distribution based on Shapiro-Wilk test (Shapiro and Wilk, 1965) and 

homogeneity of variance based on Levene´s test (Levene, 1960) were tested using the 

program PAST3 v. 3.20 (Hammer et al., 2001). If the null hypotheses of normal distribution 

and equal variances were rejected, the Tukey test based on Herberich et al. (2010) was used 

at p < 0.05 to determine significant differences of the diversity and richness scores. In order 

to compare the relative abundance of different phyla in different seasons and ARD variants to 

grass variants, a DESeq2 analysis using generalized linear models and pairwise comparisons (p 

< 0.05) were performed (DESeq2, Love et al. (2014)). 

To link the culture independent approach and the culture dependent approach a local Blastn 

of the 16S rRNA sequences of the isolates against all ASVs obtained from amplicon sequencing 

was done using BioEdit (version 7.2.5, Hall 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.r-project.org/


2.4   Time course of the bacterial root endophytic microbiome of Malus domestica plants in field soils affected 
by apple replant disease 

66 
 

Results 

Growth data 

After 12 months of growing in ARD or grass plots, roots showed clear differences (Fig. 1). Roots 

of the plants in Ellerhoop growing in ARD soil had significant lower mass (21.64 ± 10.91 g) 

compared to roots from the grass soil (78.21 ± 33.49 g). In Heidgraben, roots from ARD soil 

had a lower mass (36.88 ± 15.65 g) than roots grown in grass soil (52.61 ± 25.34 g), but the 

differences were not significant (Welch Two Sample t-test p ≤ 0.05). 

 

 
Figure 1: Apple roots in spring after grown for 12 months in grass soil 

(left) or ARD soil (right) in Ellerhoop (photo: Alicia Balbín-Suárez). 

 

 

Culture independent approach 

In order to compare the bacterial endobiome of roots growing in ARD-affected and non-

affected soils, a metabarcoding approach using directly extracted DNA from the roots after 

surface disinfection and 16S rRNA gene amplification was performed. The highest number of 

ASVs was found in Heidgraben in autumn in the roots obtained from plants grown in ARD soil 

with 291 ± 96 and the lowest number of ASVs in Ellerhoop (spring) in roots from plants grown 
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in grass control soil (159 ± 28) (Tab. 2). In five out of six variants (site + season), roots from 

plants grown in ARD soil contained a higher richness (Observed ASVs, Chao1) compared to 

roots from plants grown in grass soil, but the difference was not significant due to high 

variation between samples. All ARD soils showed a higher diversity (Shannon, Simpson) than 

grass soils at the different sampling times. However, these differences in richness and diversity 

were not significant (Tukey’s test at p ≤ 0.05). The only significant difference within a site was 

found in diversity (Shannon) in Ellerhoop ARD soil between the autumn and the spring 

sampling (Tab. 2).  

 

Table 2: Richness and diversity of endophytic bacterial communities based on amplicon 
sequence variants (ASVs) in roots from Bittenfelder plants grown in ARD plots or grass plots 
from the sites Heidgraben and Ellerhoop. Additionally, T0 plants before planting at Ellerhoop 
are shown. Different letters indicate significant differences between the sampling times within 
one site (Tukey’s test at p ≤ 0.05.) No letters indicate no significant differences. Significant 
differences between ARD and Grass are shown in bold (t.test at p ≤ 0.05; 0.001 ‘***’ 0.01 ‘**’ 
0.05 ‘*’). Given are mean ± standard deviation of n replicates. 
 

Site Soil n Observed 

ASVs Chao1  Shannon  Simpson  
Ellerhoop T0 3 244 ± 26 253 ± 30 4.6 ± 0.12 0.98 ± 0.00 

Heidgraben 

(Summer 16) 
ARD 3 260 ± 39 266 ± 41 5.0 ± 0.19 0.99 ± 0.00 

Grass 4 210 ± 78 222 ± 85 4.19 ± 0.47 0.96 ± 0.02* 
Heidgraben 

(Autumn 16) 
ARD 4 291 ± 96 301 ± 104 4.82 ± 0.43 0.98 ± 0.01 

Grass 4 240 ± 95 248 ± 100 4.48 ± 0.59 0.97 ± 0.02 
Heidgraben 

(Spring 17) 
ARD 4 251 ± 41 264 ± 39 4.85 ± 0.31 0.99 ± 0.01 

Grass 4 236 ± 21 243 ± 19 4.76 ± 0.24 0.98 ± 0.01 
Ellerhoop 

(Summer 17) 
ARD 4 236 ± 72 245 ± 77 4.42 ± 0.61 0.97 ± 0.02 

Grass 3 166 ± 43 175 ± 43 3.89 ± 0.49 0.96 ± 0.02 
Ellerhoop 

(Autumn 17) 
ARD 2 160 ± 21 162 ± 22 4.05 ± 0.01a 0.96 ± 0.01 

Grass 3 171 ± 41 176 ± 37 4.04 ± 0.96 0.94 ± 0.06 
Ellerhoop 

(Spring 18) 
ARD 3 253 ± 77 263 ± 83 4.72 ± 0.17b 0.98 ± 0.00 

Grass 4 159 ± 28 161 ± 29 4.06 ± 0.73 0.92 ± 0.10 
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Proteobacteria were the dominant phylum with a mean relative abundance of 77.3 % over all 

samples (Fig. 2). Significant differences in relative abundance of this phylum between roots 

from plants grown in ARD and control soil were only detected  in Ellerhoop (autumn). T0 plants 

had a lower relative abundance of Proteobacteria (61.4 %).  

The second most abundant phylum was Bacteroidetes with a mean relative abundance over 

all samples of 12.8 %. Here no differences between plants grown in control soils and ARD-

affected soils were detected. Roots of T0 plants had almost three times the abundance of 

Bacteroidetes (36.2 %). Actinobacteria had a mean relative abundance of 7.5 % over all 

samples. Interestingly, the abundance for this phylum was increasing over time in ARD and 

grass plots at both sites: In Heidgraben, the relative abundance in ARD plots started with 5.4 

% 3 months after planting, was 12.9 % after 7 months and reached 14 % after one year. Roots 

of plants grown in grass soil showed a slightly lower abundance (3.5 %) after 3 months, 

reached 5.9 % after seven months and ended with an even higher abundance (20 %) than in 

roots from ARD plots. In Ellerhoop relative abundances of Actinobacteria were lower in ARD 

(1.8 % summer, 5.6 % autumn, 13.3 % spring) and grass plots (0.1 % summer, 5.3 % autumn, 

10.2 % spring) but were also increasing over time. In pairwise comparisons of phyla abundance 

between ARD and grass plots, no significant differences were found except for Proteobacteria 

(autumn), Actinobacteria (summer) and Firmicutes (spring) in Ellerhoop. 
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Figure 2: Relative abundance of dominant phyla in roots of Bittenfelder plants grown in ARD 
plots or grass plots in Heidgraben and Ellerhoop taken in summer and autumn after planting 
or the following spring. Different letters indicate statistically significant differences within one 
site in ARD plots (lower case) or grass plots (upper case) between the seasons (DESeq2 analysis 
using a generalized linear model and multiple comparisons with p ≤ 0.05). Significant 
differences between ARD and grass within one season are indicated by an asterisk (DESeq2 
analysis using a generalized linear model and pairwise comparisons with p ≤ 0.05). Different 
colored letters belong to the respective phyla. N numbers are shown in Table 2. 
 

 

In total, Pseudomonas was the most abundant genus (mean of relative abundance over all 

samples 20.1 %), followed by Streptomyces (5.9 %) and Rhizobium (4.5 %). A closer look at the 

genus level revealed, that in Heidgraben lots of different ASVs linked to Pseudomonas were 

present in roots grown in ARD and grass soil over all seasons (Fig. 3A). Based on relative 

abundance Pseudomonas was more dominant in roots grown in grass plots, especially at the 

early time points in summer and autumn. Most ASVs linked to Rhizobium were decreasing in 

relative abundance and number of ASVs over the time in grass as well as in ARD plots. The 

opposite pattern could be observed for ASVs linked to the genus Streptomyces, especially in 
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roots of plants grown in grass soil. In roots from both soils, the number of ASVs linked to 

Streptomyces with a relative abundance greater than 0.5 % was low (grass = 1, ARD = 2) as 

was their relative abundance 3 months after planting (summer). Until autumn the number of 

ASVs (RA > 0.5 %) increased to two (sum RA = 1.6 %) in roots grown in grass plots and to eight 

(sum RA = 10.4 %) in ARD plots. One year after planting (spring), this number further increased 

to six (grass) and nine (ARD). In terms of relative abundance, the genus Streptomyces was at 

this time the most abundant one in roots of both plots (grass = 11.7 %, ARD = 10.4 %).  

In Ellerhoop, comparable patterns regarding Streptomyces ASVs were observed (Fig. 3 B). 

However, 3 months after planting (summer), no ASV linked to Streptomyces was present (over 

the threshold of 0.5 %) in roots of both plots. But after one year (spring) several ASVs linked 

to Streptomyces were present which were dominant in roots grown in ARD soil (sum of RA = 

11.3 %) and less abundant in grass plots (sum of RA = 4.7 %). In roots grown in grass plots, all 

five ASVs linked to Streptomyces were increasing in their relative abundance over time. 

ASVs linked to Rhanella were only found in autumn with a similar relative abundance of 19,9 

% (grass) and 20 % (ARD). 

Pseudomonas showed a different development in roots grown in grass soil compared to ARD 

soil over time. In grass soil, Pseudomonas was constantly the dominating genus at all sampling 

times (sum of RA in summer = 35.6 %, autumn = 34 %, spring = 31.1 %) whereas in ARD soil, 

the relative abundance decreased over time (sum of RA in summer = 20 %, autumn = 1.4 %, 

spring = 2.25 %).   

27 ASVs linked to Pseudomonas were present in roots from T0 plants. Most of them 

disappeared over time in roots grown in ARD soil. After one year (spring), only 7 out of 27 

ASVs were still present in roots grown in ARD soil. However, in roots grown in grass soil 16 

ASVs were still detected, most of them being highly abundant. The most dominant genus in 

T0 plants, Flavobacterium (sum of RA = 23.9 %), strongly decreased over time in all soil variants 

(except in spring in ARD soil: 7 %). Four ASVs assigned to Caulobacter, which represented 

13.8% of all ASVs detected in T0, were low abundant or not detected in autumn. However, in 

spring these ASVs were again all present with a mean relative abundance of 1.41 (± 0.35) %. 
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Figure 3: Heatmap showing the abundance of different ASVs (RA > 0.5 %) of roots of 
Bittenfelder plants from ARD and grass plots taken 3 months (summer), 7 months (autumn) 
and one year (spring) after planting in Heidgraben (A) in 2016/17 and Ellerhoop (B) in 
2017/18. For each sampling time per site and soil, only ASVs with an abundance greater than 
0.5 % were selected and their relative abundance compared with all other variants. The color 
code indicates the range from low relative abundance (light gray, 0.01 %), medium abundance 
(grey, 0.37 %) to high abundance (black, > 5 %, Purple, > 10 %). Different colors indicate the 
corresponding phylum of the ASVs. 

 

 

 

Culture dependent approach 

Next to the sequencing approach, a culture-dependent method was used in order to obtain a 

wide range of different endophytic bacterial isolates. In total, 150 isolates were obtained from 

both sites and sampling times (Fig. 4). 29 different genera with 69 different bacterial species 

were found. Most (25 out of 69) of the strains were classified as Pseudomonas. 31 species 

were only found in roots grown in ARD soil, 19 only in grass soil, and 19 in both soils. Species 

which were isolated most frequently, were Rhanella aquatilis (15), Pseudomonas fluorescens 

(12) and Serratia plymuthica (12). 
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Figure 4: Phylogenetic tree based on 16S rRNA gene sequences of all endophytic isolates 
using the Maximum Likelihood method and Tamura-Nei model. The percentage of replicate 
trees in which the associated taxa clustered together in the bootstrap test (1000 replicates 
(Felsenstein, 1985)) are shown next to the branches. The closest hit with species level and 
corresponding identity using the NCBI database is shown. Only isolates with more than 1300 
bp were selected for alignment. Flavobacterium oryzae was used as an outgroup to root the 
tree. Isolates were obtained from roots grown only in ARD plots (yellow), grass plots (green) 
or both plots (grey) from the sites Heidgraben (H), Ellerhoop (E) or both (B) sites. 

 

To link the isolates obtained from the culture dependent approach to the culture independent 

approach, their 16S rRNA gene sequences were blasted against the sequences obtained from 

amplicon sequencing using a local Blastn. Nearly all isolates showed a very high similarity to 

one or more of the ASVs (Tab. S2). However, only 20 Isolates out of 62 (>1300 bp) showed a 

100 % identity to ASVs. The isolate Kribella karoonensis showed with 89,3 % (to NA_ASV568 

(Nocardioidaceae)) the lowest identity to the amplicon data followed by Actinomadura 

nitritigenes with 93,2 % to NA_ASV677 (Nonomuraea). The isolates which were obtained 

frequently, e. g. Pseudomonas fluorescens (12x) or Rhanella aquatilis (15x) were only found in 

low abundance in the amplicon data. 

 

Discussion 

Community structure and relative abundance over time 

In most studies, in which rhizosphere or bulk soils of ARD-affected sites were analyzed 

(Franke-Whittle et al. 2015; Perruzzi et al. 2017; Sun et al. 2014; Tilston et al. 2018; Yim et al. 

2015), Proteobacteria were the dominant phylum with a mean relative abundance of 35 % 

(Nicola et al., 2018). In the greenhouse biotest (Mahnkopp-Dirks et al., 2020), plant roots 

grown in untreated ARD soil showed with 76 % in 2016 and 71 % in 2017 a cleary higher 

relative abundance of Proteobacteria as root endophytes. These results were confirmed in the 

present study in roots grown in the field at Heidgraben and Ellerhoop. At both sites, 

Proteobacteria showed in roots grown in ARD plots an average relative abundance of 76 % 

respectively (Fig. 2). However, in roots grown in grass soil the relative abundance was even 

higher with an average of 84 %. Due to their high metabolic activity and fast growth, members 

of this phylum are known to usually dominate the endosphere (Lundberg et al. 2012; Reinhold-

Hurek et al. 2015). 
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During the season, the community structure changed over time. This was also observed by 

Rumberger et al. (2007) for the bacterial rhizosphere community of apple trees grown in ARD-

affected sites using terminal restriction fragment length polymorphism (T-RFLP) analyses. The 

relative abundances of Actinobacteria were increasing over time in roots grown in ARD and 

grass plots at both sites (Fig. 2). In Heidgraben, 3 months after planting (spring), the relative 

abundance was even higher in roots grown in grass plots than in ARD plots. Microscopic 

analysis revealed Actinobacteria to be more often found in roots grown in ARD-affected soil 

than in unaffected soil (Grunewaldt-Stöcker et al., 2019). Further, typical affected blackish 

root tissue revealed a high frequency of Actinobacteria on the root surface and cortex in both 

sites (Grunewaldt-Stöcker et al., 2021). Actinobacteria were also found of higher abundance 

in the greenhouse biotest in roots grown in untreated ARD soil in comparison to controls in 

2016 (Mahnkopp-Dirks et al. 2020). An increase of Actinomycetes in the rhizosphere was also 

observed by Čatská et al. (1982) with increasing age of apple trees grown in ARD-affected soils. 

They also observed a decline in “fluorescent Pseudomonads” in apple trees within 30 months 

after planting in ARD-affected soil but not in control soil. A reduction of Pseudomonas in the 

rhizosphere over years after replanting was also confirmed by Rumberger et al. (2007). This 

could also be observed for the endophytic root microbiome in the present study, especially in 

Ellerhoop in roots grown in ARD soil, where the total abundance of Pseudomonas ASVs was 

reduced to one tenth after summer but stayed nearly on the same level in roots grown in grass 

soil (Fig. 3). This also confirms the connection between the rhizosphere and endophytic 

community since the main way of entering the root interior is through natural cracks during 

lateral root emergence and root tips (Bulgarelli et al. 2013; Hardoim et al., 2008). Mazzola and 

Gu (2000) could show that a suppression of potential ARD causing pathogenic fungi was 

attributed to a transformation in composition of the fluorescent pseudomonad community in 

the apple rhizosphere in terms of an increase in proportion of Pseudomonas putida in the 

population and a decrease in recovery of P. syringae and P. fluorescens. 

 

Streptomyces associated with apple plants in the field? 

The majority of Actinobacteria reads were belonging to the genus Streptomyces which seems 

to play a role in ARD. In our greenhouse biotest (Mahnkopp-Dirks et al. 2020) we could show 

that in 2016 ten unique ASVs and in 2017 six unique ASVs linked to Streptomyces from ARD 

soil from three different sites (including Heidgraben and Ellerhoop) were negatively correlated 
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to shoot fresh mass and shoot length. Of these unique ASVs, 6 (Streptomyces_ASV76, 607, 

611, 21, 121, 621) were now found in Heidgraben and 5 (Streptomyces_ASV76, 607, 21, 621, 

121) in Ellerhoop in apple plants grown in the field in ARD soil. One of the most abundant 

unique Streptomyces ASVs in the greenhouse biotest, ASV76, which was present in 2016 in 

Heidgraben and Ellerhoop and 2017 in Heidgraben, was also the most abundant one in roots 

grown in ARD soil in the field sites Heidgraben and Ellerhoop. Overall, most ASVs linked to 

Streptomyces increased over time. Especially in roots grown in grass soil in Ellerhoop, where 

3 months after planting in summer none of these Streptomyces ASV were present, 

Streptomyces represented in spring next year the second most abundant genus. With 

increasing root biomass over time, the total amount of root exudates is also increasing. It was 

shown that Streptomyces is highly abundant in the rhizosphere of Arabidopsis thaliana (Badri 

et al. 2013; Lebeis et al., 2015) and their root colonization rate is increased (Chewning et al. 

2019) when plant exudates were present. Their accumulation could also lead to the 

assumption of pathogenicity of Streptomyces. After planting, their abundance is increasing 

over time. Even after removing the plant and planting non Rosaceae for several years, 

Streptomyces could remain in high amount in the soil due to their ability to form spores which 

can persist for years even under harsh conditions (Bobek et al., 2017). This would correlate 

whith ARD which is known to persist for decades after removing apple plants (Savory, 1966). 

After replanting apple, these highly abundant spores could germinate, triggered by plant 

material/exudates and therefore be a causative part of ARD. The question, whether 

Streptomyces is pathogenic and could be a key player in ARD is discussed in detail in 

Mahnkopp-Dirks et al. (2020). But, accumulating of Streptomyces over time in roots grown in 

grass soil and causing no ARD symptoms speaks against this hypothesis.  However, 

Streptomyces is known to be able to reduce the plant defense response (Lehr et al. 2007; 

Tarkka et al. 2008; Vurukonda et al. 2018) by reducing the peroxidase activity and 

pathogenesis-related peroxidase gene (Spi2) expression and to promote fungal root infections 

(Lehr et al. 2007). This could mean, that they enable easier colonization for potential fungal 

ARD pathogens, which are missing in grass soil.  

Nevertheless, in this study we could show that the same Streptomyces ASVs from the biotest 

(Streptomyces_ASV76, 607, 611, 21, 621), which were negatively correlated to shoot length 

and shoot fresh mass, were also present in the field of Heidgraben and Ellerhoop during the 

season in both soils. Further, in comparison to the biotest, Bittenfelder seedlings were used 
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instead of the genotype M26. To summarize, these ASVs linked to Streptomyces were 

associated with ARD independent of the genotype (Bittenfelder or M26), field or greenhouse, 

at three different sites and independent of seasons or years. 

 

Comparison of culture dependent and independent approach 

Liu et al. (2017) summarized the proportion of different endophytic bacterial phyla in different 

plants based on 25 different references using culture independent and dependent methods. 

They found, that root endophytic bacterial communities are typically dominated by 

Proteobacteria (≈ 50% in relative abundance), Actinobacteria (≈ 10%), Firmicutes (≈ 10%) and 

Bacteroidetes (≈ 10%). By 16S amplicon sequencing of xylum tissue from different apple 

genotype shoots Liu et al. (2018) found the same four dominant different phyla, despite 

slightly different relative abundance (Proteobacteria (58.4%), Firmicutes (23.8%), 

Actinobacteria (7.7%), Bacteroidetes (2%)). In the present study, the culture independent 16S 

amplicon sequencing also revealed a root endophytic bacterial community dominated by 

Proteobacteria (80 %), Bacteroidetes (9,7 %), Actinobacteria (8,2 %) and Firmicutes (1,2 %,  

Fig. 2, mean of all plots and time points). The 150 Isolates obtained by the culture independent 

approach were comparably dominated by Proteobacteria (85,3 %), Actinobacteria (10 %) and 

Firmicutes (2 %). However, despite the so far similar phyla abundances between the culture 

independent and dependent approach, Bacteroidetes were not isolated.  

In the culture independent approach, 4422 ASVs were found in total. These represent 

different sequences with at least 1 nucleotide difference, hence do not represent species 

level, which is often considered at a threshold of 97 % sequence identity. Since the sequences 

of the 150 isolates all have at least 1 nucleotide difference, they would represent 3.4 % of the 

total amount of ASVs found in the independent approach (sequencing errors cannot be 

excluded (Taq error rate ranges from 1.1 x 10-4 (Barnes, 1992) to 8.9 x 10-5 (Cariello et al., 

1991) errors/bp)). The ASVs were linked to 473 different known genera. In the culture 

dependent approach, isolates belonging to 29 different genera were obtained, which 

represent 6.13 %. It is thought, that only 0.1 % - 10 % of the total diversity of an environment 

is culturable (Handelsman and Smalla, 2003). Other studies indicate that more than 99 % of 

all microorganisms are unculturable (Pham and Kim, 2012; Schloss and Handelsman, 2005; 

Vartoukian et al. 2010). Based on these numbers, the proportion of culturable bacteria in this 

study seems to be high. However, the total amount of 4422 ASVs did not fully represent the 
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total bacterial endophytic root community. Several biases in amplicon sequencing have an 

influence on the total bacterial endophytic root community (Reviewed by Pollock et al., 2018). 

For instance, the universal primer pair used in our study for amplicon sequencing was chosen 

because of minimal non-target DNA amplification like mitochondrial or chloroplast DNA 

(Dorn-In et al. 2015). However, despite being “universal”, comparing the primer sequences to 

the 16S rRNA sequence collection of the Ribosomal Database Project (RDP, Cole et al., 2014) 

using “probe match” results in 1,122,475 hits out of 3,482,181 (32 %) sequences in the domain 

Bacteria (when using 0 mismatches; 1 mismatch = 1,596,717; 2 mismatches = 1,910,059). Next 

to the primer used, the DNA extraction protocol has a strong influence on the detected 

bacterial community composition (Carrigg et al., 2007; Pollock et al., 2018). 

Even though the two different culture media used resulted in several different cultured 

isolates, the number of potentially culturable bacterial endophytes will definitely increase 

with the use of more different media. To also isolate obligate endophytes, the addition of 

plant extract to the medium might increase the number of different isolates (Eevers et al., 

2015). 

The most diverse genus in the culture independent approach was Pseudomonas, with 138 

ASVs linked to it. Likewise, isolates obtained from the culture dependent approach belonging 

to the genus Pseudomonas were with 25 different species also the most diverse group. 

However, ASVs linked to the genus Streptomyces belonged to the most abundant ones, 

especially in roots grown in ARD soils, whereas in the culture dependent approach only one 

isolate could be obtained. One reason for this could be that the growth of Streptomyces was 

rather slow on the media used compared to other isolates which might have outcompeted 

them. Another reason is that the outgrowth of isolates took place at room temperature. The 

optimal growth temperature for Streptomyces species is described as 28 °C (Sheperd et al., 

2010). Tewoldemedhin et al. (2011) were able to isolate 92 Streptomyces strains from surface 

disinfected roots from six ARD-affected sites in South Africa using Casein-Starch medium and 

water agar supplemented with cycloheximide at 27 °C for 4 weeks. 

There were also some discrepancies in the abundance of some isolates compared to their 

corresponding ASVs (Tab. S2). Several isolates were isolated frequently from roots, like 

Rhanella aquatilis or Pseudomonas fluorescens, but their corresponding ASVs were not found 

in high abundance in the amplicon sequencing. Reasons mentioned above like primer 

selection or DNA extraction methods could select against these bacteria in the culture 
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independent approach. Since both of these isolates were found to be fast growing on the 

media used, it is more likely that the culture dependent approach selected for them. Both 

genera were also isolated in high abundance from apple roots and rhizosphere soil by Dos 

Passos et al. (2014). With Kribella karoonensis, there was also one isolate, whose genus were 

not found in the culture independent approach. The reason for this is probably that the primer 

769R does not have any coverage in this genus based on 0 mismatches in the SILVA database. 

Several other isolates, like Enterobacter, Lelliotti, Erwinia or Rhanella were not found directly 

in the independent approach because the corresponding ASV sequences had several hits of 

different genera with the same score (resulting in NA), which means that the amplicon 

sequence might not be long enough to discriminate between these genera. Discrepancies 

between culture dependent and independent approaches were also observed in the 

phyllosphere of apple, where Actinomycetales were found only among isolates (Yashiro et al., 

2011). In general, the culture dependent approach was rather used as a qualitative method 

rather than a quantitative one.  

 

Conclusion 

In this study we could confirm that the same six Streptomyces ASVs, which were found to be 

negatively correlated to shoot growth and fresh mass in a greenhouse biotest in a previous 

study, were also found in high abundance in roots grown in the field. Not only were they found 

in two different sites in two years, but in roots of ’Bittenfelder’ seedlings also in a different 

rootstock. Interestingly, most of these ASVs were increasing over time especially in newly 

planted apple plants in grass soil leading to the assumption that the accumulation of these 

ASVs could be responsible for the induction of ARD. Next to the culture independent, 

approach, the isolation of 69 different bacterial strains showed on the one hand a comparable 

community structure with Pseudomonas being the most diverse genus. On the other hand, 

the discrepancies between these two approaches underline the importance of combining 

different methods. 
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3.   General discussion 

 

3.1   Advantages and disadvantages of the biotest 
To determine the presence and severity of ARD of the soil sampled from three sites, we 

conducted a biotest (Mahnkopp et al., 2018) originally developed by Yim et al. (2013, 2015). 

To do so, the ARD susceptible rootstock M26 was propagated in vitro and planted into pots 

with either untreated or gamma irradiated soil under greenhouse conditions. Based on the 

growth differences between these two variants, the ARD severity can be determined. So far, 

this method is the only reliable indicator for ARD besides the expression of candidate genes 

(Reim et al., 2020; Rohr et al., 2020; Rohr, 2020) and microscopic analyses of root material 

(Grunewaldt-Stöcker et al., 2019). In this project, we conducted a biotest in 2016, 2017 and 

2018, respectively, with soil from the ORDIAmur reference sites Heidgraben, Ellerhoop and 

Ruthe. In all years, the growth differences showed nearly the same pattern (Fig. 2), which 

proves the reproducibility and reliability of this method. The differences in the absolute shoot 

length between the years were the result of growth differences of the starting material and 

slight variations in the climatic conditions. Biotests including gamma irradiation were also 

successfully conducted in different other studies including different genotypes and different 

soils (Yim et al., 2013, 2015; Weiß et al., 2017a; Reim et al., 2019; Rohr et al., 2020).  

However, this method also has some drawbacks. Plating results done by ORDIAmur project 

partners (Balbín-Suárez, unpublished) showed that the gamma irradiation (min. 10 kGy) does 

not kill all microorganisms. Further, the water content of the soil prior gamma irradiation 

might affect the sterilization efficacy. Nevertheless, since increased growth can be observed 

in the gamma variants, the irradiation kills all or most of the ARD causing organisms. It is also 

known that fungi and Actinomycetes are more sensitive to gamma irradiation than bacteria 

(McNamara et al., 2003, 2007). Interestingly, irradiation of grass soil also led to increased plant 

growth. This could be due to three reasons: (i) grass soil also harbors detrimental 

microorganisms, (ii) gamma irradiated soils are quickly recolonized by plant growth promoting 

bacteria (Yim et al., 2015), or (iii) cell lesions of microorganisms due to gamma irradiation 

result in a release of nutrients that are easier accessible to the plant. McLaren (1969) showed 

that gamma irradiation causes a release of low amounts of ammonium, soluble carbon, 

organic nitrogen, manganese, phosphorous, etc. from soil microbes. Weiß and Winkelmann 

(2017) compared the nutrient contents of 7 and 56 days old shoots grown either in untreated 
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or gamma irradiated soil and found only marginal to no differences. To test a possible nutrient 

effect on plant growth, we included the winter wheat cultivar Tabasco in the biotest 2017 and 

found no differences in shoot length or fresh mass between plants grown in untreated ARD 

soil compared to gamma irradiated ARD soil after 6 weeks (Fig. 3). This not only disproved a 

possible nutrient effect on the plants, but also demonstrated the specificity of ARD, since no 

growth depressions or typical root symptoms were observed in wheat. Overall, compared to 

other disinfectants, like heating of the soil or chemical treatments, gamma irradiation has the 

least impact on soil properties (Trevors, 1996).  

This also raises the question of what are proper control soils in comparison to ARD soil. On the 

one hand, gamma irradiation kills most of the (ARD causing) microorganisms (as described 

above) leading to rapid recolonization. Therefore, it represents an artificial situation. On the 

other hand, grass soil probably also contains detrimental microorganisms since gamma 

irradiation of grass soil leads to increased plant growth. Moreover, microbial communities as 

well as the soil mesofauna are influenced by the grass cover (Koehler and Born, 1989; St. 

Laurent et al., 2008) 

Further, biotests are very labor intensive and time consuming. Due to high variation between 

single plants, high numbers are needed. After propagating the plants in vitro to the needed 

amount, the rooting and acclimatizing phases usually take four weeks each. After transferring 

the plants to the soil, the earliest time point to see differences is after 2 to 3 weeks, but usually 

evaluation takes place after 6 or 8 weeks. 

Even with these drawbacks, it could be shown that the growth in the biotest is a very 

reproducible and reliable indicator for (the severity of) ARD. Moreover, it served as a basis for 

several other analyses, for example, of the endophytic bacterial and fungal community 

structure (Mahnkopp-Dirks et al., 2020; Popp, 2020), the identification of nematode-microbe 

complexes (Kanfra et al., submitted) or for the development of new ARD indicators 

(Grunewaldt-Stöcker et al., 2019; Grunewaldt-Stöcker et al., 2021; Rohr et al., 2020). A 

possible alternative for the biotest is described in “3.3.2 Streptomyces as indicator for ARD: 

An alternative for the biotest?”. In future, a combination of these different and newly 

developed indicators might be the key to determine the presence and severity of ARD. 
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Figure 2: Shoot length of M26 plants after 8 weeks of culture in ARD or grass soil from the 
three sites Heidgraben, Ellerhoop and Ruthe, which was either untreated (UT) or gamma 
irradiated (G) in 2016, 2017 and 2018. Same letters (2016 = black lowercase; 2017 = gray 
uppercase; 2018 = light gray lowercase) indicate no statistically significant difference within 
one site and year (Tukey test p ≤ 0.05; I = SD, n = 9). 
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Figure 3: (B) Dry mass of winter wheat (Triticum aestivum cv. Tabasco) after 6 weeks of 
growth in ARD and grass control soil (untreated (UT) or gamma irradiated (G)) from the sites 
Heidgraben, Ellerhoop, and Ruthe. (A) Representative plants of the different soil variants. 
Different letters indicate statistically significant differences between all variants (Tukey HSD 
Test p ≤ 0.05, I=SD, n =3). 
 
 
 
3.2   Plant growth promoting bacteria to overcome ARD 

An additional aim of this thesis was to find possible growth promoting bacteria, which can be 

used to overcome ARD. However, plant growth promoting bacteria (PGPB) usually have a low 

rhizosphere competence (Compant et al., 2005). Moreover, their effects on the plant and their 
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rhizosphere competence can vary in different soils (Egamberdiyeva, 2007). Further, roots 

might grow beyond inoculation sites. Therefore, endophytes which can establish within the 

plant roots, can overcome these drawbacks. The ability to establish in the plant is one major 

advantage of endophytes in comparison to other rhizosphere bacteria. To overcome ARD, 

successfully inoculated and established endophytes could be part of an endobiome, which 

may protect the plant from ARD symptoms. This so called microbiome engineering has the 

potential to lead to biocontrol and plant growth promoting effects (Orozco-Mosqueda et al., 

2018). The question whether endophytes in the starting material can be successfully 

established in the plant was answered in Mahnkopp-Dirks et al. (2020, submitted). In the 

biotest in 2016, several abundant ASVs, which were present in T0 plantlets were still present 

after 8 weeks of growth in ARD-affected soils from three different sites. However, in the 

biotest in 2017, the corresponding ASVs were not present in T0 plantlets and thus not present 

after 8 weeks of growth in the three different soils making it unlikely that they originated from 

the soils. For example, in T0 plantlets in 2016, the most abundant ASV (linked to Ralstonia) 

was still highly abundant in roots after 8 weeks of growth in all three ARD soils whereas in the 

biotest in 2017 no ASVs linked to the genera Ralstonia were present in T0 plants and therefore 

not present after 8 weeks of growth in the different soils. This phenomenon was also observed 

in plant roots at the field site in Ellerhoop (Mahnkopp-Dirks et al., submitted). ASVs linked to 

the genus Caulobacter were among the most abundant ones in T0 plant roots and were still 

present in roots after one year of growth. However, several other abundant genera in T0 

plants, like Flavobacterium, decreased over time and were not present anymore after one 

year. This shows the importance of the competence for long-term establishment in roots of 

possible plant growth promoting endophytes if an inoculation of the start material is the 

envisaged strategy. 

 

In the greenhouse biotest, the bacterial root endophytic microbiome was analyzed in grass 

variants in order to find possible PGPB. However, no ASVs positively correlated to shoot length 

or fresh mass were detected, except for one in Heidgraben in 2017 (NA_ASV4691 

(Rhizobiaceae)), which could not be determined at genus level. 

Several other ASVs were linked to genera, whose members are known to possess plant growth 

promoting abilities. For example, Pseudomonas was found in the culture independent 

approach to be the most diverse group representing the highest number of ASVs in both years 
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of the biotest (Mahnkopp-Dirks et al., 2020) and in plant roots grown in the field (Mahnkopp-

Dirks et al., submitted), as well as in the culture independent approach with a multitude 

different species isolated. Interestingly, in three studies, the abundance of Pseudomonas was 

observed to decline in the rhizosphere of plants grown in ARD-affected soil, whereas no 

decline was observed in control soil (Čatská et al. 1982, Rumberger et al., 2007; Jiang et al., 

2017). The same was also observed in roots grown in the field (Mahnkopp-Dirks et al., 

submitted). This may indicate that Pseudomonas could be involved in plant growth promoting 

activities (e.g. biocontrol). Members of Pseudomonas are known for their fast growth and 

good rhizosphere competence (Haas and Keel, 2003; Santoyo et al., 2012).  Several strains 

were found to produce iron chelating siderophores (Santoyo et al., 2012; David et al., 2018) 

which can prevent potential phytopathogens from acquiring (enough) soluble iron, thus 

inhibiting their growth and proliferation (Kloepper et al., 1980; Loper and Henkels, 1999; David 

et al., 2018). Disease suppressive soils were associated with this trait of Pseudomonas, among 

others (Kloepper et al., 1980).  Further, numerous members, which are also associated with 

plants, are able to produce antibiotics (Rosales et al., 1995; Raaijmakers et al., 1997; Haas and 

Keel, 2003; Paulsen et al., 2005).  

Pseudomonas fluorescens was among the most frequently obtained isolates in the culture 

dependent approach (Mahnkopp-Dirks et al., submitted). This model organism, whose 

complete genome was sequenced in 2005 (Paulsen et al., 2005), was shown to induce systemic 

resistance in different plant species (Hol et al., 2013; David et al. 2018). For example, 

inoculation of pea roots with Pseudomonas fluorescens in an in vitro system resulted in an 

induced systemic resistance and inhibited the growth of Fusarium and Pythium (Benhamou et 

al., 1996), two organisms, which are often referred to contribute to ARD. Using consortial 

plant growth promoting fluorescent Pseudomonas strains, Sharma et al. (2017) were able to 

suppress the soil borne deleterious rhizobacterial and fungal population associated with ARD 

in rhizosphere soil from ARD-affected apple plants. Their fast growth and good rhizosphere 

colonization abilities are also the reason why strains of this well studied genus are part of 

several commercial available products (e.g. Cerall®, Proradix®, Rhizotech Plus ®). 

Rhizobium is another genus well known for its growth promoting ability. Several unique ASVs 

were found in plants growing in grass soil in the biotests, which were present in more than 

one site (Mahnkopp-Dirks et al., 2020). This genus is most famous for its endosymbiotic 

nitrogen fixing mebers in legumes. But members of the genus Rhizobium are also capable of 
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other different direct and indirect plant growth promoting effects in different plant species, 

including the production of siderophores (Berraho et al., 1997), IAA and cytokinin (Dey et al., 

2004; Noel et al., 1996), phosphate and heavy metal mobilization (Patil et al., 2017), secretion 

of antimicrobial substances (Joseph et al., 1983), induction of systemic resistance (Osdaghi et 

al., 2009) and increased abiotic stress tolerance (Patil et al., 2017). Catská and Hudská (1993) 

inoculated ARD-affected apple seedlings in greenhouse pot experiments and rootstocks in 

nurseries with Rhizobium radiobacter and could observe an enhanced growth. This effect was 

attributed to a shift in the rhizosphere community and reduction of phytotoxic micromycetes. 

However, no positive correlation to plant growth was observed in our biotests (Mahnkopp et 

al., 2020). Instead, two ASVs linked to Rhizobium even showed a negative correlation to shoot 

fresh mass. A negative correlation of Rhizobium to plant growth was also observed by Franke-

Whittle et al. (2015), investigating rhizosphere soil samples of apple rootstocks grown in 

replant affected soils. However, in the culture dependent approach, only two different isolates 

were found, which could be due to suboptimal temperatures used instead of a higher optimal 

growth temperature of 25 – 30°C of most Rhizobium strains (Somasegaran and Hoben, 1994). 

 

Another species often described in literature as plant growth promoting and frequently 

isolated in the culture dependent approach is Serratia plymuthica. Numerous studies and the 

complete genome sequences of three Serratia plymuthica strains (Cleto et al. 2014, Adam et 

al., 2016) revealed several growth promoting traits like production of siderophores (De 

Vleesschauwer and Höfte, 2003; Adam et al., 2016), IAA (Aisyah et al., 2019), induction of 

plant resistance (De Vleesschauwer and Höfte, 2003) and a broad-spectrum biocontrol activity 

against many phytopathogens. The latter includes the production of antibiotics, chitinases and 

proteases (Berg, 2000; De Vleesschauwer and Höfte, 2003; Adam et al., 2016). The biocontrol 

potential of different Serratia plymuthica strains was successfully used against commonly 

stated ARD causing organisms like Pythium, Rhizoctonia, Phytophtora and Fusarium (De 

Vleesschauwer and Höfte, 2003; Aisyah et al., 2019). However, first inoculation trials of the 

obtained isolate showed no positive effect on plant growth in ARD soil (Horn, 2020). 

These are some examples of potential promising plant growth promoting bacteria identified 

in the present study. With Bacillus, Burkholderia, Enterobacter or Sphingobium, several other 

genera consisting of members that are commonly described as plant growth promoting were 

found in the culture independent and dependent approach, but are not discussed in detail 
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here. However, it has to be considered that not only different species within a single genus 

but also different strains within a species can show differences in their capabilities as plant 

growth promoting bacteria. Further, these growth enhancing abilities are often host specific, 

even on cultivar level (Hallmann et al., 1997; Akbari et al., 2020). Moreover, genera commonly 

known for their plant growth promoting abilities may also include pathogenic species.  

The question arises, whether an inoculum consisting of a single plant growth promoting strain 

or even a mixture of some strains is capable of reducing ARD symptoms directly. A potential 

inoculum should also aim to shift the community structure and increase the microbial diversity 

of an ARD-affected plant, since results showed that the microbial diversity, richness, and 

evenness is reduced in ARD-affected rhizosphere soil compared to non-affected soil (Balbín-

Suárez et al., 2021). Jiang et al. (2017) suggested a competition between beneficial and 

pathogenic microorganisms in the rhizosphere, whose ratio may vary under replant 

conditions. Therefore, a shift in the ratio towards beneficial microorganisms is desirable.  

It has to be considered, that not only the plant growth promoting bacteria is important for a 

successful inoculum, but also the carrier material used. The carrier material (made of soil 

materials, organic materials, or inert materials) provides a suitable microenvironment for the 

bacteria and supports their survival and improves their performance (Malusá et al., 2012; Abd 

El-Fattah et al., 2013; Sohaib et al., 2020). Different carrier materials in combination with 

selected strains have to be tested in inoculation trials in order to find the most suitable 

material.     

 
 
3.3   The importance of Streptomyces  

In this work, Streptomyces was found to be one of the most important bacterial root 

endophytes associated with ARD. The following chapter describes some important general 

aspects of this genus, its lifestyle and way of plant colonization. 

The genus Streptomyces belongs to the phylum Actinobacteria. Up to now 672 Streptomyces 

species are known (Euzéby 1997; Parte 2018, LPSN accessed 01.12.2020, validly published 

species names). This genus is well studied and is well known for its production of a wide range 

of bioactive secondary metabolites like antiviral, antifungal, antitumoral, anti-hypertensive, 

and immunosuppressive substances, but are most famous for their production of antibiotics 

(Ōmura et al., 2001; Patzer and Volkmar, 2010; Khan, 2011; De Lima Procópio et al., 2012). 

80 % of today’s antibiotics are derived from Streptomyces (De Lima Procópio et al., 2012).  



3.   General discussion 

94 
 

Members of this genus are ubiquitous in soils (Seipke et al., 2012; Watkins et al., 2016; Ferrer 

et al., 2018; Olanrewaju and Babalola 2019;). This production of a multitude of antimicrobial 

compounds is one reason for their high competitiveness. Another reason is their saprophytical 

lifestyle, since they are able to degrade and metabolize various organic materials and 

substances using several hydrolytic exoenzymes like cellulases, lignocellulases, pectinases, 

chitinases, xylanases and cutinases (Chater et al., 2010; Chater, 2016). For example, the 

genome of the model organism S. coelicolor is with 7,825 predicted genes one of the largest 

of all sequenced bacteria (Bentley et al., 2002). It encodes a large number of secreted proteins 

(819), including 60 proteases, 13 chitinases/chitosanases, eight cellulases/endoglucanases, 

three amylases, and two pectate lyases (Bentley et al., 2002). Because of these degrading 

capabilities, Streptomyces has an ecological key role in turnover of organic material in soil 

ecosystems (Seipke et al., 2012; Chater, 2016). Another characteristic feature of Streptomyces, 

which is unusual for bacteria, is the filamentous growth. Members of these genus grow as 

branching aerial hyphal filaments to form fungi-like mycelium structures that differentiate 

into chains of single-celled spores (Seipke et al., 2012; Chater, 2016; Bobek et al., 2017). The 

ability to form spores, which can survive harsh conditions for several years, (Bobek et al., 2017) 

gives Streptomyces a competitive advantage over other microorganisms in soil ecosystems 

(Seipke et al., 2012; Vurukonda et al., 2018; Olanrewaju and Babalola, 2019). 

 

Streptomyces are generally known as good rhizosphere colonizers and constitute a high 

amount of rhizosphere microbiota (Sousa and Olivares, 2016; Vurukonda et al., 2018). This 

genus was also found endophytic in several plant species. Vurukonda et al. (2018) reviewed 

the growth promoting abilities of Streptomyces as endophytes and found that they promoted 

the growth of 18 different plant species in several studies. In the plant, they mostly colonize 

the root system and the xylem (Vurukonda et al., 2018). However, little is known about the 

colonization process of Streptomyces of the rhizosphere and the plant endosphere (Viaene et 

al., 2016). Since members of this genus are able to metabolize plant exudates and were shown 

to appear in higher abundances in the rhizosphere of Arabidopsis thaliana when the roots 

exudated phenolic-related compounds like salicylic acid (Badri et al. 2013; Lebeis et al., 2015), 

it seems likely that they, similar to many other rhizobacteria, are attracted to plant exudates 

in the rhizosphere. Movement towards plant exudates in the rhizosphere is achieved by 

chemotaxis (Olanrewaju and Babalola 2019). As described in chapter “1.5.1   Definition and 
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ways of plant colonization” one of the most likely ways of bacteria entering the roots from the 

rhizosphere would be through cracks formed during lateral root emergence and at root tips 

(Hardoim et al., 2008; Bulgarelli et al. 2013). An alternative way could include a mild hydrolysis 

of cell walls and middle lamellae (Viaene et al., 2016). It is believed that the hyphae-like 

growth of Streptomyces sp. offers an easier entry and colonization of plant roots (Seipke et 

al., 2012, Viaene et al., 2016). GFP tagging of Streptomyces for studying the colonization was 

used for wheat seeds (Coombs and Franco, 2003) and lettuce (Bonaldi et al., 2015), but the 

transformation of Streptomyces is challenging (Viaene et al., 2016). Recently, high-resolution 

imaging with transmission electron microscopy demonstrated that Streptomyces strain coa1 

is able to colonize Arabidopsis roots inter- and, surprisingly, also intracellularly (Van der Meij 

et al., 2018). However, further research is necessary to unravel the way of plant colonization. 

 

 

3.3.1 Streptomyces as causal agent of the ARD complex? 

Streptomyces was observed in increased abundance in roots grown in three ARD-affected soils 

in greenhouse biotests in two years and was shown to be negatively correlated to shoot length 

(increase) and shoot fresh mass (Mahnkopp-Dirks et al., 2020). Further, members of this genus 

were also observed in a different rootstock (Bittenfelder seedlings) grown in the field in two 

different ARD-affected sites, where their abundance was increasing over time (Mahnkopp-

Dirks et al., submitted). Moreover, histological observations revealed a higher amount of 

Actinobacteria in ARD-affected roots than in non-affected roots (Grunewaldt-Stöcker et al. 

2019, 2021). Since Streptomyces is capable of a saprophytic lifestyle and some members even 

of a pathogenic lifestyle, the question arises whether members of these genus are a causative 

part of ARD or just opportunists. This question was addressed thoroughly in Mahnkopp-Dirks 

et al. (2020). 

As described above, Streptomyces is known for its saprophytical lifestyle and its ability to 

degrade plant material by a wide range of enzymes. Plants growing in ARD soil have severly 

damaged root systems, which show necrotic and blackish roots (Grunewaldt-Stöcker et al. 

2019). This results in high amounts of freely available plant metabolites next to root exudates, 

which can be metabolized. Therefore, Streptomyces finds favorable growing conditions in this 

ARD situation. 
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On the other side, Streptomyces features several characteristics, which support a causative 

part of ARD, which are described in Mahnkopp-Dirks et al. (2020). In brief, pathogenic 

Streptomyces are able to colonize a wide range of hosts that likely includes all higher plants, 

since dicot and monocot seedlings of several plant species have shown symptoms after 

inoculation with S. scabies for instance (Leiner et al., 1996; Loria et al. 2006). The symptoms 

caused by the well-known pathogenic species S. scabies, S. acidiscabies and S. turgidiscabies 

are, next to necrotic scab lesions, typical ARD symptoms: Overall reduced growth, reduction 

of the complexity of the root system and root stunting and browning (Loria et al. 2003; Loria 

et al. 2006; Seipke et al. 2012). Further, virulence genes are clustered on a pathogenic island, 

which can be mobilized and transferred to nonpathogenic species via conjugation (Lerat et al., 

2009). In in vitro assays, apple and Norway spruce (Picea abies) showed an increase in root 

infections of pathogenic fungi in the presence of some Streptomyces strains (Lehr et al., 2007; 

Zhao et al., 2009). This is attributed to the ability to reduce the plant defence response by 

downregulating the peroxidase activity and pathogenesis-related peroxidase gene (Spi2) 

expression of the host plant, thus promoting pathogenic fungal root colonization (Lehr et al., 

2007). Another way of influencing the host defense response was demonstrated with the 

ability of S. scabies of producing coronafacoyl phytotoxins (Li et al., 2019). These have been 

shown to activate the jasmonic acid signaling pathway, hence inhibiting the antagonistic 

salicylic acid pathway, which is responsible for the defense reaction against biotrophic and 

hemibiotrophic pathogens (Glazebrook, 2005; Li et al., 2019). This inhibition of the salicylic 

pathway together with the downregulation of the peroxidase activity is presumably disturbing 

the hypersensitive reaction of plant cells and will subsequently results in easier fungal 

(pathogen) root colonization.  Some coronafacoyl phytotoxins can also suppress the callose 

deposition (Geng et al., 2012; Li et al., 2019).  

 

Several other traits of Streptomyces seem to match the characteristics of apple replant 

disease: Streptomyces appears in higher abundance in sandy, well-drained soil (Gowdar et 

al., 2018) which is similar to ARD, which is more severe in sandy soils than in heavy soils 

(Mahnkopp et al., 2018; Winkelmann et al., 2019). One reason for this is their sensitivity to 

waterlogging conditions, since Streptomycetes are aerobic bacteria. ARD is often considered 

to be less severe, when the soil is flooded, leading to anaerobic conditions. These anaerobic 

conditions were induced by Hewitharana et al. (2014) and Mazzola et al. (2020) in combination 
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with adding different carbon amendments to the soil, which resulted in a reduced ARD effect. 

Another aspect, which is similar to ARD, is its persistence. ARD is known to persist for decades 

(Savory, 1966). Due to their low metabolism, Streptomyces spores can as well survive for a 

long period (Bobek et al., 2017; Sawers et al., 2019). Although not experimentally proven, it is 

believed that Streptomyces spores, similar to other spore-forming bacteria, can survive for 

tens to thousands of years due to their non-growth and low respiration rate (Cano and 

Borucki, 1995; Sawers et al., 2019). Moreover, in several studies, biofumigation, the 

incorporation of Brassicaceae plant materials into soil leading to volatile glucosinolate 

breakdown products such as isothiocyanate formation, was shown to be a promising 

countermeasure against ARD (reviewed by Hanschen and Winkelmann, 2020). Recently, it was 

shown in a chamber bioassay that volatile emissions from macerated Brassica tissue were 

inhibiting the sporulation of Streptomyces isolates, but not hyphal growth, suggesting a 

significant influence on the Streptomyces abundance in the soil community (Gouws-Meyer et 

al., 2020). 

 

To summarize, members of the genus Streptomyces share many traits which are characteristic 

for ARD and possess several pathogenic capabilities that, overall, make it likely that they play 

a role in the ARD etiology. However, Streptomyces sp. are in general considered as a plant 

growth promoting bacteria due to their biocontrol activities. Also in different ARD related 

studies, Streptomyces was positively correlated to shoot growth (Nicola et al., 2017a) and 

associated with disease suppression (Cohen et al., 2005; Cohen and Mazzola 2006; Mazzola et 

al., 2007). So far, in relation to ARD, members of the genus Streptomyces were in no studies 

considered to be a causative part of ARD. Only Actinomycetes (Otto and Winkler 1977; Otto 

et al., 1993) and Actinobacteria (Westcott et al., 1986; 1987; Grunewaldt-Stöcker et al., 2019, 

2021), to which Streptomyces belongs, were histologically more frequently observed in roots 

grown in ARD-affected soil compared to non-affected soil suggesting a potential role in ARD. 

Tewoldemedhin et al. (2011a) followed the hypothesis of Actinobacteria, especially 

Streptomyces, being involved in ARD by inoculating 37 Streptomyces isolates directly to 4 

weeks old apple seedling, but found no effect. The reason for this might be that Streptomyces 

is not directly causing ARD symptoms, but instead reducing the plant defense response, which 

subsequently leads to easier root colonization of pathogenic fungi. This plant defense 

reduction might be a negative side effect of Streptomyces, which is generally known as a 
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mycorrhiza helper bacterium able to promote mycorrhizal formation by promoting fungal 

growth and by decreasing plant defense response (Lehr et al. 2007; Tarkka et al. 2008; 

Vurukonda et al. 2018). Promotion of root infections was also observed by Zhao et al. (2009) 

in apple. Root infections of Rhizoctonia solani were significantly elevated in the presence of 

Streptomyces vinaceaus. Moreover, co-inoculation with Streptomyces herbaricolor resulted 

not only in significantly elevated root infections, but also in novel leaf symptoms, which were 

not observed in apple plants grown in soil with Rhizoctonia solani alone. Similar promoting 

effects were also observed by Lehr et al. (2007) when Streptomyces sp. AcH 505 was co-

inoculated with the fungal pathogen Heterobasidion abietinum in Picea abies, which resulted 

in increased root infections. These two examples underline the importance of co-occurrence 

of Streptomyces together with potential fungal pathogens to potentially induce ARD 

symptoms. Recently, new insights of Streptomyces behavior were discovered, which support 

these hypotheses. Unlike many other bacteria, all Streptomyces cell types are characterized 

as non-motile (Jones et al., 2017). However, Jones et al. (2017) discovered that in the presence 

of fungi (Saccharomyces cerevisiae) Streptomyces venezuelae forms rapidly migrating so-

called explorer cells, which are able to quickly transverse biotic and abiotic surfaces. 

Moreover, these cells are able to produce the volatile pheromone TMA (trimethylamine), 

which can induce exploratory growth in physically separated different Streptomyces species 

(Jones et al., 2017). These inter-kingdom interactions underline even further that the interplay 

between Streptomyces and fungi could be crucial for the induction of ARD. In the presence of 

certain fungi (even non-pathogenic), the distribution in soil along with root colonization of 

Streptomyces would be increased, leading to reduced plant defense, which promotes 

pathogenic fungal colonization. With several interacting organisms, this hypothetical example 

reflects the complexity of ARD, which is believed to be a disease complex (Winkelmann et al., 

2019). Streptomyces in a key role as a “door opener” could also explain, why several studies 

report different pathogens be responsible for ARD. The fungi Rhizoctonia (Mazzola 1999; 

Mazzola and Manici, 2012; Manici et al., 2013), Dactylonectria, Ilyonectria (Manici et al., 2018; 

Popp et al., 2019, 2020), Fusarium (Tewoldemedhin et al., 2011b; Manici et al., 2017) and 

Cylindrocarpon (Mazzola 1999; Tewoldemedhin et al., 2011a; Franke-Whittle et al., 2015) as 

well as the oomycetes Pythium (Mazzola 1999; Tewoldemedhin et al., 2011a, 2011b; Tilston 

et al., 2018) and Phytophthora (Mazzola 1999; Tewoldemedhin et al., 2011a) are frequently 

reported. In the presence of plant defense reducing Streptomyces, these different pathogens 
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(which might be attracted by root exudates such as phloridzin) could be responsible for ARD 

symptoms depending of their presence in the soil.  

The interplay of Streptomyces with different fungi could also explain the fact that the 

abundance of Streptomyces increases over time not only in roots grown in ARD-affected soil, 

but also in grass soil in the field where no ARD effects were observed (Mahnkopp-Dirks et al., 

submitted). The pathogens needed to co-occur with Streptomyces are not yet present in these 

non-ARD soils (in sufficient abundance), therefore causing no symptoms. The plant might have 

enough time to root and to establish before both Streptomyces and needed (fungal) 

pathogens reach a critical abundance, which cause symptoms. If replanted, the Streptomyces-

pathogen-complex would already be present in high abundance and subsequently lead to 

replant symptoms. 

 

 

3.3.2 Streptomyces as indicator for ARD: An alternative for the biotest? 

Next to the expression of candidate genes (Reim et al., 2020; Rohr et al., 2020; Rohr, 2020) 

and histological analyses of root material (Grunewaldt-Stöcker et al., 2019), one of the most 

reliable and feasible way to determine the severity of ARD in soil is via biotest (see chapter 

“3.1   Advantages and disadvantages of the biotest”). However, all these methods are time 

consuming and laborious. 

Since members of the genus Streptomyces were shown to be associated with ARD (Mahnkopp-

Dirks et al., 2020) we designed qPCR primers to quantify the amount of Streptomyces in roots. 

Based on the sequence data of the first amplicon sequencing of samples from 2016 

(Mahnkopp-Dirks et al., 2020) and the sequences of the Sanger sequencing of isolates 

(Mahnkopp-Dirks et al., submitted), a consensus sequence was generated from a total of 37 

sequences. Specific qPCR primers were designed using Primer3 (http://primer3.ut.ee/). Their 

specificity was confirmed using the Probe Match of Ribosomal Database Project software 11.5 

(Cole et al. 2014), SILVA TestPrime 1.0 (Klindworth et al., 2012) and NCBI. Finally, a total of 2 

primer pairs could be designed (Tab. 1). Testing of these primer pairs as well as quantification 

of selected samples via qPCR should be approached in future studies. 
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Table 1: Primerpairs for the quantification of Streptomyces 

Name Nucleotide sequence (5´ - 3´) 
Strepto_426_F CTAGAGTGTGGTAGGGGAGATC 
Strepto_610_R ACACCTAGTTCCCACCGTTTAC 
Strepto_508_F GGATCTCTGGGCCATTACTGA 
Strepto_610_R ACACCTAGTTCCCACCGTTTAC 

 

 

However, as shown in Mahnkopp et al. (2020) not all members (ASVs) of Streptomyces were 

negatively correlated to shoot length and fresh mass. In 2016, 15 out of 32 ASVs were 

negatively correlated and in 2017 only 6 out of 61 ASVs. Also in 2017, the abundance of total 

Streptomyces showed not the typical pattern of higher abundance in ARD-affected soil 

compared to non-affected soils. Nevertheless, all experiments showed several ASVs 

associated to ARD, independent of the cultivation system, site, season, or year. But to design 

qPCR primer, which are specific to these ASVs, is nearly impossible, since the obtained short 

sequences are almost identical to several other Streptomyces ASVs. To address this problem, 

non-16S-regions could be targeted which may be linked to pathogenicity or plant defense 

reduction (e.g. pathogenic islands).  

Since soil is the main reservoir of microorganisms for the plant microbiome (Berg and Smalla 

2009; Bonito et al. 2014; Lareen et al. 2016; Hartman and Tringe 2019) it is likely that 

Streptomyces shows a higher abundance not only in the roots, but also in the rhizosphere soil. 

Based on DGGE analysis in a split-root-approach, Lucas et al. (2018) confirmed this by finding 

mainly Streptomyces with an increased abundance in rhizosphere samples of the ARD variants. 

In the same split-root-approach, Balbín-Suárez et al. (2020) found several abundant 

Streptomyces OTUs in the rhizosphere and rhizoplane in ARD-affected soil. This means that 

roots and rhizosphere soil can serve as potential samples for a qPCR based quantification.  

As hypothesized in “3.3.1 Streptomyces part of ARD?” (fungal) co-pathogens are presumably 

needed to induce ARD and cause symptoms. Therefore, it is advisable to identify the co-

pathogens and also establish a qPCR based quantification method for them in order to 

quantify them together with Streptomyces.  
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4.   Conclusions 
In this thesis, the biotest with soil from different sites conducted in three consecutive years 

showed the successful induction of ARD and its severity, proofed the reproducibility of this 

method, and laid the basis for further analysis. For the first time, the community composition 

of bacterial root endophytes in apple plants growing in ARD-affected soils in comparison to 

non-affected soils was shown. Surprisingly, the core microbiome of apple roots was very small. 

Moreover, several ASVs linked to the genus Streptomyces were associated with ARD and were 

negatively correlated to shoot length and shoot fresh mass. The same ASVs were not only 

found in roots grown in soil from three different sites in two independent greenhouse 

experiments, but also in roots of a different genotype grown in two different field sites during 

the growth period of one year. This underlines the importance of members of the genus 

Streptomyces in the context of ARD, which might play a crucial key role in the etiology of ARD. 

Whether they are part of the disease complex or just opportunistic needs to be clarified. The 

quantification of this genus or better of selected strains could serve as a potential feasible 

indicator for ARD. 

Although, no bacteria that were positively correlated to plant growth were found in this study, 

150 isolates were obtained in the culture dependent approach, which can be further 

characterized and might serve as a source for future inoculants to help to overcome ARD. 
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5.   Outlook 

One of the major remaining questions is the role of Streptomyces in ARD. Are members of this 

genus part of the disease complex or are they simply opportunists? To answer this important 

question inoculation experiments with Streptomyces isolates are necessary. But up to now, 

only one isolate from surface disinfected root tissue is available. This work showed that only 

a fraction of ASVs of this genus was negatively correlated to shoot growth. Therefore, more 

different Streptomyces isolates are heavily needed. Next isolation approaches should have 

more favorable conditions for this genus. For example, the medium used should be optimized 

for best growth like SC-medium (Amoroso et al., 1998) or GYM-medium (DSMZ) and the 

optimal incubation temperature for most strains is reported to be 28°C (Kämpfer et al., 2014). 

Since Streptomyces is easily overgrown by faster growing bacteria, dilution approaches should 

be used. The obtained Streptomyces isolates could then be used in inoculation approaches. 

However, since it is hypothesized that deleterious Streptomyces strains decrease the plant 

defense response, ARD symptoms should occur only in soil, where other (fungal) pathogens 

are present. Therefore, prior Streptomyces inoculation, soils should be inoculated with 

different potential (fungal) pathogens. 

Additionally, it would be interesting to test these isolates in interaction test with other 

endophytes (e.g. cross streak plate assays), since the genus Streptomyces is known for their 

vast production of secondary metabolites and antimicrobial substances. Further, analyses of 

volatile organic compounds (VOC) of these isolates would be of great interest, since many 

strains are known for their VOC production, which can influence their surrounding 

environment (Jones et al., 2017, 2019; Armin et al., 2021). 

Because members of the genus Streptomyces seem to be at least associated with ARD, the 

development of a qPCR based quantification method was already started in order to develop 

an ARD indicator. The already designed primer pairs need further testing, especially for their 

efficiency and specificity. If genus specificity of the primer pairs is confirmed, several different 

ARD-affected and non-affected roots identified by microscopic indicators from different sites 

should be tested in order to confirm the Streptomyces-ARD association. 

Further tasks to unravel the role of endophytes in ARD could also include their localization. 

The question, where certain endophytes are located within the roots or within the cells could 

be unraveled using histological techniques in combination with FISH (fluorescence in situ 

hybridization). 
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Another approach to further disentangle the role of endophytes in ARD could be to distinguish 

the endophytic community between healthy and diseased root parts of single plants using 

amplicon sequencing and/or plating techniques. First experiments were already done. 

However, the blackish diseased root parts got bleached during surface disinfection, making it 

impossible to distinguish between healthy and diseased root parts.  Cutting roots prior surface 

disinfection resulted in killing of most endophytes because sodium hypochlorite entered most 

of the root tissue since the cutting segments of diseased root parts were very small and 

already damaged. Therefore, another approach using a gentler surface disinfectant like NaDCC 

seems promising. An alternative, but without surface disinfection, was conducted by Popp et 

al. (2020), who used Harris Uni-core punching in order to sample ARD-affected roots. 

Moreover, comparing the endophytic community of good and poor growing apple plants in 

ARD plots could further unravel plant growth promoting endophytes. This approach was 

already started. 9 out of 12 isolates obtained from good growing ARD plants belonged to the 

genus Pseudomonas. However, only a small number of plants were tested, which should be 

increased in future. 16S amplicon sequencing could further reveal detailed endophytic 

community structure differences in good and poor growing ARD plants. 

Finally, results indicate that ARD is soil specific. Even though roots grown in ARD-affected soils 

from three different sites were analyzed and showed members of Streptomyces as associated 

endophytes, more different ARD-affected soils from different sites are needed to be analyzed 

to confirm this Streptomyces association. The same is true for different genotypes. In this 

study, two different genotypes were analyzed. Currently in phase II of ORDIAmur, several 

other genotypes grown in ARD-affected and non-affected soils are analyzed for their 

endophytic bacterial root community. First results confirm a high abundance of Streptomyces 

in roots of these genotypes grown in ARD soils (N. Orth, unpublished). Recently, endophytic 

community structure differences were shown to be strongest between genotypes reported to 

be tolerant or susceptible to ARD (Van Horn et al., 2021). Streptomyces was stated as one of 

the most dominant endophytic group, but its abundance between the different genotypes 

was not reported further. 

 

The apple replant disease and especially the role of the endophytic community still hold many 

secrets waiting to be unraveled.   
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