Unravelling Ultraslow Lithium-Ion Diffusion in γ-LiAlO2: Experiments with Tracers, Neutrons, and Charge Carriers

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/4116
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/4150
dc.contributor.author Wiedemann, Dennis ger
dc.contributor.author Nakhali, Suliman ger
dc.contributor.author Rahn, Johanna ger
dc.contributor.author Witt, Elena ger
dc.contributor.author Islam, Mazharul M. ger
dc.contributor.author Zander, Stefan ger
dc.contributor.author Heitjans, Paul ger
dc.contributor.author Schmidt, Harald ger
dc.contributor.author Bredow, Thomas ger
dc.contributor.author Wilkening, Martin ger
dc.contributor.author Lerch, Martin ger
dc.date.accessioned 2018-12-06T14:06:22Z
dc.date.available 2018-12-06T14:06:22Z
dc.date.issued 2016
dc.identifier.citation Wiedemann, D. et al.: Unravelling Ultraslow Lithium-Ion Diffusion in γ-LiAlO2: Experiments with Tracers, Neutrons, and Charge Carriers. In: Chemistry of Materials 28 (2016), S. 915-924. DOI: https://doi.org/10.1021/acs.chemmater.5b04608 ger
dc.description.abstract Lithium aluminum oxide (γ-LiAlO2) has been discussed and used for various applications, e.g., as electrode coating, membrane, or tritium breeder material. Although lithium-ion diffusion in this solid is essential for these purposes, it is still not sufficiently understood on the microscopic scale. Herein, we not only summarize and assess the available studies on diffusion in different crystalline forms of γ-LiAlO2, but also complement them with tracer-diffusion experiments on (001)- and conductivity spectroscopy on (100)-oriented single crystals, yielding activation energies of 1.20(5) and 1.12(1) eV, respectively. Scrutinous crystal-chemical considerations, Voronoi–Dirichlet partitioning, and Hirshfeld surface analysis are employed to identify possible diffusion pathways. The one-particle potential, as derived from high-temperature powder neutron diffraction data presented as well, reveals the major path to be strongly curved and to run between adjacent lithium positions with a migration barrier of 0.72(5) eV. This finding is substantiated by comparison with recently published computational results. For the first time, a complete model for lithium-ion diffusion in γ-LiAlO2, consistent with all available data, is presented. ger
dc.language.iso eng ger
dc.publisher Washington D.C. : American Chemical Society
dc.relation.ispartofseries Chemistry of Materials 28 (2016) ger
dc.rights ACS AuthorChoice License ger
dc.rights.uri https://pubs.acs.org/page/policy/authorchoice_termsofuse.html
dc.subject Lithium aluminum oxide eng
dc.subject lithium-ion diffusion eng
dc.subject crystalline form eng
dc.subject.ddc 540 | Chemie ger
dc.title Unravelling Ultraslow Lithium-Ion Diffusion in γ-LiAlO2: Experiments with Tracers, Neutrons, and Charge Carriers ger
dc.type article ger
dc.type Text ger
dc.relation.doi 10.1021/acs.chemmater.5b04608
dc.description.version publishedVersion ger


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken