Auxiliary function development for the LISA metrology system

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/3511
dc.identifier.uri http://www.repo.uni-hannover.de:8080/handle/123456789/3541
dc.contributor.author Brause, Nils Christopher ger
dc.date.accessioned 2018-07-06T08:51:14Z
dc.date.available 2018-07-06T08:51:14Z
dc.date.issued 2018
dc.identifier.citation Brause, Nils Christopher: Auxiliary function development for the LISA metrology system. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2018, XV, 186 S. DOI: https://doi.org/10.15488/3511 ger
dc.description.abstract The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured. ger
dc.description.abstract Die Laser Interferometer Space Antenna (LISA) ist ein geplanter Gravitationswellendetektor, der im Weltraum stationiert werden soll. Sie besteht aus drei Satelliten, die Long Range Interferometry (LRI) nutzen um relative Abstandsänderungen zwischen ihnen zu messen. Eine wichtige Komponente von LISA ist das LISA Metrology System (LMS), welches für die Abstandsmessungen sowie diverse Hilfsfunktionen zuständig ist: Die Beatnote Acquisition ermöglicht dem LMS sich auf eine eingehende Beatnote unbekannter Frequenz und Amplitude zu locken. Sie misst beides mit einer Fast Fourier Transform (FFT) und kontrolliert damit die Startfrequenz und Gains der Digital Phase Locked Loops (DPLLs). Der Laser Lock Algorithmus wird benutzt um die Frequenz eines Lasers auf die eines anderen zu stabilisieren. Dies wird erreicht indem der Frequenzunterschied beider Laser konstant gehalten wird, wodurch Heterodyninterferometrie ermöglicht wird. Die Amplitude des Eingangssignals variiert stark im Laufe der Zeit. Um dem entgegenzuwirken folgt der Automatic Gain Control (AGC) der Amplitude und passt die Gains der DPLLs laufend an. In LISA wird die Richtung der Laserstrahlen mit Hilfe eines weiterentwickelten Differential Wavefront Sensing (DWS) Schemas gemessen, das die differentiellen Phasen zwischen den Segmenten der Quadrant Photo Diode (QPD) direkt misst. Dies verbessert die Carrier to Noise Density Ratio (CNR) in den DPLLs um einen Faktor 2. Der absolute Abstand zwischen den Satelliten wird ebenfalls gemessen um im Postprocessing Time-Delay Interferometry (TDI) zu ermöglichen. Dies wird erreicht indem ein Pseudo Random Noise (PRN) Code über die Laserverbindung zu einem entfernten Satelliten geschickt wird, wo er mit einer lokalen Version davon korreliert und so die Entfernung aus der gemessenen Verzögerung berechnet wird. Da nur einer der drei LISA Satelliten eine Funkverbindung zur Erde hat, müssen die Daten zwischen den Satelliten transferiert werden. Diese Funktionalität ist Teil der Delay Locked Loop (DLL), indem die Daten auf den PRN Code aufmoduliert werden. Im Laufe dieser Doktorarbeit werden alle nötigen Hilfsfunktionen entwickelt, vollständig vorgestellt und vermessen. ger
dc.language.iso eng ger
dc.publisher Hannover : Institutionelles Repositorium der Leibniz Universität Hannover
dc.rights CC BY 3.0 DE
dc.rights.uri http://creativecommons.org/licenses/by/3.0/de/ ger
dc.subject interferometry eng
dc.subject metrology eng
dc.subject auxiliary functions eng
dc.subject Interferometrie ger
dc.subject Messtechnik ger
dc.subject Hilfsfunktionen ger
dc.subject.ddc 530 | Physik ger
dc.title Auxiliary function development for the LISA metrology system ger
dc.type DoctoralThesis ger
dc.type Text ger
dcterms.extent XV, 186 S.
dc.description.version publishedVersion ger
tib.accessRights frei zug�nglich ger


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken