A cloud microphysics parameterization for shallow cumulus clouds based on Lagrangian cloud model simulations

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/5499
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/5546
dc.contributor.author Noh, Yign
dc.contributor.author Oh, Donggu
dc.contributor.author Hoffmann, Fabian
dc.contributor.author Raasch, Siegfried
dc.date.accessioned 2019-10-09T10:27:11Z
dc.date.available 2019-10-09T10:27:11Z
dc.date.issued 2018
dc.identifier.citation Noh, Y.; Oh, D.; Hoffmann, F.; Raasch, S.: A cloud microphysics parameterization for shallow cumulus clouds based on Lagrangian cloud model simulations. In: Journal of the Atmospheric Sciences 75 (2018), Nr. 7, S. 4031-4047. DOI: https://doi.org/10.1175/JAS-D-18-0080.1
dc.description.abstract Cloud microphysics parameterizations for shallow cumulus clouds are analyzed based on Lagrangian cloud model (LCM) data, focusing on autoconversion and accretion. The autoconversion and accretion rates,A and C, respectively, are calculated directly by capturing the moment of the conversion of individual Lagrangian droplets from cloud droplets to raindrops, and it results in the reproduction of the formulas of A and C for the first time. Comparison with various parameterizations reveals the closest agreement with Tripoli and Cotton, such as A=αNc -1/3 qc 7/3 H(R2RT) and C=βqcqr, where qc and Nc are the mixing ratio and the number concentration of cloud droplets, qr is the mixing ratio of raindrops, RT is the threshold volume radius, and His the Heaviside function. Furthermore, it is found that a increases linearly with the dissipation rate « and the standard deviation of radius s and that RT decreases rapidly with σ while disappearing at σ > 3.5 μm. The LCMalso reveals that σ and ε increase with time during the period of autoconversion, which helps to suppress the early precipitation by reducing A with smaller a and larger RT in the initial stage. Finally, β is found to be affected by the accumulated collisional growth, which determines the drop size distribution. © 2018 American Meteorological Society. eng
dc.language.iso eng
dc.publisher Boston, Massachusetts : American Meteorological Society
dc.relation.ispartofseries Journal of the Atmospheric Sciences 75 (2018), Nr.7
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.subject Turbulence eng
dc.subject Cloud microphysics eng
dc.subject Cloud parameterizations eng
dc.subject Large eddy simulations eng
dc.subject.ddc 550 | Geowissenschaften ger
dc.subject.ddc 551 | Geologie, Hydrologie, Meteorologie ger
dc.title A cloud microphysics parameterization for shallow cumulus clouds based on Lagrangian cloud model simulations
dc.type article
dc.type Text
dc.relation.essn 1520-0469
dc.relation.issn 0022-4928
dc.relation.issn 0095-9634
dc.relation.doi https://doi.org/10.1175/JAS-D-18-0080.1
dc.bibliographicCitation.issue 11
dc.bibliographicCitation.volume 75
dc.bibliographicCitation.firstPage 4031
dc.bibliographicCitation.lastPage 4047
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics