Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/9294
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/9347
dc.contributor.author Wang, Qingsong
dc.contributor.author Sarkar, Abishek
dc.contributor.author Wang, Di
dc.contributor.author Velasco, Leonardo
dc.contributor.author Azmi, Raheleh
dc.contributor.author Bhattacharya, Subramshu S.
dc.contributor.author Bergfeldt, Thomas
dc.contributor.author Düvel, Andre
dc.contributor.author Heitjans, Paul
dc.contributor.author Brezesinski, Torsten
dc.contributor.author Hahn, Horst
dc.contributor.author Breitung, Ben
dc.date.accessioned 2020-01-31T09:28:10Z
dc.date.available 2020-01-31T09:28:10Z
dc.date.issued 2019
dc.identifier.citation Wang, Q.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R. et al.: Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries. In: Energy and Environmental Science 12 (2019), Nr. 8, S. 2433-2442. DOI: https://doi.org/10.1039/c9ee00368a
dc.description.abstract In the present work, a new class of high entropy materials for energy storage applications is introduced. Multi-anionic and -cationic compounds are prepared by facile mechanochemistry using a recently designed multi-cationic transition-metal-based high entropy oxide as the precursor and LiF or NaCl as the reactant, leading to formation of lithiated or sodiated materials. Notably, the Li-containing entropy-stabilized oxyfluoride described herein (Lix(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)OFx) exhibits a working potential of 3.4 V vs. Li+/Li, enabling its use as a cathode active material. Unlike conventional (non-entropy-stabilized) oxyfluorides, this new material shows enhanced Li storage properties due to entropy stabilization, which, in general, facilitates tailoring the cycling performance by varying the constituent elements in yet unprecedented ways. In addition, we demonstrate that the concept of entropy stabilization is also applicable to Na-containing oxychlorides with a rock-salt structure, thus paving the way toward development of (next-generation) post-Li battery technologies. eng
dc.language.iso eng
dc.publisher Cambridge : Royal Society of Chemistry
dc.relation.ispartofseries Energy and Environmental Science 12 (2019), Nr. 8
dc.rights CC BY-NC 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc/3.0/
dc.subject Cobalt compounds eng
dc.subject Copper compounds eng
dc.subject Entropy eng
dc.subject Fluorine compounds eng
dc.subject Lithium-ion batteries eng
dc.subject Magnesium compounds eng
dc.subject Nickel compounds eng
dc.subject Sodium chloride eng
dc.subject Stabilization eng
dc.subject Transition metals eng
dc.subject Zinc compounds eng
dc.subject Cathode active material eng
dc.subject Cationic compounds eng
dc.subject Constituent elements eng
dc.subject Cycling performance eng
dc.subject Energy storage applications eng
dc.subject Li-storage properties eng
dc.subject Mechano-chemistry eng
dc.subject Rock salt structures eng
dc.subject Lithium compounds eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries
dc.type Article
dc.type Text
dc.relation.issn 1754-5692
dc.relation.doi https://doi.org/10.1039/c9ee00368a
dc.bibliographicCitation.issue 8
dc.bibliographicCitation.volume 12
dc.bibliographicCitation.firstPage 2433
dc.bibliographicCitation.lastPage 2442
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken