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Summary

When operating a wind turbine, damage of rotor blades is a serious problem.
Undetected damages are likely to increase overtime, and therefore, the safety
risks and economical burdens also increase. A monitoring system, which detects
reliably defects in early stages, gives scope for action and is therefore a key ele-
ment to avoid damage increase and to optimize the efficiency of wind turbines.
One promising approach for damage detection is acoustic emission methods.
Although most acoustic emission approaches use ultrasonic sound waves of the
structure that require about 12 to 40 sensors to monitor one rotor blade, we
propose to use the airborne sound in lower frequencies from about 500 Hz to
35 Hz with three optical microphones and present a signal model-based dam-
age detection algorithm. The real-time algorithm uses six audio features from a
spectrogram representation to detect damages and to estimate its significance.
In a fatigue test of a 34-m blade, the algorithm detected the damage event and
damage increasing without false detection. It was also tested with recordings
inside an operating blade of a 3.4-MW wind turbine. In the recorded time period
of about 1 year, the algorithm indicated no false detection.
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1 INTRODUCTION
Increasing the efficiency and safety of wind turbines is one important design goal that leads to many different research
activities. Here, unexpected rotor blade damage is one important problem. In1 the relevance of rotor blade damage for
operating, a wind turbine is shown. Regular sight inspections of the blades are therefore mandatory. Nevertheless, these
inspections cannot provide an instant damage detection, and even relatively small damages can accumulate overtime and
lead to structural relevant damage. Besides the safety risk of an undetected damage, the economical burden increases
rapidly if the damage increases, given the costs of repairs, replacement, and downtime.

There are many factors that prevent to solve this problem from the blade construction and production side. One aspect
is the long lifespan in which extreme weather can occur. Another aspect is the need of lightweight blades and cost efficient
production. The manual production of the large structure brings a margin of tolerance and makes it hard to guarantee a
healthy lifetime of a rotor blade. All in all, it is unlikely that rotor blade damage can be eliminated from the construction
and production side in the near future.
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Monitoring the rotor blades is an approach to ease the problem. A system that detects rotor blade damages reliably
and in early stages gives much better scope for action, and damage increase can be avoided. An ideal structural health
monitoring (SHM) system also gives useful information of the damage, like the damage relevance. With such information,
the efficiency of the wind turbine can be optimized by reducing the downtime and minimizing the cost of maintenance,
repairs, and replacement. Thinking one step further, a system that predicts the remaining lifetime of a blade using the
monitoring data opens up the possibility to optimize the overall economical benefits of the wind turbine with respect to
the rotor blades.

Taking a look at the state-of-the-art of rotor blade SHM, one sees that quite a lot of research has to be done to achieve
these goals. There are a few SHM systems on the marked. In the field of research, a variety of different damage detection
approaches with the goal to provide a better performance exist.2-4 One promising approach is based on acoustic emis-
sion event detection commonly referred to as acoustic emission (AE). Damage causes sound waves that are emitted in
the structure and directly or indirectly into the air. The structural sound wave can be detected by monitoring physical
values like the acceleration of the surface of the material. Sensors are often called AE sensors even if AE is not a physical
quantity. This method was first prominently used to detect damages in a variety of different metal structures.5 It was then
transferred to damage detection of wind turbine blades, and plenty research was done under laboratory conditions, for
example,.6-8 For this method, ultrasonic frequencies are utilized; therefore, the amount of sensors is relatively high due to
the size of modern blades and high internal damping of composite materials at these frequencies.6,9 For monitoring, the
whole rotor blade at least about one sensor every 2 m of the blade length is needed, which leads to many sensors given
the length of 50 to 90 m of modern blades.

Rotor blades are complex structures made of a variety of materials, so there are a lot of different damage scenarios. In10

seven different damage types, including combinations of delamination, fibre cracks debonding and so on were categorized
suitable for the rotor blade context. Even within these categories, there are many possible scenarios how and where such
damages happen, and what significance they have. In SHM research, it is a big challenge to design an accurate early
damage detection methods, which covers all damage scenarios. Looking at the integrity of the structure, one rule of
thump, which is often applied to AE methods, is high energy events in a short time period are an indicator of an important
damage.

Up to now, there were only very few results published of AE systems in an operating wind turbine.11-13 No damage hap-
pened during the monitored time periods in these research projects, and it is uncertain how the results under laboratory
conditions can be translated into the real operational conditions where different environmental noise and side conditions
are present. All event detection systems are confronted with this obstacle, and it is really hard to overcome, since it is very
expensive or unlikely to capture a damage event in a full-scale operating wind turbine blade. The higher risk of damage
from lightning strikes caused by the electrical conductive wires is one additional problem for typical AE approaches in
operating rotor blades.13

Another closely related approach to monitor rotor blade damages is vibration-based methods, for example,.14,15 Here,
the vibration of parts of the blade caused by any excitation like wind or artificial excitation in the lower frequency range is
captured and analyzed. The typical frequency range is lower than about 100 Hz. The signals are monitored, and based on
the changes of the vibration signal, a damage state should be detected. With such methods, the damage can be detected
even after the occurrence. Compared to AE methods, the drawbacks are less sensitive damage detection performance and
longer time gaps to get the detection decision.

In contrast to other AE or vibration approaches, we propose to detect AE events by using airborne sound instead of the
structure sound.16-18 The idea is based on the observation that audible cracking sounds occur during rotor blade tests.9
Common AE methods capture high ultrasonic frequency bands, but damage events did not radiate much energy in this
frequency range into the air. On the other hand are the very low frequencies that are overlaid by environmental sounds
with high energy, so we use the frequencies range from about 500 Hz to 35 kHz. The aim is to lower the amount of
sensors compared to common AE approaches, due to the higher emitted energy and lower damping over distance in this
lower frequency bands. Compared to vibration approaches, smaller damages should be detected. Additionally, optical
microphones, which do not increase the risk of lightning strike damage, can be used to capture the sound in the air. In the
used frequency range, cracking sounds as well as environmental noise can be found. This issue is dealt with by placing
the focus on the signal processing aspect of the damage detection task.

From this perspective, damage detection with given sensor signals is a pattern recognition task. The pattern that should
be detected is the cracking sound of a damage. There are two main approaches to solve such a task. The first approach is
a signal model-based detection algorithm, which is designed by using knowledge and assumptions and translate this into
an algorithm. Machine learning is the second approach, which is very popular these days. The two approaches can also
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be combined so that parts are model-based and parts are derived by machine learning. We use audio features that were
chosen based on a signal model, and the classification decision is derived by a decision tree that is a machine learning
approach. Techniques as support vector machines were not used since we didn't have enough and divers damage sounds.
Artificial neural networks that process the plain audio data and provide very good results in other audio classification
tasks like speech recognition weren't used since they need much more data to function.

Machine learning detection algorithm is derived by using a predefined general algorithm, which is specified by a train-
ing process. The success of the training is based on the quantity and quality of the previously collected data. Machine
learning approaches like Random Forest, Support Vector Machine, or Convolutional Neural Networks will work much
better if the training data cover all combinations of events and boundary conditions that can occur in the monitoring sce-
nario. This is a problem for rotor blade damage detection, since it is infeasible to record a lot of damage events covering
different rotor blades, positions of damages and sensors, damage types, and so on. The dataset of damage (i.e. positive)
events is always very small. For machine learning approaches with such a low amount of positive training data, overfit-
ting is a serious problem and can barely be avoided. With a model-based approach, an algorithm can be designed, which
considers scenarios that are not covered by the database but are likely to occur. This is a good strategy to avoid overfitting.
Therefore, we designed our damage detection algorithm by building a model of the damage signal.

The typical way of designing a signal model-based pattern recognition algorithm is by using the sensor signals from
which features are calculated. In the feature space defined by multiple features, all possible damage events build a cluster
that should provide no or only a minimal overlap with the clusters of all other sound events. In a next step, the features
are given to a classifier that implements the decision bounds.

The typical AE approach for rotor blade monitoring is parameter-based AE,2-4 which is a simple form of a model-based
detection algorithm. One damage event is typically called a hit. The standard approach for detecting a hit is to use the raw
or filtered absolute time amplitude signal of a sensor. This signal is compared to a threshold value. If the signal exceeds the
threshold in a given time period, a hit is signalled. If a certain amount of hits per time interval occur, the interpretation is
that a significant damage happened.19 The assumption for such pattern recognition algorithms is that the sensor signals
provide damage signals with a higher amplitude than all other sounds like environmental sound and noise. In scenarios
where the damage signal is masked, the complexity of the signal model must increase in order to avoid false alarms.
Therefore, the proposed cheaper airborne sound damage detection system will need more advanced signal processing.

The airborne sound approach uses audio features calculated from the spectrogram representation, which describe char-
acteristics of rotor blade damage sounds and a decision tree as a detector. The damage detection task is therefore solved by
using audio classification (detection) techniques. The damage detection algorithm was tested during a full-scale fatigue
test in.18 In20 we presented a localization approach and showed that the origin of the high power cracking sounds is the
structural relevant damage. In21 results were published of a vibration-based damage detection approach during the same
fatigue test. In22 a combination of the vibration approach with our airborne sound damage detection algorithm18 can be
found. Given the good standalone performance, in this paper, we investigate only the improved airborne sound damage
detection method. Compared to,18 we propose to use all microphone signals jointly and a different feature set that takes
the condition in an operating wind turbine with a larger variation of noise levels better into account. We introduce a
gradient-based power and a gradient-based tonal feature. Furthermore, the classifier now uses jointly the features from
all microphones. This helps to consider different boundary conditions, and therefore, it should provide a more robust
detection performance.

In Section 2, the airborne sound damage detection algorithm is described, which uses six audio features and estimates
the significance of the damage. Two versions of the algorithm are described. One which can be applied using only one
microphone and a version where all three microphones are used jointly. Then the fatigue test of a 34-m rotor blade is pre-
sented in Section 3, and the measurements in an operating 3.4-MW wind turbine blade can be found in Section 4, followed
by Section 5, where the results of the damage detection algorithm using the data from the fatigue test and operation are
presented. Section 6 concludes the paper.

2 ALGORITHM FOR ROTOR BLADE DAMAGE DETECTION USING
AIRBORNE SOUND
A real-time operating damage detection algorithm was developed, which detects rotor blade damages based on airborne
sound signals. The algorithm is based on observations that were also made in previous versions of the algorithm.16-18

The signals are continuously captured inside the rotor blade at different positions. After the damage detection step,
the algorithm estimates the significance of the damage based on the assumption that more relevant damages emit higher
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sound energy. This assumption is backed by a lot of publications dealing with AE energy and failure modes like.23 The
aim is to detect relevant damage since very small damages like the cracking of a single fiber are considered as structural
irrelevant in the rotor blade context.

The detection algorithm is based on a signal model of the specific impulse-like signals that represent audible rotor
blade damage sounds in airborne sound recordings. A similar model was first developed by us in16 based on the audio
recordings during a certification test of a 55-m wind turbine blade. Based on the spectrogram representation, which display
the frequency and power of the signal overtime, the signal model was build. The detection algorithm uses specific audio
features according to the observed properties in the spectrogram data and checks continuously if the features are within
the bounds that describe such signals. A similar approach and related features were used to detect other impulse sounds,
since other impulse sounds share several properties. Examples are algorithms for drum sound classification24 or gunshot
detection.25 In Figure 1, a typical rotor blade cracking sound with relatively low environmental noise level is displayed.
We had observed the following signal properties, which all rotor blade cracking sounds have in common:

1. The damage sounds are described by an impulse characterized by sudden energy increase. The amount of energy
varies.

2. The increase happens over a wide frequency range, which often exceeds the human hearing threshold of high
frequencies.

3. The frequency at which the maximal power occurs can vary.
4. From the frequency with maximal power, its power decrease is approximately exponential towards high frequencies.
5. The decay of the power overtime is relatively slow and dependent on the positions of damage and sensor and the

geometry of the blade.

The damage detection algorithm is structured as follows. First, a spectrogram representation is calculated (Section 2.1).
In a next step, six audio features are calculated (Section 2.2) and sent to a classifier. There are two versions of the algorithm:
one simple classifier uses features from a single microphone signal and the second classifier which uses features from
multiple microphone signals jointly. The differences are described in Sections 2.3 and 2.4. Multiple detections in a short
time frame are combined to one detection. One important criterion was to use audio features and classification decisions,
which makes sense from the perspective of the signal properties. They have to be relatively robust against overlaid envi-
ronmental noise signals and robust against variation of the position of the damage and sensor. After the damage detection
step, the damage significance is estimated using power features from all channels and a weighting term (Section 2.5).
In Figure 2, the flow chart of the single channel algorithm can be found. The multiple channel algorithm is depicted in
Figure 3. The steps of the algorithm are described in the followings subsections.

FIGURE 1 Spectrogram of a rotor blade
cracking sound (marked area) with relatively
low environmental noise. The power is also
displayed in color

FIGURE 2 Principle flow chart of the damage
detection algorithm using a single microphone
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FIGURE 3 Principle flow chart of the
damage detection algorithm using
multiple microphones

2.1 Spectrogram
In a first step, the audio data are transformed into a spectrogram representation. This is done continuously so that the
further steps can use the spectrogram representation. For this, the discrete time amplitude signal x(n) is transformed by
a discrete short time Fourier transform where

S(k, l) =
NFT−1∑

n=0
x
(

n + l · NFT

2

)
w(n)e−𝑗

2𝜋nk
NFT (1)

is performed. Here, l is the resulting time index and k the frequency index. A Hamming window w(n) is used with the
same length as the transformation length NFT. The windows from two consecutive time indices l are half overlapped. The
power spectrogram P(k, l) is calculated using the squared absolute value and a normalization according to

P(k, l) = a

NFT

NFT−1∑
n=0

|w(n)|2 |S(k, l)|2. (2)

In the case of k = 0 or k = NFT∕2, the parameter a equals 1; in all other cases, a is 2. For the implementation of the
algorithm, the transformation length NFT = 2048 is used, which corresponds to about 20 ms and a frequency resolution of
about 50 Hz at a sampling frequency of 96 kHz. With the half overlapping window, about every 10-ms new spectrogram
data are available. The resulting spectrogram data are further processed to calculate characteristics of cracking sounds
using the following six audio features.

2.2 Audio features
The audio features are calculated by using two frequency ranges. The range from about 500 Hz to 35 kHz is used, since
the environmental noise level in the frequencies below about 500 Hz is too high, and 35 kHz is the high frequency limit
of the microphone. The second frequency range is from about 8 to 35 kHz. In this reduced frequency range, the power
of the environmental noise signals is significantly lower. The downside is the higher reductions in power over distance
especially if the sound has to travel around corners. Nonetheless, the reduced amount of environmental noise in this
frequency range helps to provide more stable results for the detection and classification purpose, so it is used for five of the
six features. The signal of a high power cracking sound has a significant amount of signal energy also above the hearing
limit of about 20 kHz, and they can therefore be used for damage detection. We also tested a reduced highest frequency
limit of 20 kHz instead of 35 kHz. Here, all time steps remain the same as the time steps in 96 kHz. The results can be
found in Section 5. The features use different time periods, which are displayed in Figure 4. First, more important features
are presented, which are used to remove many nondamage sounds, while the later features are used to check the details
of a potential damage sounds. This order of the features is also used within the classifier in order to minimize compute
resources.

2.2.1 Power feature
Our assumption is that the damage relevance is increasing if the energy of the damage sound event increases, and only
high power sounds indicate a relevant damage event. With this assumption, the first feature, which represents the power
of the impulse, is calculated as follows:

𝑓1(l) =
ke∑

k=ks1

le1∑
l=ls1

P(k, l). (3)
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FIGURE 4 Discrete time bounds l of the six
features illustrated in seconds. The Power and
the Power HP feature use the time span from 0 to
0.03 s. The Power Increase feature uses the same
time span and additionally the signal part from
-0.1 to -0.03 s. The Spectral Flatness feature
begins at 0 s and ends at 0.01 s. The Spectral
Shift feature takes additionally the time frame
from -0.1 to -0.03 s. The Power Decrease feature
uses the time span from 0 to 0.1 s

Here, the spectrogram data from ks1 and ls1 to ke and le1 are summed up. The frequency range is set to 469 Hz to 35 kHz,
and the time span is 32 ms.

2.2.2 Power HP feature
In addition to the Power feature, the Power HP feature ensures that the sound contains significant energy in the higher fre-
quencies. As mentioned before, there is less environmental noise present in this frequency bands. The feature is calculated
as follows:

𝑓2(l) =
ke∑

k=ks

le1∑
l=ls1

P(k, l). (4)

The time length is identical to the first power feature. The frequency range is from 7.96 to 35 kHz.

2.2.3 Power increase feature
The third feature calculates the amount of power increase of the signal, which is used to detect the beginning of an
impulse. Similar power gradient-based features are widely used for different audio classification tasks. Here, we used a
modified power gradient feature that is calculated as follows:

𝑓3(l) =
𝑓2(l)

le1 − ls1
−

∑ke
k=ks

∑le2
l=ls2

P(k, l)

ls2 − le2
. (5)

The time indices l are also displayed in Figure 4. The time span of the subtrahend is longer than the time span of the
minuend. This is done to get a better average of the noise power before the impulse. The gap between the two signal parts
is used to take the attack time of the impulse into account.

2.2.4 Spectral flatness
The spectral flatness measure26 is calculated by dividing the geometric mean by the arithmetic mean of the power
spectrum by

𝑓4(l) =

(∏ke
k=ks

P(k, l)
) 1

ke−ks+1

∑ke
k=ks

P(k,l)

ke−ks+1

. (6)

A value between zero and one is given, where zero represents a maximal tonal signal and one a maximal non-tonal
signal. This measure was used for a lot of different audio detection and classification task, for example, to separate musical
and percussive sounds.27 The damage sounds, which are similar to percussive sounds, are non-tonal, but the power is
exponentially decreasing towards higher frequencies, so this feature value should be closer to zero than to one.

2.2.5 Spectral shift feature
This new feature is based on a logarithmic representation of the spectrogram in dB PdB. From this representation, the
spectral centroid is calculated by

s(l) =

∑ke
k=ks

F(k) · PdB(k, l)∑ke
k=ks

PdB(k, l)
, (7)
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Threshold value
Feature Threshold Upper or lower threshold Sensitive Insensitive
Power f1 𝛿1 lower 3.6 · 10−8 1.0 · 10−7

Power HP f2 𝛿2 lower 2.3 · 10−9 1.2 · 10−8

Power increase f3 𝛿3 lower 1.2 · 10−9 1.1 · 10−8

Spectral flatness f4 𝛿4 upper 0.54 0.31
Spectral shift f5 𝛿5 upper −36 −110

Power decrease f6 𝛿6 upper −1.9 · 10−11 −1.6 · 10−10

TABLE 1 Threshold values of the
damage detection algorithm using a
single microphone only

where F is a vector containing the center frequencies of all frequency bands. The spectral centroid represents the fre-
quency, where the center of power is present and is used for similar audio detection tasks like gunshot detection.25 In the
next step, a slope of the spectral centroid signal is calculated by

𝑓5(l) =

∑le3
l=ls3

s(l)

le3 − ls3
−

∑le2
l=ls2

s(l)

le2 − ls2
. (8)

Here, the time span of the subtrahend is also longer than the span of the minuend to get a better average of the sound
component before the checked time span. With the assumption that the environmental noise is slower changing overtime
than the damage sounds, the slope is robust against overlaid noise. We assume that the energy distribution of a damage
sound is more geared towards lower frequencies than the energy distribution of environmental noise, so it can be used as
an damage detection feature.

2.2.6 Power decrease feature
The last feature evaluates the slope of the decrease in power overtime. Similar spectral slope features are also used for
detection of the impulse-like sounds, for example, gunshot signals.25 The power of the spectrogram in decibel is summed
up by

p(l) =
ke∑

k=ks

P dB(k, l). (9)

The frequency interval is from 7.96 to 35 kHz. Next, the slope of a simple linear regression function is calculated by

𝑓6(l) =

∑le4
l=ls4

(
l −

∑le4
l=ls4

l

le4−ls4

)
·
(

p(l) −
∑le4

l=ls4
p(l)

le4−ls4

)
∑le4

l=ls4

(
l −

∑le4
l=ls4

l

le4−ls4

)2 . (10)

A time step equivalent of about 0.1 s is used with ls4 and le4. This covers the time span where the impulse power is approx-
imately exponentially (linear in dB) decreasing overtime. We assume that in this interval, the amount of environmental
noise is relatively low with respect to the power of the damage sound.

2.3 Single channel classifier
First, a version of the algorithm with lower complexity that uses every microphone channel on its own to detect rotor
blade damage is presented. The purpose of this classifier is to show the difference between single channel and multiple
channel classification. All features described in the previous section are constantly calculated from the audio stream. The
classification decision is made by a decision tree. A detection is derived if all six features satisfy the thresholds displayed
in Table 1. The thresholds of the power features and power increase feature are dependent on the recording level, which
is represented here with 0 dBfs at 134 dB sound pressure level.

The thresholds were manually set to its values with regard of observed rotor blade cracking sounds and other impulse
sounds like the cracking of branches and other impulse sounds which for the authors sound similar to actual rotor blade
cracking sounds.

A relevant damage has to have high power in the low and high frequency range. Therefore, the power and power HP
feature should be greater than 𝛿1 and 𝛿2, respectively. The power should be increasing over a short time period; therefore,
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the power increase feature should be higher than the threshold 𝛿3. The damage signal power is exponentially decreasing
towards higher frequencies, so the spectral flatness feature should be lower than the threshold 𝛿4. There should be a
spectral shift of the spectral centroid towards lower frequencies; therefore, the spectral shift feature has to be lower than
the threshold 𝛿5. The power of a damage sound is decreasing overtime, so the power decay feature should be lower than
the threshold 𝛿6. If all features satisfy the thresholds, a detection is indicated. There are two parameter sets given which
are called sensitive and insensitive, which should provide more detections with a higher risk of false positive detections
or less detections, where true positive detections might be missed.

2.4 Multiple channel classifier
The algorithm that detects rotor blade damage based on all microphone signals jointly is described in the following. It has
the advantage of using the sound signal at different positions inside the rotor blade, which helps to make the detection
decision more robust. Every microphone signal is affected by a different level and mixture of environmental noise and
differences in the received damage sound due to the sound propagation paths. Therefore, features that use some kind of
average over the positions should be more robust in comparison to a single channel detection strategy.

The multichannel features are constantly calculated from the audio streams and given to the multichannel decision
tree where the features are compared threshold values. First, the six basic features described in Section 2.2 are calculated
separately for every microphone signal. In the next step, these values were further processed to get the multichannel
features dij and di.

Since the microphones have to be placed at different positions inside the rotor blade, and the damage can happen at any
position, time differences of arrival of the recorded damage sounds will occur, which depend on the microphone positions.
This is covered by an observation window that covers the time frame of the theoretical maximum time difference of arrival
of the scenario. The time is simply calculated by dividing the speed of sound by the maximal sound path difference. The
window defines how many feature values from the past are used for the damage detection step.

The features dij are used to check every channel on its own and are calculated by

di𝑗 =
{

maxl∈w𝑓i𝑗(l) if i ∈ {1, 2, 3}
minl∈w𝑓i𝑗(l) if i ∈ {4, 5, 6}. (11)

Here, f is the feature value of the feature with the number i, j the microphone channel, and maxl=w the maximal value
within the observation window w. In Table 2, all features can be found. With the use of dij, it is checked if at least a
significant damage signal is present at all microphones, which a relevant damage should provide. An irrelevant damage
with a low overall energy would only be observable at the nearest microphones. Therefore, the thresholds 𝛿i are not
so tightly chosen such that sound events that have to travel a longer distance to a microphone are still detected. The
corresponding thresholds are equal to the “sensitive” thresholds from the single channel classifier.

The features di that use all microphones jointly are calculated by

di =

{(∑c
𝑗=1 maxl∈w𝑓i𝑗(l)

)
∕c if i ∈ {1, 2, 3}(∑c

𝑗=1 minl∈w𝑓i𝑗(l)
)
∕c if i ∈ {4, 5, 6}.

(12)

TABLE 2 Overview of the threshold values of
the damage detection algorithm using all
microphones

Feature Threshold Upper or lower threshold Threshold value
Power d1 𝛿1m lower 8.8 · 10−8

Power d1j 𝛿1 lower 3.6 · 10−8

Power HP d2 𝛿2m lower 8.2 · 10−9

Power HP d2j 𝛿2 lower 2.3 · 10−9

Power increase d3 𝛿3m lower 4.7 · 10−9

Power increase d3j 𝛿3 lower 1.2 · 10−9

Spectral flatness d4 𝛿4m upper 0.21
Spectral flatness d4j 𝛿4 upper 0.54
Spectral shift d5 𝛿5m upper −310
Spectral shift d5j 𝛿5 upper −36
Power decrease d6 𝛿6m upper −7.9 · 10−11

Power decrease d6j 𝛿6 upper −1.9 · 10−11
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The features f in every channel are summed up and divided by the number of microphones c. The features di are used
to check all microphone signals jointly. The thresholds 𝛿im for the features di are chosen more tightly than the threshold
𝛿i. Nevertheless, the features dij that check every signal channel are also needed, since it is possible that a small irrelevant
damage sound occurs very close to one microphone, which provided a great value of di where only one microphone signal
contributes to di.

The set of threshold parameters for the multiple channel classifier can be found in Table 2. Like for the single channel
classifier, the thresholds of the power features and power increase feature are dependent on the representation of 0 dBfs,
which is here 134 dBspl. All signals were normalized according to this. The detection decisions are

1. Power Feature: It is assumed that a relevant damage emits high signal power. The features values d1j are checked if
they are higher than the threshold 𝛿1 for all j microphone signals, and the feature d1 is also checked if it is higher
than the threshold 𝛿1m.

2. Power HP Feature: A relevant damage should also emit high signal power in the higher frequency range. Therefore,
the values of the features d2j should be higher than the threshold 𝛿2. The feature d2 should also be greater than the
threshold 𝛿2m.

3. Power Increase Feature: The third criteria test if there is a sufficient increase in power, which indicates the beginning
of an impulse signal. The values of the features d3j should be higher than the threshold 𝛿3. The feature d3 should
also be greater than the threshold 𝛿3m

4. Spectral Flatness: The impulse sound is exponentially increasing towards higher frequencies, which results in a
lower spectral flatness value. The features values d4j are checked if they are lower than the threshold 𝛿4 for all j
microphone signals. The feature d4 should also be lower than the threshold 𝛿4m

5. Spectral Shift: Damage sounds shift the spectral centroid towards lower frequencies. Therefore, features values d5j
are checked if they are lower than the threshold 𝛿5 for all j microphone signals. The feature d5 should also be lower
than the threshold 𝛿5m

6. Power Decay: Damage sounds should provide a power decrease overtime. The value of the features d6j should be
lower than the threshold 𝛿6. The feature d6 should also be lower than the threshold 𝛿6m

If all criteria are met, a damage event is indicated for this time step. If there is no time gap between two or more
detections, these detections are combined to one detection. In Figures 2 and 3, this part is called combiner.

2.5 Damage significance estimation
If a detection is indicated, the significance of the damage is estimated as follows: the feature value d2 is used, which is
the sum of the maximum Power HP features in the time window. This measure corresponds with the observed damage
significance. As mentioned, the assumption is backed up by a lot of publications dealing with AE energy and failure
modes like.23 We also tried to use the feature d1 that uses also the low frequency content of the damage sounds, but we
did not get as good results. This might be due to the higher environmental noise level in this frequency range. We tried to
normalize the value according to our observations in a fatigue test, which is described in Section 3. The value one is here,
the lowest relevant damage which was observed. This normalization might be a starting point for further investigations.

3 ROTOR BLADE FATIGUE TEST

A test campaign including an edgewise fatigue test with a 34-m rotor blade was performed. The fatigue test aims to
simulate the long-time stress of the blade in a relatively short time period, since it is infeasible to provoke damage of an
operating full-scale rotor blade in regards of costs and time consumption. In the fatigue test, the blade is mounted with
the root in a test block, and force is induced over one load frame that is mounted at the blade (Figure 5). The blade is
excited near its first eigenfrequency so that the stress is distributed over the whole blade. The procedure is similar to the
fatigue test for blade certification, which is described in detail in.28 One difference is the load that was increased step by
step to provoke damage of the blade. The other difference is that at least one full visual inspection was done everyday.
The coating of the blade at the trailing edge was removed before the test in order to have better inspection possibilities
of this area. One challenge of a full-scale rotor blade test is finding all damages that occur within each test period. The
reference method here is a visual inspection, which has limitations in reliability and accuracy. Especially, small damages
can easily be overseen or occur in parts which can not be inspected. In our case, the coating additionally prevented an
accurate outside inspection of other parts than the trailing edge.
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For the inspection, we also used a thermal camera. With the camera, we easily found parts where more stress in the
rotor blade occurred. However, they gave no obvious additional hints of damage locations.

3.1 Measurement set-up
For our method, three optical microphones were installed inside the blade according to Figure 6. The microphones were
mounted orthogonal on the spars of the blade. Damping spiders were used for lowering the influence of vibrations induced
into the microphone. The directionality of all microphones is specified as omnidirectional. During the test, the audio data
were recorded nonstop with 96-kHz sampling rate and 24 bit precision. To monitor the blade and for gaining additional
measurement data, strain gauges, accelerometers in different frequency domains, and velocity sensors were used.

3.2 Observations of the fatigue test
In Table 3, a summary of the fatigue test and all documented damages are shown. Here ,100 % load is the calculated load at
which the blade should collapse given one million cycles. During the first part of the rotor blade test, a lot of insignificant
damages occurred. These small damages were glue cracks of overflowed glue at the trailing edge, small delaminations,
small cracks of the blade coating, small inner cracks, and small surface cracks of the first layers. Some small pieces of
the matrix of the outer layers were detached. We assume that none of these damages were relevant for the integrity of
the structure since the sizes were small-like delaminations with a surface less than 8 cm2, and the other characteristics
of the damages also indicate a low significance, for example, cracks were only present in the first one or two layers of
parts with many layers. The only structural relevant damage occurred at the second run with 170% load. The damage can
be assigned to a narrow time span. Two consecutive loud cracking sounds occurred during the test Step 11b as well as a
sudden decrease at some of the strain gauges that were used to monitor the test, and the test was stopped immediately. The
crack was located at the length of about 6.25 m measured from the root of the blade. The continuous crack was present in
all layers of the trailing edge and affected therefore the suction and pressure side. The crack length was at the beginning
about 44 cm on both sides. There was a crack side arm on the pressure side that did not affect all layers. It had a length
of about 7 cm. Since there was a visual inspection before and after test Step 11b, there are two possible scenarios for what
happened. First, the whole damage occurred during the event, which leads to stopping the test, or second, a damage,
which occurred earlier, was greatly increased within this event. According to the results of our damage detection system,
this second scenario is much more likely. The fatigue test was continued with lower load to increase the crack. At the end
of the fatigue test, the length of crack propagation in total was about 29.1 cm (adding the crack propagation of the three
crack arms).

The three microphone signals were manually labelled. All cracking sounds were marked by the time of occurrence and
by the number of microphones where the signals can be found. There are seven damage sounds with high sound pressure
levels in all three microphone signals. There are two sounds in test Step 11b before the relevant damage. The cause of these
events is likely an early damage stage of the continuous crack of the trailing edge. Two consecutive cracking sounds that
have the highest power of all damage sounds can be associated with the occurrence of the continuous crack. All sounds

FIGURE 5 Picture of the rotor blade fatigue test that was
conducted at Fraunhofer Institute for Wind Energy and Energy
System Technology



KRAUSE AND OSTERMANN 11 of 15

FIGURE 6 Principle drawing of the rotor blade measurements set-up of the fatigue test. At 6.25 m, the trailing edge crack occurred

Step Load Cycles Visual inspection Crack sounds Crack sounds
high power low power

1 70 94k 29 Insignificant damages 0 4
2 76 327k 20 Insignificant damages 0 0
3 81 94k 18 Insignificant damages 0 0
4 90 95k 28 Insignificant damages 0 0
5 96 103k 15 Insignificant damages 0 1
6 105 46k 2 Insignificant damages 0 1
7 110 278k 36 Insignificant damages 0 0
8 120 70k 36 Insignificant damages 0 4
9 130 13k 23 Insignificant damages 0 0

10 140 71k 0 3
11a 170 2k 6 Insignificant damages 0 133
11b 170 3k Damage 44 cm 4 172
12 50 4k Damage propagation 0 0
13 70 4k 0.3 cm 0 1
14 90 2k 0 0
15 105 10k Damage propagation 8.9 cm 1 4
16 115 4k Damage propagation 2.2 cm 0 0
17 130 4k Damage propagation 17.7 cm 2 21

TABLE 3 Overview of the fatigue test

that occur after Step 11b are with high probability caused by crack propagation, since there were no other damages found
in these time slots during the sight inspections.

There were also a lot of cracking sounds that have very low power and can only be found in one or two microphone
signals. We tried to match these cracking sounds with the insignificant damages that were found during the visual inspec-
tion, but we did not find a valid relation between damages or damage types and the low power sound signals. In a few time
slots, insignificant damages occurred near the microphone, and a cracking sound with lower power was found. But there
were also cases where insignificant damage near a microphone occurred, but no cracking sound in the microphone data
was found. More tests and research are needed to gain insides into the connection of very small damages and cracking
sounds.

However, the signals with high power only occurred in test slots where relevant damage happened. In20 we calculated
the position of the sounds, and the localization results confirm the assumption that the source of all seven high power
cracking sounds is the continuous crack. In addition, the differences in the three microphone signals in signal power and
high frequency content also support the assumption. So these high power sounds are the target sounds to detect with the
damage detection algorithm.

4 MEASUREMENTS IN AN OPERATING WIND TURBINE BLADE

For testing the damage detection approach in a real-world scenario, we developed and installed a measuring system in
an operating wind turbine. It was installed in one of the 50.8-m long rotor blades of a 3.4-MW class wind turbine. The
turbine is located in Bremen, Germany.
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4.1 Measurement set-up of the operational measurements
The airborne sound measurements system consisted of three optical microphones that were installed inside the blade
according to Figure 7. Here, the two microphones face the leading edge, since on this side, a greater distance between the
microphones was feasible. The electric part of the measurement system was installed near the intersection of the hub and
the root of the blade. The system consisted of a computer, electronic parts of the optical microphones, an audio interface,
and an exchangeable storage. The audio data were recorded with 24 bit precision and 96-kHz sampling frequency. The
files were losslessly coded with the flac audio codec. A global system for mobile device was used for controlling the system
remotely.

4.2 Observations of the operational measurements
We designed the measuring system for nonstop recording, since it is important to get data covering as many combinations
of boundary conditions as possible. All in all, we managed to record about 1 year of audio signals. All weather events
that typically occur in a year wise German seasonal cycle were recorded. These include heavy weather conditions like
lightning, thunder, harsh wind, rain, hail, and snow. During the process of semi manually evaluation of the recordings,
some events were found, which might be of interest like lightning strike sounds and one event which is a potential collision
with a bird. No documented damage event occurred during the recording time period; therefore, the damage detection
algorithm should indicate no detection.

5 RESULTS OF THE DAMAGE DETECTION ALGORITHM

The recordings of the rotor blade fatigue test and the recordings from the operating wind turbine were both processed
with the damage detection algorithm described in Section 2.

First, the results are presented for the algorithm that uses a single microphone channel to detect rotor blade damage.
The two sets of parameters (sensitive and insensitive) from Table 1 were used to process the fatigue test data and the
operational data. The results are displayed in Table 4. The overall performance when using one single microphone is not
very convincing especially in the operational dataset. Here, plenty false positive detections were made. A lot of the false
positive detections in the operational recordings occur in time periods where heavy rain was falling. The results of the
damage detection of the fatigue test are significantly better, but the performance with some false positive and some missed
detections is not very convincing either. In the fatigue test, most of the false alarms occur during test slots, with high load
and therefore high operational noise.

In a following step, the algorithm that uses multiple microphone signals combined was tested. It was also tested with the
whole dataset of the fatigue test and the whole operational dataset. We achieved very good results using all microphone

FIGURE 7 Principle drawing
of the rotor blade measurements
set-up in the operating rotor
blade

TABLE 4 Results of the audio damage
detection algorithm using a single microphone
for the fatigue test and the operational dataset

Fatigue Operation
FP rate per day TP rate FP rate per day TP rate

Microphone 1, sensitive ∼ 1, 800 7/7 ∼ 3, 100 —
Microphone 2, sensitive ∼ 330 7/7 ∼ 4, 200 —
Microphone 3, sensitive ∼ 1, 000 7/7 ∼ 1, 000 —
Microphone 1, insensitive 2.5 7/7 ∼ 100 —
Microphone 2, insensitive. 0.1 2/7 ∼ 400 —
Microphone 3, insensitive 1.7 4/7 ∼ 35 —

