Non-Abelian sigma models from Yang–Mills theory compactified on a circle

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/3368
dc.identifier.uri http://www.repo.uni-hannover.de/handle/123456789/3398
dc.contributor.author Ivanova, Tatiana A.
dc.contributor.author Lechtenfeld, Olaf
dc.contributor.author Popov, Alexander D.
dc.date.accessioned 2018-05-23T07:46:38Z
dc.date.available 2018-05-23T07:46:38Z
dc.date.issued 2018
dc.identifier.citation Ivanova, T.A.; Lechtenfeld, O.; Popov, A.D.: Non-Abelian sigma models from Yang–Mills theory compactified on a circle. In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 781 (2018), S. 322-326. DOI: https://doi.org/10.1016/j.physletb.2018.04.013
dc.description.abstract We consider SU(N) Yang–Mills theory on R2,1×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang–Mills action reduces to the action of a sigma model on R2,1 whose target space is a 2(N−1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU(N)×SU(N)/ZN. The latter is the direct product of SU(N) and its Langlands dual SU(N)/ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group. © 2018 The Author(s) eng
dc.language.iso eng
dc.publisher Amsterdam : Elsevier B.V.
dc.relation.ispartofseries Physics Letters, Section B 781 (2018)
dc.rights CC BY 4.0
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Yang–Mills theory eng
dc.subject Non-Abelian sigma model eng
dc.subject QCD-like theory eng
dc.subject.ddc 530 | Physik ger
dc.title Non-Abelian sigma models from Yang–Mills theory compactified on a circle
dc.type article
dc.type Text
dc.relation.issn 0370-2693
dc.relation.doi https://doi.org/10.1016/j.physletb.2018.04.013
dc.bibliographicCitation.volume 781
dc.bibliographicCitation.firstPage 322
dc.bibliographicCitation.lastPage 326
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics