Numerical Modeling of c-Si PV Modules by Coupling the Semiconductor with the Thermal Conduction, Convection and Radiation Equations

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/783
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/807
dc.contributor.author Vogt, Malte R.
dc.contributor.author Holst, Hendrik
dc.contributor.author Winter, Matthias
dc.contributor.author Brendel, Rolf
dc.contributor.author Altermatt, Pietro P.
dc.date.accessioned 2016-11-30T08:58:10Z
dc.date.available 2016-11-30T08:58:10Z
dc.date.issued 2015
dc.identifier.citation Vogt, M.R.; Holst, H.; Winter, M.; Brendel, R.; Altermatt, P.P.: Numerical Modeling of c-Si PV Modules by Coupling the Semiconductor with the Thermal Conduction, Convection and Radiation Equations. In: Energy Procedia 77 (2015), S. 215-224. DOI: https://doi.org/10.1016/j.egypro.2015.07.030
dc.description.abstract Commonly, the thermal behavior of solar cell modules is calculated with analytical approaches using non wavelength-dependent optical data. Here, we employ ray tracing of entire solar modules at wavelengths of 300-2500 nm to calculate heat sources. Subsequently, finite element method (FEM) simulations are used to solve the semiconductor equations coupled with the thermal conduction, thermal convection, and thermal radiation equations. The implemented model is validated with measurements from an outdoor test over the period of an entire year. Our ray tracing analysis of different solar modules under the AM.15G spectrum shows that, for a standard module about 18.9% of the sun's intensity becomes parasitically absorbed. A loss analysis shows that the biggest parasitic heat source is the cell's full-area rear side metallization. We hence propose the use of a SiNx layer as rear side mirror to reduce the parasitic absorption to 11.7%. This change can lead to a 3.2 °C lower module operating temperature, which results in an about 5 W higher electrical power output when considering a typical 260 W module. eng
dc.language.iso eng
dc.publisher Amsterdam : Elsevier
dc.relation.ispartof Energy Procedia 77 (2015)
dc.relation.ispartofseries Energy Procedia
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject dielectric rear side mirror eng
dc.subject Ray tracing eng
dc.subject simlation eng
dc.subject solar module temperature;field measurements eng
dc.subject thermal solar module behaviour eng
dc.subject Finite element method eng
dc.subject Heat convection eng
dc.subject Heat radiation eng
dc.subject Mirrors eng
dc.subject Photovoltaic cells eng
dc.subject Ray tracing eng
dc.subject Semiconducting silicon eng
dc.subject Silicon nitride eng
dc.subject Solar cells eng
dc.subject Electrical power output eng
dc.subject Field measurement eng
dc.subject Finite element method simulation eng
dc.subject Operating temperature eng
dc.subject Rear side eng
dc.subject Semiconductor equations eng
dc.subject simlation eng
dc.subject Thermal solar eng
dc.subject Solar cell arrays eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 600 | Technik ger
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau ger
dc.title Numerical Modeling of c-Si PV Modules by Coupling the Semiconductor with the Thermal Conduction, Convection and Radiation Equations eng
dc.type Article
dc.type Text
dc.relation.issn 1876-6102
dc.relation.doi 10.1016/j.egypro.2015.07.030
dc.bibliographicCitation.volume 77
dc.bibliographicCitation.firstPage 215
dc.bibliographicCitation.lastPage 224
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken