Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/806
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/830
dc.contributor.author Wang, Li
dc.contributor.author Dimitrijev, Sima
dc.contributor.author Fissel, Andreas
dc.contributor.author Walker, Glenn
dc.contributor.author Chai, Jessica
dc.contributor.author Hold, Leonie
dc.contributor.author Fernandes, Alanna
dc.contributor.author Nguyen, Nam-Trung
dc.contributor.author Iacopi, Alan
dc.date.accessioned 2016-12-06T07:56:26Z
dc.date.available 2017-09-02T22:05:15Z
dc.date.issued 2016
dc.identifier.citation Wang, Li; Dimitrijev, Sima; Fissel, Andreas; Walker, Glenn; Chai, Jessica et al.: Growth mechanism for alternating supply epitaxy. In: RSC Advances 6 (2016), Nr. 20, S. 16662-16667. DOI: http://dx.doi.org/10.1039/C5RA24797G
dc.description.abstract Low-cost large-diameter cubic silicon carbide (3C-SiC) film grown on silicon (Si) has been demonstrated to have a wide range of applications in photonics, electronics, photoelectrochemistry and micro-electro-mechanical system technologies. In this paper, the epitaxial growth of SiC on Si by low-pressure chemical vapour deposition is investigated. Two modes were employed to supply the precursors: the alternating supply and the simultaneous supply. Compared with SiC films grown at the same temperature by simultaneous supply epitaxy method, the SiC grown by alternating supply epitaxy (ASE) method has better crystallinity, smoother surface, and better thickness uniformity as confirmed by X-ray diffraction and atomic force microscopy characterisation. We propose the growth mechanism for ASE growth of 3C-SiC and validate it in detail experimentally. It is found that, Si deposition on SiC follows either Stranski–Krastanov mode or island growth mode, while SiC formation proceeds in two possible reaction paths: redistributing of the formed Si islands or smoothing of the formed SiC islands by decomposition migration process. Both reaction paths are driven by minimizing the surface free energy and reducing dangling bonds density. In summary, the key features of ASE are: (1) Si has a longer diffusion length and thus higher probability to adhere to a crystallographically favourable position; (2) undesirable gas phase reactions can be avoided. The obtained results indicate that ASE is a unique and economically viable method to prepare uniform 3C-SiC on multiple large-diameter Si wafers. eng
dc.description.sponsorship Queensland Government, Australia
dc.description.sponsorship Australian Research Council
dc.language.iso eng
dc.publisher Cambridge : Royal Society of Chemistry
dc.relation.ispartofseries RSC Advances 6 (2016), Nr. 20
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
dc.subject silicon eng
dc.subject 3C-SiC eng
dc.subject alternating supply epitaxy (ASE), nanotechnology eng
dc.subject.ddc 540 | Chemie ger
dc.title Growth mechanism for alternating supply epitaxy
dc.type Article
dc.type Text
dc.relation.essn 2046-2069
dc.relation.doi http://dx.doi.org/10.1039/C5RA24797G
dc.bibliographicCitation.issue 20
dc.bibliographicCitation.volume 6
dc.bibliographicCitation.firstPage 16662
dc.bibliographicCitation.lastPage 16667
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken