The upper zone of the Bushveld Complex, South Africa : parental magma and crystallization processes

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/3414
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/3444
dc.contributor.author Fischer, Lennart Alexander ger
dc.date.accessioned 2018-05-29T08:21:41Z
dc.date.available 2018-05-29T08:21:41Z
dc.date.issued 2018
dc.identifier.citation Fischer, Lennart Alexander: The upper zone of the Bushveld Complex, South Africa : parental magma and crystallization processes. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2018, 129 S. DOI: https://doi.org/10.15488/3414 ger
dc.description.abstract The Bushveld Complex in South Africa is the largest layered intrusion on Earth. Its upper part is known for huge resources of iron, titanium, vanadium and phosphorus. Associated with the layered character of the rocks, these economically valuable elements are enriched at certain levels of the intrusion. Thus it is important to understand the formation processes of those layers. Using samples from the Bierkraal drill cores, representing the entire Upper and Upper Main Zone in the Western Limb, this thesis gives detailed insights into magmatic processes and the parental magma as well as the prevailing conditions forming the Upper and Upper Main Zone of the Bushveld Complex. A detailed study of modal proportions of the Bierkraal drill cores, contributed to a better understanding of the top part of the intrusion. The observed compositional cyclicity of the Upper and Upper Main Zone was recently explained by several magma injections with a plagioclase-laden magma. Anorthosite layers are produced by crystal settling of the transported plagioclase crystals and magnetitite layers crystallized from a hybrid melt, produced by mixing of resident and injected magma. However, further discussion of the prevailing magma conditions affecting the mineral compositions as well as detailed description of the sub-magmatic system is missing. In this study, the investigation of melt inclusions in apatite from the Upper Zone showed a compositional range from Fe-rich to Si-rich liquids best explained by silicate liquid immiscibility. During late-stage magmatic evolution the liquid line of descent of the Upper Zone reaches the two-liquid field and immiscible melts start to segregate. The continuous range of melt inclusion compositions observed in this study is the result of cooling. Thus, the liquid evolves along the binodal of the two-liquid field, producing more and more contrasting compositions. The dense, low-viscous, Fe-rich liquid percolates downwards and the cumulates from this Fe- and P-rich immiscible melt form the nelsonite layers observed in the Upper Zone. Trace-element distribution in titanomagnetite and clinopyroxene as well as major-element composition of clinopyroxene revealed two major compositional shifts towards more evolved signatures within the Upper Zone stratigraphy. These distinct changes in mineral composition are in correlation with bulk-rock vanadium concentrations. They can be explained by the injection of a more evolved magma. Compared to previously proposed cyclical shifts incomposition, these two events are much more pronounced, arguing against a continuously evolving staging chamber. In fact, this supports the hypothesis of a sub-compartmentalized Bushveld staging chamber as a source for the magma injections. Prevailing oxygen fugacity (fO2) conditions in the Upper Zone were estimated using the V partitioning between titanomagnetite and clinopyroxene. The results show that fO2 variations are minor in the Upper Zone and are approximately around FMQ - 2, which is 1.5 - 2 log units lower than previously assumed. To discuss potential parental magmas of the Upper and Upper Main Zone, crystallization experiments were performed in an internally heated pressure vessel, aiming to reproduce the mineral assemblage above the Pyroxenite Marker. Previously proposed and new calculated compositions were tested at conditions relevant to the Bushveld Complex (2 kbar; 1080°C - 1140°C; ~FMQ -2). In contrast to previously proposed basaltic compositions, the experimental results show that the parental magma to the Upper and Upper Main Zone of the Bushveld complex must be andesitic. Moreover, experimentally produced mineral compositions revealed, that the Upper and Upper Main Zone parental magma contained a residual liquid from the underlying zones high in Mg and Ca also small amounts of H2O (<1 wt%). ger
dc.description.abstract Der Bushveld Komplex in Südafrika ist die größte Lagenintrusion der Erde. Dessen oberer Teil ist bekannt für seine großen Vorkommen an Eisen, Titan, Vanadium und Phosphor. Dem lagigen Charakter der Gesteine entsprechend, sind diese wirtschaftlich bedeutsamen Elemente in bestimmten Lagen der Intrusion angereichert. Aus diesem Grund ist es wichtig, die Prozesse, die diese Lagen bilden genau zu verstehen. Diese Arbeit gibt einen detaillierten Einblick in die magmatischen Prozesse und die Zusammensetzung des Stamm-Magmas der Upper und Upper Main Zone (UUMZ) und die vorherrschenden Bedingungen bei der Kristallisation. Dafür wurden Proben aus den Bierkraal Bohrkernen genommen, die die gesamte UUMZ im westlichen Teil der Intrusion repräsentieren. Eine detaillierte Studie über den Modalbestand der Gesteinsproben aus den Bierkraal Bohrkernen, hat zu einem besseren Verständnis des oberen Teils der Intrusion beigetragen. Das von Yuan et al. (2017) entwickelte Entstehungsmodell erklärt die Zyklizität, die in Mineralzusammensetzungen beobachtet werden kann, mit mehreren Magma-Injektionen in die Bushveld Magmakammer. Dabei transportiert das injizierte Magma auch Plagioklas-Kristalle, die in der Magmakammer nach unten sinken und so Anorthosit-Lagen bilden. Die ökonomisch wichtigen Magnetit-Lagen kristallisieren aus einer Hybrid-Schmelze aus, die durch Mischung zwischen dem vorhandenden und injizierten Magma entsteht. Schmelzeinschlüsse in Apatit aus der Upper Zone zeigen Zusammensetzungen von Fe-reichen bis Si-reichen Schmelzen. Diese Spanne von Zusammensetzungen kann man am besten mit der Entmischung zweier silikatischer Schmelzen erklären. Während der Kristallisation in der Upper Zone entwickelt sich die Schmelze hin zu einer Mischungslücke hin, in der sich zwei nicht-mischbare Schmelzen voneinander trennen. Die kontinueirliche Reihe der Zusammensetzungen der Schmelzeinschlüssen entsteht während der voranschreitenden Abkühlung, bei der sich die beiden nicht-mischbaren Schmelzen entlang der Binodalen der Mischungslücke entwickeln, und so immer starker gegensätzliche Zusammensetzungen erhalten. Die dichtere, niedrig-viskose, Fe-reiche Schmelze sickert nach unten. Kumulate aus diesen Fe- und P-reichen Schmelzen bilden dann die Nelsonit-Lagen in der Upper Zone. Spurenelemente in Ti-Magnetiten und Klinopyroxenen sowie die Hauptelement-Zusammensetzung der Klinopyroxene zeigen zwei abrupte Veränderungen zu mehr entwickelten Zusammensetzungen im stratigraphischen Verlauf der Upper Zone. Diese markanten Sprünge in der Mineralzusammensetzung korrelieren mit Vanadium Konzentrationen im Gesamtgestein. Im Vergleich zu den bisher gezeigten Änderungen in Mineralzusammensetzungen die mit der Magma Injektion einhergehen (Yuan et al.,2017), sind diese viel ausgeprägter und sprechen gegen eine sich kontinuierlich entwickelte sub-Bushveld Magmakammer. Vielmehr spricht die Veränderung zu starker entwickelten Mineralzusammensetzungen für eine weiter unterteilte sub-Bushveld Magmakammer als Quelle für die Magma-Injektionen. Die Sauerstofffugazität (fO2) und deren Entwicklung in der Upper Zone wurde über die Vanadium-Verteilung zwischen Magnetit und Klinopyroxen bestimmt. Die Ergebnisse zeigen, dass fO2 in der Upper Zone nur gering variiert und sich im Bereich von FMQ -2 bewegt. Dies ist 1.5 bis 2 Log-Einheiten unterhalb der bisher angenommen Sauerstofffugazitäten für die Upper Zone. Potentielle Stamm-Magmen der UUMZ wurden über Kristallisationsexperimente in intern beheizten Gasdruck Anlagen getestet. Das Ziel dieser Experimente war es, die ersten Kumulate der UUMZ direct oberhalb des Pyroxenit Markers zu reproduzieren. Hierzu wurden publizierte und neu berechnete Zusammensetzungen bei für den Bushveld Komplex relevanten Bedingungen getestet (2 kbar; 1080°C - 1140°C; ~FMQ -2). Im Gegensatz zu den bisherigen Annahmen, dass das Stamm-Magma eine basaltische Zusammensetzung hat, zeigen die Experimente, dass nur eine andesitische Zusammensetzung die Mineralvergesellschaftung oberhalb des Pyroxenit Markers reproduziert. Die Zusammensetzung der experimentellen Mineralphasen zeigt ausßerdem, dass das Stamm-Magma der UUMZ anteilig aus der Restschmelze der darunter liegenden Zone bestehen muss und zudem geringe Mengen an H2O enthält (< 1wt%). ger
dc.language.iso eng ger
dc.publisher Hannover : Institutionelles Repositorium der Leibniz Universität Hannover
dc.rights Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. ger
dc.subject Bushveld Complex eng
dc.subject Layered Intrusion eng
dc.subject Melt Inclusions eng
dc.subject Immiscibility eng
dc.subject Magnetite eng
dc.subject Vanadium eng
dc.subject Oxybarometry eng
dc.subject Parental Magma eng
dc.subject Crystallization Experiments eng
dc.subject Bushveld Komplex ger
dc.subject Lagenintrusion ger
dc.subject Schmelzeinschlüsse ger
dc.subject Entmischung ger
dc.subject Magnetit ger
dc.subject Vanadium ger
dc.subject Oxybarometrie ger
dc.subject Stamm-Magma ger
dc.subject Kristallisationsexperimente ger
dc.subject.ddc 550 | Geowissenschaften ger
dc.title The upper zone of the Bushveld Complex, South Africa : parental magma and crystallization processes ger
dc.type doctoralThesis ger
dc.type Text ger
dc.description.version publishedVersion ger
tib.accessRights frei zug�nglich ger


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken