Show simple item record

dc.identifier.uri Haegeman, Jutho Draxler, Damian Stojevic, Vid Cirac, J. Ignacio Osborne, Tobias J. Verstraete, Frank 2019-05-16T13:32:40Z 2019-05-16T13:32:40Z 2017
dc.identifier.citation Haegeman, J. et al.: Quantum Gross-Pitaevskii Equation. In: Scipost Physics 3 (2017), Nr. 1, 006. DOI:
dc.description.abstract We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-dimensional quantum gasses and quantum liquids. This generalization is obtained by applying the time-dependent variational principle to the variational manifold of continuous matrix product states. This allows for a full quantum description of many body system - including entanglement and correlations-and thus extends significantly beyond the usual mean-field description of the Gross-Pitaevskii equation, which is known to fail for (quasi) one-dimensional systems. By linearizing around a stationary solution, we furthermore derive an associated generalization of the Bogoliubov - de Gennes equations. This framework is applied to compute the steady state response amplitude to a periodic perturbation of the potential. eng
dc.language.iso eng
dc.publisher Amsterdam : SciPost Foundation
dc.relation.ispartofseries Scipost Physics 3 (2017), Nr. 1
dc.rights CC BY 4.0 Unported
dc.subject Bose-Einstein Condensation eng
dc.subject Nonlinear Schrodinger- Equations eng
dc.subject Density - Matrix Renormalisation eng
dc.subject Tonks - Girardeau Gas eng
dc.subject Impenetrable Bosons eng
dc.subject Traps eng
dc.subject Dynamics eng
dc.subject Vortrex eng
dc.subject.ddc 530 | Physik ger
dc.title Quantum Gross-Pitaevskii Equation
dc.type Article
dc.type Text
dc.relation.essn 2542-4653
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 3
dc.bibliographicCitation.firstPage 6
dc.description.version publishedVersion
tib.accessRights frei zug�nglich

Files in this item

This item appears in the following Collection(s):

Show simple item record


Search the repository


My Account

Usage Statistics