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Abstract. This work deals with the conducted susceptibility
of nonlinear analog circuits with respect to substrate noise.
The substrate coupling mechanism is modeled by a passive
three-terminal network that is obtained by means of the finite
element method with a subsequently performed model order
reduction. Applying this substrate model to the bulk terminal
of MOS transistors in integrated analog circuits, it is possible
to examine the influence of substrate noise on the circuit’s
functionality. By means of a block-oriented approach, ana-
lytic expressions for the output behavior of the circuits are
found. The utilized multi-input Wiener model separates the
linear dynamic from the nonlinear static circuit properties.
Due to this separation the frequency response of both sig-
nals, i.e. input signal and substrate noise, respectively, can be
identified, and hence, the frequency range in which the cir-
cuit is most susceptible to substrate noise. Since the nonlinear
static behavior of each MOS transistor depends on two sig-
nals, truncated multivariate Taylor series expansions of the
nonlinear elements are performed on the basis of the EKV
model description (Enz et al., 1995). The proposed modeling
is illustrated by a simple example.

1 Introduction

The electromagnetic compatibility (EMC) of electronic sys-
tems and components became the focus of attention in re-
search and development during the last two decades. The
omnipresence of wireless communication systems with high
frequencies caused an increasing electromagnetic pollution
that endanger the proper functionality of sensitive electronic
systems. In this consideration, the role of integrated circuits
(IC) which are the core elements of electronic systems can
be source and victim of electromagnetic interference (EMI).
As source, the ICs radiate or conduct electromagnetic signals
that are mainly caused by simultaneous switching noise to
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Fig. 1.Substrate coupling in mixed-signal ICs (Bronckers, 2009).

other ICs. In addition to this external EMI, internal chip cou-
pling via the supply network or the shared substrate exists
in mixed-signal ICs (cf. Fig.1). There are several guidelines
for IC designers in order to reduce the external and internal
coupling, e.g. with decoupling capacitors (Dhia et al., 2006).
The impact of substrate noise coupling can be reduced by so-
calledp+ guard rings that isolate the active area of NMOS
transistors (PMOS are isolated by the n-well) by draining the
noise to the off-chip ground (Bronckers, 2009). However,
this technique does not attenuate the noise perfectly. Thus,
time-varying bulk potentials cause a shift of the DC oper-
ating point. Hence, the analog part of mixed-signal ICs is
more susceptible to substrate noise than the digital part due
to its continuous dynamic range. As a result of interfering
signals, intermodulation products in the output spectrum of
the nonlinear analog circuits emerge. In order to identify cir-
cuit parameters that have direct impact on the emerging in-
termodulation products, methods for distortion analysis have
to be applied. At first, the substrate coupling mechanism is
examined in the following section. The resulting model is
applied to an exemplary circuit that is evaluated by means of
the block-model presented in Sect.3.
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Fig. 2.Three-terminal substrate model (Lin et al., 2009).

2 Modeling the substrate coupling

In mixed-signal ICs, the simultaneous switching noise which
is the main cause for electromagnetic interference influences
the more sensitive analog circuitry. The noise generated by
the switching of the digital gates propagates via the shared
substrate and impacts the analog active devices.Bronckers
(2009) examines the noise coupling mechanism, describes
model approaches and introduces possible solutions for the
reduction of unwanted effects due to the substrate noise. As
depicted in Fig.1, the substrate possesses resistive and capac-
itive properties that are modeled by a lumped network. An
approximation to the electromagnetic field in the substrate
can be found using this lumped network by means of FEM.
However, a more practical substrate model is required for fur-
ther analysis that yield analytic expressions. Thus, exploiting
a model order reduction technique leads to a reducedthree-
terminal substrate modelthat consists of three delta con-
nected impedances (cf. Fig.2). Depending on the regarded
frequency range, the three impedances are either purely re-
sistive or parallel-connected resistive and capacitive elements
(Lin et al., 2009). In the following, this three-terminal model
is used in combination with a block model approach for dis-
tortion analysis of analog circuits that is reviewed in the next
section.

3 Block oriented EMI analysis

Due to electromagnetic interference (EMI) the functional-
ity of electronic circuits can be distorted significantly de-
pending on the disturbing signal’s frequency and the mag-
nitude. In order to identify circuit parameter that influence
the susceptibility to EMI analytical expressions for the un-
wanted intermodulation products that lie in the signal band
are necessary. In general, these analytic expressions can be
found by extending the known distortion analysis methods
(e.g.Wambacq and Sansen(1998)) with the distortion as
additional input signal. The most commonly-used method
is a truncated functional series expansion. If nonlinear dy-
namic systems are regarded, the only possible functional se-
ries is the well-knownVolterra series. However, even in a
multi-tone single input case the so-calledVolterra kernels
(Weiner and Spina, 1980) are hard to calculate. Hence, for
a general multi-input distortion analysis a block-oriented ap-
proach is used to model each stage of a multi-stage circuit.

Nonlinear
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Fig. 3.Modeling the disturbance as independent sources.
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Fig. 4.Block model for distortion analysis (Stegemann et al., 2012).

This approach is based on the classical power series ap-
proach for weakly nonlinear single input systems presented
e.g. inWeiner and Spina(1980). Moreover, the EMI analy-
sis of nonlinear analog circuits using the known methods for
distortion analysis requires that the electromagnetic distur-
bance can be reduced to a network problem. Thus, the dis-
turbing signals have to be represented by circuit elements,
e.g. independent voltage or current sources applied to an ar-
bitrary circuit branch (cf. Fig.3). As a result, the nominal and
the disturbing signal possess their own transfer characteristic
with respect to the circuit’s output. Hence, a Wiener model
approach with multiple input paths is chosen that separates
the system into purely linear dynamic blocks and a static non-
linear multi-input block (Stegemann et al., 2012). This block
approach is shown in Fig.4, whereinxin andxdis are the gen-
eralized input and disturbing signal andHin andHdis the cor-
responding purely linear dynamic transfer characteristic, re-
spectively. The multi-input blockF(x̃in, x̃dis) represents the
static nonlinear behavior of the analog circuit by which inter-
modulation products between the linearly distorted signals
x̃in and x̃dis emerge in the spectrum of the circuit’s output
signaly(t). The following sections review the methods to ob-
tain analytic expressions for the different blocks presented in
Stegemann et al.(2012) and reveal problems in adapting the
method for determining the static nonlinearityF(x̃in, x̃dis) for
the circumstance of a disturbed substrate.
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3.1 Linear dynamic block

The linear dynamic blocksHin andHdis are completely de-
scribed by their frequency domain transfer functions

Hin(s)=
X̃in(s)

Xin(s)
and Hdis(s)=

X̃dis(s)

Xdis(s)
. (1)

For the calculation of analytical expressions of these trans-
fer functions the modified nodal analysis (MNA) (Vlach and
Singhal, 1983) is applied that results in the frequency domain
to the network description

(sC + G)Z(s)= BX(s). (2)

The matricesC andG includes the matrix stamps of the dy-
namic (capacitances and inductances) and the resistive el-
ements, respectively. The vectorZ(s) contains the Laplace
transforms of the unknown node potentials and currents
of the inductances and voltage sources. The right hand
side is the product of the matrixB and the vectorX(s)=

(Xin(s),Xdis(s))
T that denotes the frequency description of

the signalsxin(t) andxdis(t). The former maps the indepen-
dent sources to their corresponding node voltage or branch
current (depending on the source type ofxin(t) andxdis(t)).
The output signals of the linear transfer blocks are obtained
by the product of the vectorZ and the mapping matrixL :[
X̃in(s)

X̃dis(s)

]
= LZ (s). (3)

Regarding the rows of Eq. (3) including the solution of the
linear system of equations (2) separately leads to the both
transfer functions

Hin(s)=l1 [sC + G]−1b1 (4)

Hdis(s)=l2 [sC + G]−1b2, (5)

wherein l1, l2 and b1, b2 denote the first and second row
vector ofL and column vector ofB, respectively. Applying
these transfer functions to the harmonic Q-tone input signals
xin, xdis result in (Weiner and Spina, 1980)

x̃(t)=

Q∑
q=1

x̂q |H(fq)|cos
(
2πfq t +2q +ψH (fq)

)
. (6)

Therein,x̂q and2q denote amplitude and phase of theq th

tone of the initial signalx(t) andψH (fq) the phase of the
transfer function at the frequencyfq .

3.2 Static nonlinear block

The multivariate polynomial blockF(x̃in, x̃dis) represents the
static nonlinear behavior of the circuit, i.e. without any mem-
ory effects of dynamic elements such as capacitances or in-
ductances.

In Stegemann et al.(2012), it was presented how
the method of nonlinear current sources (cf. e.g.Schetzen
(1985)) for voltage controlled nonlinear circuit elements
i = fg(u) can be used for theN th order approximation of
F(x̃in, x̃dis). Therein, the dependencyfg of each nonlinear
element was assumed to be analytic. Hence, the functions
were approximated by a truncated power series

i(t)= fg(u)≈

N∑
n=1

anu
n(t), (7)

wherein the factorsan denote the nonlinearity coefficients of
the nonlinear element of the ordern andu the controlling in-
cremental voltage. Applying the iterative method of nonlin-
ear current sources, the MNA leads to systems of equations,
each one that corresponds to the ordern. Thereby, the ex-
citation vector of thenth order system only depends on the
solutions of the systems of ordersm< n. Hence, an analytic
approximation of the orderN for the nonlinear output signal
y(t) is calculated successively by

yN (t)=

N∑
i=0

N−i∑
j=0

dij x̃
i
in(t)x̃

j

dis(t). (8)

Rearranging this expression leads to a description with terms
that depend either only oñxin or x̃dis and mixed terms of both
signals

yN (t)=d00+

N∑
i=1

di0x̃
i
in(t)+

N∑
j=1

d0j x̃
j

dis(t)+

+

N∑
l=2

l−1∑
k=1

d(l−k)k x̃
l−k
in (t)x̃kdis(t). (9)

However, in the present problem, the nonlinear elements
depend on more than one controlling variable, i.e.i =

fg(u,v, ...) due to the time-varying bulk potential. Hence,
the approach using Eq. (7) is not applicable. Instead, another
description is necessary that considers the multi-dimensional
dependency such as the multivariate Taylor series (Wambacq
and Sansen, 1998) at an operating point(u0,v0, ...) that is
given for the two-dimensional case by

i(u,v)=

∞∑
n=0

1

n!

(
∂

∂u
1u+

∂

∂v
1v

)n
f (u0,v0) (10)

=f (u0,v0)+1u
∂f

∂u

∣∣∣∣
u0,v0

+1v
∂f

∂v

∣∣∣∣
u0,v0

+

+
1

2

(
fuu1u

2
+ 2fuv1u1v+ fvv1v

2
)

+ ..

Therein,1u= u−u0,1v = v−v0 denote the deviation from

the operating point(u0,v0, ...) andfuu =
∂2f

∂u2

∣∣∣
u0,v0

etc. the

partial derivatives. In the following, the influence of substrate
noise on a single transistor stage is examined by the use of
the proposed model (Fig.4).
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Fig. 5.Common source amplifier stage with gate voltage divider.

4 Example

In the following, the proposed method is examined by a sim-
ple and hence vivid example. The considered circuit is the
common source stage in Fig.5. The MOS transistor is dis-
turbed by the substrate noise that is modeled as indepen-
dent current source. The noise couples into the bulk node via
the examined three-terminal substrate model (cf. Fig.2). The
gate-source voltage of the MOSFET is set by a gate voltage
divider.

4.1 Characterizing the linear dynamic block

The characterization of the linear transfer functions requires
an equivalent linear small signal model of the circuit (cf.
Fig. 6). The transistor is modeled as voltage controlled cur-
rent source depending on the gate-bulk and source-bulk volt-
age and capacitancesCgb andCsb. Further elements such as
the drain-gate capacitance are neglected. Hence, the individ-
ual blocks can be analyzed separately (Weiner and Spina,
1980). The controlling voltagesugb andusb are influenced
by both signals,uin(t) and idis(t). The approach shown in
Sect.3.1 leads to an analytic description of

Hin(s)=
Ũgs(s)

Uin(s)

∣∣∣∣∣
Idis(s)=0

, (11)

Hdis(s)=
Ũsb(s)

Idis(s)

∣∣∣∣∣
Uin(s)=0

(12)

in dependency of the network elements. Fig.7 shows the fre-
quency responses ofHin(s) andHdis(s) of the analytic ex-
pressions. The input transfer function exhibits a bandpass
characteristic and the distortion transfer function low-pass
characteristic. Due to its impedance character,Hdis(s) has
a gain of approximately 20dB. Thus, the frequency range of
largest susceptibility can be identified which is in the present
example up to 100kHz wherein the nominal input signal is
attenuated and the distortion signal is not. The input signals
of the nonlinear block̃uin and ũdis, respectively, are deter-
mined using (6) assuming only periodic signals that can be
expanded into a Fourier series.

