Toric extremal Kähler-Ricci solitons are kähler-Einstein

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/3397
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/3427
dc.contributor.author Calamai, Simone
dc.contributor.author Petrecca, David
dc.date.accessioned 2018-05-23T11:41:22Z
dc.date.available 2018-05-23T11:41:22Z
dc.date.issued 2017
dc.identifier.citation Calamai, S.; Petrecca, D.: Toric extremal Kähler-Ricci solitons are kähler-Einstein. In: Complex Manifolds 4 (2017), Nr. 1, S. 179-182. DOI: https://doi.org/10.1515/coma-2017-0012
dc.description.abstract In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions. © 2017 Calamai and Petrecca, published by De Gruyter Open. eng
dc.language.iso eng
dc.publisher Warsaw : De Gruyter Open Ltd.
dc.relation.ispartofseries Complex Manifolds 4 (2017), Nr. 1
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Einstein manifolds eng
dc.subject Extremal kähler metrics eng
dc.subject Kähler-ricci solitons eng
dc.subject Toric manifolds eng
dc.subject.ddc 510 | Mathematik ger
dc.title Toric extremal Kähler-Ricci solitons are kähler-Einstein eng
dc.type article
dc.type Text
dc.relation.issn 2300-7443
dc.relation.doi https://doi.org/10.1515/coma-2017-0012
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 4
dc.bibliographicCitation.firstPage 179
dc.bibliographicCitation.lastPage 182
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics