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Abstract

Background: Despite the significant contribution of transcriptomics to the fields of biological and biomedical
research, interpreting long lists of significantly differentially expressed genes remains a challenging step in the analysis
process. Gene set enrichment analysis is a standard approach for summarizing differentially expressed genes into
pathways or other gene groupings. Here, we explore an alternative approach to utilizing gene sets from curated
databases. We examine the method of deriving custom gene sets which may be relevant to a given experiment using
reference data sets from previous transcriptomics studies. We call these data-derived gene sets, “gene signatures” for
the biological process tested in the previous study. We focus on the feasibility of this approach in analyzing
immune-related processes, which are complicated in their nature but play an important role in the medical research.

Results: We evaluate several statistical approaches to detecting the activity of a gene signature in a target data set.
We compare the performance of the data-derived gene signature approach with comparable GO term gene sets
across all of the statistical tests. A total of 61 differential expression comparisons generated from 26 transcriptome
experiments were included in the analysis. These experiments covered eight immunological processes in eight types
of leukocytes. The data-derived signatures were used to detect the presence of immunological processes in the test
data with modest accuracy (AUC = 0.67). The performance for GO and literature based gene sets was worse (AUC =
0.59). Both approaches were plagued by poor specificity.

Conclusions: When investigators seek to test specific hypotheses, the data-derived signature approach can perform
as well, if not better than standard gene-set based approaches for immunological signatures. Furthermore, the
data-derived signatures can be generated in the cases that well-defined gene sets are lacking from pathway
databases and also offer the opportunity for defining signatures in a cell-type specific manner. However, neither the
data-derived signatures nor standard gene-sets can be demonstrated to reliably provide negative predictions for
negative cases. We conclude that the data-derived signature approach is a useful and sometimes necessary tool, but
analysts should be weary of false positives.
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Background

With the advent of high-throughput sequencing tech-
nology, transcriptome data sets are being generated
on a massive scale. Differential expression analyses
produce long lists of genes, requiring summarization
approaches to allow for the biological interpretation of
the results. Gene Set Enrichment Analysis (GSEA) [1],
Over-Representation Analysis (ORA) and Gene Set Anal-
ysis (GSA, also referred to as Pathway Analysis) have been
developed to this end. These methods rely on catalogues
of gene sets which are associated with various biological
processes, relying either on literature or high throughput
experimentation. By applying statistics such as the Mann-
Whitney-Wilcoxon Test, Fisher’s Exact Test [2] or the
Kolmogorov-Smirnov statistic [1], these methods enable
one to interpret the relevance of a biological process in
a given experiment. The curated gene sets are archived
in a range of biological pathway databases including the
Gene Ontology (GO) [3], the KEGG (Kyoto Encyclope-
dia of Genes and Genomes) Pathway database [4] and The
Reactome Knowledgebase [5].

Although GSEA, ORA and GSA have been widely
adopted to interpret the results of transcriptomics studies,
their value is limited by the number of curated gene sets
available to the researchers. In many cases, researchers
may fail to find curated gene sets from such databases
best describing the complex immunological process they
are most interested in. In other cases, curated gene sets
may reflect cell-type specificity, and could involve mul-
tiple cell types. This creates a limitation in applicability
to expression based studies in which a single cell type is
profiled.

Meanwhile, the construction of repositories for archiv-
ing transcriptomic data sets enables one to access
high-quality data generated by previous studies. Gene
Expression Omnibus (GEO) from the National Center for
Biotechnology Information (NCBI) [6] and ArrayExpress
from European Molecular Biology Laboratory (EMBL)
[7, 8] are two prominent examples among many. Given
this wealth of resources, we examine a data-derived signa-
tures approach. We evaluated the simple methodology of
testing whether a given biological process is activated in a
target data set by deriving a relevant gene signature from a
previous transcriptomics experiment and testing the pres-
ence of that signature in the target data set. Deriving gene
sets directly from previous transcriptomics experiments
has several precedents, for example portions of MSigDB
[9, 10]. Here, we focus our analysis in the context of
immune cells. We evaluate several statistical approaches
to detecting the activity of a gene signature in a target data
set, some of which are previously used in gene set enrich-
ment analysis such as Wilcoxon Test, and Fisher Exact
Test, as well as a novel expression concordance score test.
We compare the performance of the data-derived gene
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signature approach with comparable GO term gene sets
across all of the statistical tests.

Methods

All the tests in this section were processed using R (Ver-
sion 3.2.3) on platform x86_64-pc-linux-gnu (64-bit) [11]
embedded in RStudio (Version 1.1.463) [12].

Data source

We downloaded 25 immune-related Series (GSE) from
GEO repository in the Series Matrix File form, 22 of which
are describing significantly activated biological processes
and will be used for generation of the signatures or true
positive targets for validation. The remaining three were
used as negative targets for assessing specificity. T Nikolic
et al. supplied the analyzed data of their publication [13],
which systematically profiled the differentially expressed
genes (DEGs) between tolerogenic dendritic cells (tol-
DCs) and non-modulated mature inflammatory dendritic
cells (mDCs). A brief description of each data set is given
in Table 1.

Signature generation

We consider a signature to be a collection of genes whose
expression changes in association with a specific cellular
process. The signatures to be detected were generated by
the following two strategies:

1) Generation of data-derived signature and target
data sets: We downloaded 28 immune-related Series
(GSE) from the GEO repository in the Series Matrix File
form, 25 of which describe activated biological processes.
T Nikolic et al. supplied the analyzed data of their publi-
cation [13], which systematically profiled the differentially
expressed genes (DEGs) between tolerogenic dendritic
cells (tol-DCs) and non-modulated mature inflammatory
dendritic cells (mDCs).

To access specificity, negative target data sets are
required. The main approach we take is to simply consider
for a given immunological process, the target data sets of
the remaining immunological processes in our study to be
negative cases. We also provide an alternative approach to
defining negative cases in which the control samples from
Series GSE101710, GSE110223, and GSE21045 were ran-
domly selected and equally distributed into two different
groups, representing pseudo-phenotypes for differential
expression.

Both the data-derived signatures and target datasets are
based on differential expression (DE) analysis. The Differ-
ential expression of microarray data were analyzed in R
using limma (Version 3.26.9) [40]. The RNA-seq data of
GSE112899, GSE73213, GSE111789 and GSE128027 were
analyzed in R using DESeq?2 package (Version 1.24.0) [41].
P-values of the DE (differential expression) analysis were
corrected for multiple tests using the q-value method [42].
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Table 1 Transcriptomics data sources
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D Experiment design

Experimental Organism

Contributor

tolerogenic_DC Tolerogenic DC

GSE17721 Tolerogenic DC

GSE18921 Tolerogenic DC

GSE5099 Monocytes differentiation
(GSE8286 Monocytes differentiation
GSE111475 B cell activation

GSE116999 B cell activation

GSE51587 B cell activation

GSE54017 B cell activation

GSE29797 T cell activation

GSE112899 T cell activation

GSE60235 T cell activation

GSE73213 T cell activation

GSE111789 Eosinophils cytokine response
GSE112010 Eosinophils cytokine response
GSE128027 Eosinophils cytokine response
GSE104152 Naive to Th17 differentiation
GSE113889 Naive to Th17 differentiation
GSE118974 Naive to Th17 differentiation
GSE140443 Naive to Th17 differentiation
GSE110446 NKILT2

GSE24791 NKILT2

GSE63038 NKILT2

GSE87290 PBMC LPS

GSE22248 PBMC LPS

GSE9916 PBMC LPS

GSE101710 Negative data

GSE110223 Negative data

GSE21045 Negative data

Homo Sapiens
Mus Musculus
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Mus Musculus
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Mus Musculus
Homo Sapiens
Mus Musculus
Homo Sapiens
Homo Sapiens
Mus Musculus
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens
Homo Sapiens

Homo Sapiens

T Nikolic et al. [13]

I Amit et al. [14]

H Torres-Aguilar et al. [15]

FO Martinez et al. [16]

Hliuetal [17]

K Miyawaki et al.

DT Avery et al. [18]

LJBerglund et al. [19]

A Shimabukuro-Vornhagen et al. [20]
Yang Ketal. [21]

Sousa IG et al. [22]

Ye CJetal. [23]

LaMere SA et al. [24, 25]

Khoury P et al. & Gadkari M et al. [26, 27]
Fairfax KA et al. [28]

Nelson RK et al. [29]

Mohammad | et al. [30]

Tangye S et al. (Accession: GSE113889)
Tripathi SK et al. [31]

Gehrmann U et al. (Accession: GSE140443)
Costanzo MC et al. [32]

Campbell AR et al. [33]

de Carvalho EG et al. (Accession: GSE63038)
LinJetal. [34]

Pena OM et al. [35]

Wong HR et al. [36]

Zapata HJ et al. [37]

Vlachavas El et al. [38]

Landolin JM et al. [39]

For each immunological process in our study, we
obtained multiple GEO series, one of which we selected
for signature generation and the remaining experiments
represent the target data sets. We then iterated the tar-
get series, and selected each of them a signature set, such
that each experiment was considered to be a target set and
a signature set at one point. We also assessed the impact
of selecting the “best” experiment as the signature data to
determine whether being selective in choosing the signa-
ture set could be beneficial. Here the “highest quality” is
defined by making a judgment based on the sample size,
platform, and specifics about the experimental design.

2) Selection of curated gene sets: For each of the rel-
evant cellular processes captured by the data-derived sig-
nature, we searched the literature and gene set databases
(GO, KEGQ) for appropriate gene sets. We included a

literature-based tolerogenic DC (dendritic cell) signature
as proposed by C Orabona et al. [43]. No comparable
tolerogenic DC signatures were available in the KEGG
or GO databases. We also merged the annotation list of
GO term Positive Regulation of Monocyte Differentia-
tion (GO:0045657) and Negative Regulation of Monocyte
Differentiation (GO:0045656) as the curated gene set for
Monocyte differentiation and Positive Regulation of B
Cell Activation (GO:0050871) and Negative Regulation
of B Cell Activation (GO:0050869) as the curated gene
set for B cell activation. GO:2000417 Negative Regula-
tion of Eosinophil Migration and GO:2000418 Positive
Regulation of Eosinophil Migration was merged for detec-
tion of the Eosinophil cytokine response. GO:0032824
and GO:0032825 (Negative/Positive Regulation of Natu-
ral Killer Cell Differentiation) together as a merged list
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for NK (natural killer) IL12 (interleukin) stimulation and
G0:0034142 (Toll-Like Receptor 4 Signaling Pathway)
for PBMC (peripheral blood mononuclear cell) to LPS
(lipppolysaccride) response. The curated data set for the
detection of Naive to Th17 differentiation derived from
a merged list of GO:0050868 and GO:0050870 (Nega-
tive/Positive Regulation of T helper-17 cell differentiation)
and T cell activation described by merging the GO anno-
tation of GO:0050868 and GO:0050870 (Negative/Positive
Regulation of T cell activation). The list of curated gene
sets utilized as the signature in this approach is found in
Table 2.

Signature detection

We would like to know whether a cellular process rep-
resented by a signature has been deferentially regulated
in a target experiment. To detect the presence of the sig-
natures in the target data sets, we applied the following
alternative methods:

1) The Mann-Whitney-Wilcoxon Enrichment Test:
We used Mann-Whitney-Wilcoxon Test in the same man-
ner found in the PANTHER [2] webtool. Genes are ranked
by their fold change in the target data set. The test is
then performed between the ranks of the signature genes
versus the ranks of the non-signature genes. P-values
are provided by the wilcox.test() function from R stats
package [44].

2) Fisher’s Exact Overrepresentation Test: The
Fisher’s Exact Test is applied in a comparable fashion to
tool such as PANTHER [2]. The test is based on a contin-
gency table comparing the differential expression status
(DE or not DE) vs the signature status (in signature or not
in signature). A demonstration of the contingency table is

Table 2 Currated gene sets
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available in Table 3 below. P-values were generated by the
fisher.test() function from R stats [44].

3) Correlation Permutation: This method is a quanti-
tative permutation test based on Spearman’s rank correla-
tion. This correlation is calculated for the signature genes
between their ranks in the signature and their ranks in the
target data set based on fold change. In performing per-
mutations, we randomly selected a gene set with the same
length as the signature the set of genes common to the
two data sets. The Spearman correlation was calculated
for each of 10,000 permutation, giving an empirical distri-
bution from which p-value was derived. The sign of the
correlation represented the direction of the signature in
the target set.

4) Concordance Permutation: The signature concor-
dance Test is a semi-quantitative permutation test based
on the regulation directions. For the test, a concordance
score is defined as:

Nsignature genes matching in regulation directions

N,

genes in the signature

concordance score =

1)

where N refers to the number of genes.

The concordance score of the signature was calculated
using Equation 1. A total of 10,000 permutations were per-
formed to generate an empirical null distribution. In each
permutation, we randomly selected a gene set with the
same length as the signature from all the genes which are
in common between the signature-generating platform
and the target data set platform and record the concor-
dance score. P-values are derived from the test statistic
and the empirical null distribution. The signature direc-
tion is determined by whether the concordance score of

Name Description Process

GO:0050868 Negative regulation of T cell activation Tcell_activation

GO:0050870 Positive regulation of T cell activation Tcell_activation

G0:2000320 Negative Regulation of T helper-17 cell differentiation
G0O:2000321 Positive Regulation of T helper-17 cell differentiation
GO:0032824 Negative regulation of natural killer cell differentiation NK_IL12

G0:0032825 Positive regulation of natural killer cell differentiation NK_IL12

G0O:2000417 Negative regulation of eosinophil migration Eosinophils_cytokine_response
G0O:2000418 Positive regulation of eosinophil migration Eosinophils_cytokine_response
GO:0045657 Positive regulation of Monocyte Differentiation Monocyte_Macrophage_differentiation
GO:0045656 Negative regulation of Monocyte Differentiation Monocyte_Macrophage_differentiation
GO:0050871 Positive regulation of B cell activation Bcell_activation

GO:0050869 Negative regulation of B cell activation Bcell_activation

GO:0034142 Toll-like receptor 4 signaling pathway PBMC_LPS

tolerogenic DC signature

Tolerogenic DC signature [43].

Tolerogenic_Dendritic_cells
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Table 3 A comparison of the contingency table for Concordance Fisher's Exact (above) and Fisher's Exact Overrepresentation (below)

Genes matched in regulation direction

In signature X
Not in signature k —x
Total k

Differentially expressed genes

In signature X
Not in signature k —x
Total k

Genes not matched in regulation direction Total
m—x m
n—(k—x) n
m+n—k m+n
Not differentially expressed genes Total
m—x m
n—(k—x) n
m+n—k m+n

the signature is greater or less than the mean of permuted
scores.

5) Concordance Fisher’s Exact Test: As in the previous
method, this method is also based on the concordance of
the fold change direction, however with a different strat-
egy for deriving a p-value. Here, we derive a p-value using
the Fisher Exact Test based on the contingency table in
Table 3.

It should be noted that the first two tests (overrepre-
sentation and enrichment) consider the gene signature to
be an unordered set of genes, and the resulting test does
not provide a direction as to the regulation of the biolog-
ical process. This is equally applicable to gene signatures
and currated gene sets. However, the remaining correla-
tion and concordance tests also provide a direction, and
we considered correct direction to be a requirement for
true positive / true negative results when accessing the
accuracy. Furthermore, these tests require a ranking of
the genes in the gene signature, which are not available
for currated gene sets, and therefore these tests were not
applied to the curated gene sets.

P-values of all the five methods were calculated accord-
ing to the aforementioned description. ROC (receiver
operating characteristic) curves were generated by chang-
ing the confidence level threshold (the threshold for p-
values) for the logistic classification of whether the sig-
nature is presented in each target set. The AUC (area
under the curve) of each condition was calculated for the
comparison.

Results
We applied all the five methods on data-derived signatures
to detect the presence of the signatures in the target data
sets and to evaluate the performance of the methods on
data-derived signatures. The ROC curves are summarized
in Fig. 1, with AUC under each condition labelled sepa-
rately. The full table of p-values for each target signature
combination is provided in the supplement [Additional
file 1].

The data derived signature tests performed more favor-
ably than the curated gene set definitions, with the best

performance being that of the Fisher Exact Overrepre-
sentation Test for the data derived signature (AUC =
0.67). The Mann-Whitney-Wilcoxon Enrichment test per-
formed poorly (AUC = 0.55) for both data-derived and
curated gene sets.

While the ROC curve is useful for summarizing perfor-
mance using a sliding threshold, given that these scores
are based on p-values, it makes sense to example the
specific ubiquitous threshold of 0.05. The sensitivity and
specificity values for an alpha threshold of 0.05 are sum-
marized in Table 4:

Robustness analysis

We assessed the behavior of these statistics in the pres-
ence of increasing noise in the signatures. This was done
by replacing a batch of the most significant with the least
significant genes, and iteratively increasing the batch size.
The effect of noise on the True Positive Rate is show-
ing in Fig. 2. The full table of results is provided in the
supplement [Additional file 2].

The robustness analysis shows that the analytical statis-
tics do show a sharp decline in True Positive Rate with
the introduction of only 10 percent noise. In contrast, the
permutation-based methods show a more gradual effect
with increasing noise.

Among the various experiments in our study, we can
expect various levels of “noise” also in the sense that the
quality of the experiments could be quite heterogeneous.
We have accessed the effect of being selective in choos-
ing our signature-generating data sets and calculated the
performance when using only the highest quality experi-
ments for generating the signatures (based on sample size,
experimental design, platform). The result is an increase
in AUC (Fig. 3). This selectivity boosts the AUCs above
0.72 for several statistics, indicating the value of basing
signatures on high quality experiments.

Specificity analysis

Faced with the need to define a set of target data sets as
negative cases, we have opted to consider for a given sig-
nature of an immunological process the negative cases to
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Fig. 1 ROC curves for the application of the selected statistical methods on the detection of signature. The ROC curves described the performance
of Fisher's Concordance Test, Correlation Permutation Test, Concordance Permutation Test and Man-Whitney-Wilcoxon Test in the detection of
both data-derived and curated-gene set signatures

Method

Concordance
Fisher's Exact
data-derived

(AUC:0.6115)

Concordance Permutation
data-dervived
(AUC:0.5992)

Correlation Permutation
data-derived
(AUC:0.6216)

Fisher's Exact
Overrepresentation Test
curated-data
(AUC:0.5898)

Fisher's Exact
Overrepresentation Test
data-derived
(AUC:0.6668)

Mann-Whitney-Wilcoxon
Enrichment
curated-data
(AUC:0.5455)

Mann-Whitney-Wilcoxon
Enrichment
data-derived
(AUC:0.5512)

be the target data sets for the other immunological pro-
cesses which we have collected. However, motivated by
the fact that there will be overlapping genes involved in the
immunological processes we include here (e.g. genes that
are upregulated both during B cell and T cell stimulation),

Table 4 The sensitivity and the specificity of the five methods at an alpha cutoff of 0.05

we also provide an alternative definition of negative cases.
We have taken control samples from three additional
studies and generated a series of random combinations of
samples into pseudo-phenotypes for differential expres-
sion analysis. Using this definition of negative samples, we

Signature Generation

Data-derived signature

Curated gene set

Method Sensitivity Specificity Sensitivity Specificity
Mann-Whitney-Wilcoxon Enrichment 0.7655 0.3098 0.25 0.7292
Fisher's Exact Concordance 0.7977 0.3720 - -

Fisher's Exact Overrepresentation 0.8981 0.1014 0.5246 0.6229
Correlation Permutation 0.7278 04517 - -
Concordance Permutation 0.7424 0.3995 - -
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Method Concordance_Permutation —-

0.25

0.00

Correlation_Permutation =~ Fisher.

Fisher_

0.0 0.1 02 0.3 04

Portion of noise in signature

Fig. 2 True Positive Rate as a function of noise added to the signatures. Noise was added to the signature by swapping the proportion of genes
indicated on the x axis with the least significant genes in the signature’s differential expression experiment

0.5 06 0.7 0.8 0.9 1.0

observe the ROC curves in Fig. 4. This type of assessment
does lead to higher AUC scores due to the fact that the
top DE genes in the pseudo phenotpyes are completely
independent of the processes at play in the signature
experiments.

To examine the sources of non-specific signature genes,
we identified genes that deferentially expressed across
most of the signatures. We selected genes whose median
absolute fold change was greater than 1 across all the sig-
natures. These genes are provided in supplement [Addi-
tional file 3] . Performing a GO enrichment analysis with
PANTHER, we see that these genes are common to a wide
range of immunological processes [Additional file 3].

Discussion
We have evaluated methods for detecting the activation
or deactivation of immunological processes within tar-
get differential expression experiments. We compared a
strategy based on gene signatures derived from previous
transcriptome experiments with the approach more com-
monly taken using curated gene sets. The results show
that the use of such “custom” gene signatures is a valid
approach, despite the fact that they are derived from single
experiments, whereas curated gene sets can be based on
many sources of information. Overall both methods tend
to produce high rates of false positives.

This observation of an abundance of false positives is
consistent with previous studies. Tarca et al have taken a
similar approach to evaluating their gene set enrichment

tool along with other published methods by defining a
test data set that consisted of previous DE experiments
[45]. They generated signatures for various cancer types
and tested them in matching and mismatching cancer tar-
get sets. The false positive results were so prevalent that
they took the strategy of using the rank of the correct
target set in the list of all tested sets to define their per-
formance metric. In other words, the best method was the
one that had the fewest false positives of higher rank than
the correct target.

Although we evaluate the performance of these meth-
ods using AUC, it is important to note that in practice
a p-value cutoff of 0.05 is typically used when deciding
whether a gene set is differentially expressed. At this cutoff
the data-derived signature method exhibits high sensi-
tivity and low specificity. In practice, this method would
benefit from a more stringent p-value threshold.

When comparing the various statistical tests among
themselves, the Mann-Whitney-Wilcoxon notably under-
performs. For the data-derived signatures, at the p-value
threshold of 0.05, the performance is characterized by
poor specificity for data-derived signatures and poor sen-
sitivity for curated gene sets. Given the large size of the
gene signatures, the test is perhaps very sensitive to even
small amounts of bias, resulting in many false positive
calls. For the smaller curated gene sets, the method seems
to be somewhat more appropriate.

When applying the data-derived gene signatures, we
tested two groups of statistics: ones which utilize the



Liu et al. BMC Bioinformatics (2020) 21:28

Page 8 of 11

1.004

0.50 \

Sensitivity

0254 (N

0.004

1.00 0.75 0.50
Specificity

samples, experimental design, and platform.

Method

Concordance
Fisher's Exact
data-derived
(AUC:0.745)

Concordance Permutation
data-derived
(AUC:0.7357)

Correlation Permutation
data-derived
(AUC:0.7292)

Mann-Whitney-Wilcoxon
Enrichment
curated-data
(AUC:0.5525)

Mann-Whitney-Wilcoxon
Enrichment
data-derived
(AUC:0.447)

Fig. 3 ROC curves when selecting high quality experiments to define signatures Here, not every experiment was evaluated as a signature data set.
Instead, for every immune process only one experiment was chosen to generate the signature based on quality considerations such as number of

direction of the fold change in the signature data set, and
those which use the signatures simply as a set without
regard to the direction of change in expression. These
results are somewhat ambiguous as to whether there is an
advantage to using this additional information, given that
one of the two techniques which do not use it performed
quite well — namely the Fisher Exact Overrepresentation.

In principle, the a compendium of data derived gene sig-
natures could be generated exhaustively for all of GEO.
The MSigDB has taken steps in this direction with for
example the C7 collection of immunological signatures.
These collections do contain genes and their change
in direction, however information is missing concerning
how many genes are in common between the signature-
generating platform and the target data set platform -
a discrepancy which will only increase over time with
the introduction of new technologies. An additional issue
is that these signatures are limited to 200 genes per
direction, which is smaller than our data-derived sig-
natures and in our hands shortening the signatures to

this length decreases accuracy. There is also a cost trade
off between running an “everything against everything”
analysis, as is the case in C7 versus careful manual dif-
ferential expression analysis by an expert, involving qual-
ity control steps and consideration of covariates, batch
effect, etc. The former does allow for hypothesis free
analysis, however at the expense of many inapplicable
tests that reduce power when it comes to multiple test
correction.

Conclusion

In conclusion, the data-derived gene signature approach
is a valid and useful tool for inferring the presence and
absence of immunological processes in transcriptome
datasets. The approach makes valuable use of previously
published experiments, and can be carefully tailored to
ensure that the most relevant comparisons are made when
using a hypothesis driven technique. The accuracy is rea-
sonable when compared to the gene set based approach,
but both approaches are prone to false positives. The



Liu et al. BMC Bioinformatics (2020) 21:28

Page 9 of 11
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0.504
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0.254

0.004

Method

Concordance
Fisher's Exact
data-derived
(AUC:0.745)

Concordance Permutation
data-derived
(AUC:0.6883)

Correlation Permutation
-+ data-derived
(AUC:0.7052)

Mann-Whitney-Wilcoxon
Enrichment
curated-data
(AUC:0.5525)

Mann-Whitney-Wilcoxon
Enrichment
data-derived
(AUC:0.4368)

1.00 0.75 0.50
Specificity

0.25 0.00

Fig. 4 ROC curves when pseudo-phenotypes are used as negative cases In this alternative definition of negative cases, control samples were
randomly assigned to each of two categories and a differential expression analysis was performed, thus generating a negative target dataset

weakness in widely used gene set based approaches is
overlooked, perhaps due to the difficulty in producing
ground truth information, but this is an issue that must be
addressed to improve the interpretation of transcriptome
experiments.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512859-020-3366-4.

Additional file 1: All Evaluation Results Description: Contains the results
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