Note. FP is the amount of false positive detections and TP rate the rate of true positive detections. The
threshold parameter “sensitive” and “insensitive” from Table 1 are used.
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signals combined. The thresholds from Table 2 are used. There is an adequate margin of all these parameters in which
the results will not change, which indicates that this set of parameters might generalize. The results are shown in Table 5.
The algorithm provides a perfect detection result detecting all damage sound events with no false alarms in both datasets.
According to the evaluation of the fatigue test, the algorithm detects the continuous crack, two events that are likely the
damage in an early stage and three events where the damage was increased. On the operational dataset, also no false
detections were made. In Table 6 ,the amount of possible detections after every classification stage is shown for the fatigue
test. A stage is here, one threshold decision according to the threshold of Table 2. Here, a detection indicates a damage
event in a time slot of 10.7 ms. For Table 6, continuous detections were not grouped to single events.

We also tested a version of the algorithm where the maximum frequency of the input signal was reduced to 20 kHz
instead of 35 kHz. The goal is to use the frequency range, which humans can perceive, and to evaluate the importance of
the ultrasonic frequency band. The threshold values of the classifier were manually adjusted to the lower bandwidth of
the signal. These thresholds can be found in the Appendix.

With the reduced frequency range, a perfect classification during the fatigue test was also achieved. In the recordings of
the operating wind turbine, the algorithm provides one false positive detection. It was indicated in a part of the recording
where heavy rain was falling and a thunder of a lightning strike occurred. The small theoretical benefits of using the
extended frequency bandwidth can be shown here in the practical application, since it provides a perfect classification
result during the fatigue test.

In the next step, the damage relevance was calculated. In Table 7, the estimated significance of all damage events is
shown. There are not many damage events in the dataset, and additionally, the ground truth from the visual inspection
was done after every fatigue test step,and therefore, not every single damage sound can be associated to a specific crack
length. It is hard to say if the approach is in general valid, but nevertheless, the estimation shows good correspondence
with the observed damage sizes of the visual inspections.

Fatigue Operation
False positive True positive rate False positive True positive rate
0 7/7 0 -

TABLE 5 Results of the audio damage detection
algorithm using three microphones jointly for the
fatigue test and the operational dataset

Stage Number of raw detections
Before Cl. 7.8 · 107

1 2,351,867
2 1,822,183
3 2,725
4 616
5 201
6 192
7 119
8 110
9 76
10 75
11 75
12 74

TABLE 6 Number of detections after the classification stages for the fatigue test data
(multiple detections are not combined here)

Event Damage description Damage length Relevance value
1 55 min before damage 44 cm 1.26
2 1 min before damage 4.04
3 Structural damage 16.83
4 Structural damage 21.03
5 Damage propagation 8.9 cm 1.00
6 Damage propagation 17.7 cm 1.50
7 Damage propagation 0.09

Note. The damage length is not always associated to one single sound event due to the
visual inspection.

TABLE 7 Estimated damage relevance by the algorithm of
the detected damage events



14 of 15 KRAUSE AND OSTERMANN

6 CONCLUSION

In this paper, an AE method using airborne sound for damage detection of wind turbine rotor blades was presented.
The number of three sensors is significantly lower compared to standard AE approaches. The key aspect is the damage
detection algorithm, which uses airborne AE in lower frequency bands below 35 kHz, and handles environmental noise,
which is also present in this frequency range. Six audio features that represent characteristics of audible cracking sounds
are calculated for three microphone signals. These features are jointly used to detect the damage sounds. The algorithm
detects relevant damage events of a full-scale fatigue test without false detections. In the next step, the real-time operating
algorithm estimates the significance of the detected damages with a good correspondence to the observed damage events.
In 1 year data of an operational 3.4-MW wind turbine blade, the algorithm indicates no false detections.

Since it is very expensive and time consuming to get meaningful data for rotor blade damage detection, there is still a
level of uncertainty on how this method will perform in different rotor blade monitoring scenarios. Nevertheless, the very
good results will hopefully translate in future rotor blade monitoring research and applications. Furthermore, it indicates
the general benefits of using the lower AE frequency range with signal processing techniques.
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APPENDIX A: THRESHOLDS MULTICHANNEL CLASSIFIER 20KHZ

The thresholds for the multichannel classifier from Section 2.4 were adjusted according to a reduced maximum frequency
of the audio data. The maximum frequency of 20 kHz is chosen (34 kHz in Section 2.4), which is approximately the
hearing threshold of humans. In Table A1, the multichannel classification thresholds are displayed.

Feature Threshold Upper or lower threshold Threshold value
d1 𝛿1m lower 7.4 · 10−9

d1j 𝛿1 lower 2.7 · 10−9

d2 𝛿2m lower 9.2 · 10−10

d2j 𝛿2 lower 4.2 · 10−10

d3 𝛿3m lower 7.8 · 10−10

d3j 𝛿3 lower 9.1 · 10−11

d4 𝛿4m upper 0.35
d4j 𝛿4 upper 0.55
d5 𝛿5m upper −14
d5j 𝛿5 upper −5
d6 𝛿6m upper −1.3 · 10−10

d6j 𝛿6 upper −6.1 · 10−12

TABLE A1 Overview of the threshold values of the
damage detection algorithm using all microphones for the
maximum frequency of the audio signal of 20 kHz
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