Fig. 6.Small signal model of the disturbed common source stage.
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Fig. 7.Frequency response ofHin andHdis.

4.2 Characterizing the nonlinear static block

Since the nonlinear block only represents the static behavior
of the circuit, the capacitances are neglected and the regarded
transconductanceiD = f (ũin, ũdis) is controlled by the pre-
viously determined signals (cf. Fig.8). As an analytic ap-
proach to the static dependency, the drain current is assumed
to be the forward current of the EKV model (Enz et al., 1995)

ID(Ugb,Usb)≈

[
ln

(
1+ e

VP−Usb
2Ut

)]
. (13)

Here,Ut =
kt
q

denotes the thermal voltage andVP the pinch-
off voltage given by

VP = Ugb−Vth0− γ

[√
Ugb−Vth0+

(√
90 +

γ

2

)2

−

(√
90 +

γ

2

)]
. (14)

with the extrapolated threshold voltageVth0, the body effect
factorγ and the surface potential for strong inversion at equi-
librium 90. Transferring the static expression for the drain
current (13) to the multivariate Taylor series (10), an ana-
lytic expression for the time-varying drain current in depen-
dency of the intermediate signals withugb = ũin + ũdis and

Adv. Radio Sci., 11, 171–175, 2013 www.adv-radio-sci.net/11/171/2013/



C. Widemann et al.: Analytic investigations on the susceptibility of nonlinear circuits 175

D

S

G

B

Fig. 8.Two-dimensional voltage controlled current source.

usb = ũdis can be determined

iDN (t)= f (ũin, ũdis) (15)

=

N∑
m=1

m∑
n=0

(
ũnin(t)

n!

ũm−n
dis

(m− n)!

∂miD(ũin, ũdis)

∂ũnin∂ũ
m−n
dis

∣∣∣∣∣
OP

)
.

As a result, a dependency of the output current on the in-
put signals and the circuit parameters that influence the Tay-
lor coefficients and the linear transfer functions is found.
Comparative simulations are accomplished using these ex-
pressions whereby for the use of simplicity the signalsuin(t)

andidis(t) are single tones, respectively. The frequencies are
set tofin = 10kHz andfdis = 3kHz since in this frequency
range the input signaluin(t) is attenuated noticeably. For val-
idation, a comparison between a harmonic balance simula-
tion in Spectre and the analytic expression found by the block
approach is performed, both for amplitudes ofûin = 100mV
and îdis = 25mA. The resulting output spectra for terms up
to the third order are shown in Fig.9 and reveal a very good
match for the block model approach.

5 Conclusions

In this contribution, an approach for the susceptibility anal-
ysis of nonlinear analog circuits due to substrate noise has
been presented. The coupling mechanism of digitally gen-
erated noise has been modeled as a three-terminal network
excited by an independent current source. This model has
been used in combination with a multi-input Wiener model
proposed inStegemann et al.(2012) in order to get an ana-
lytic approximation of the input-output characteristic of the
disturbed system. Hence, circuit designers are equipped with
equations for the estimation of most crucially influencing pa-
rameter. In addition, the frequency range in which the circuits
are the most susceptible to distortion signals can be found.
The block-oriented approach is based on classic methods for
the distortion analysis, e.g.Wambacq and Sansen(1998). It
has been discussed how the blocks can be determined in or-
der to examine the influence on a single transistor. Neverthe-
less, it has been noted that the MNA based method presented
in Stegemann et al.(2012) cannot be adopted for complex
circuits due to the multivariate power series approach for
each nonlinear element. Thus, future work will deal with this
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Fig. 9.Spectrum of the output voltageuout.

drawback. One possible approach could be the use of one-
dimensional power series expansions with the consideration
of time-variant operating points due to the substrate noise.
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